31/08/2019 lecll

Simply Typed Lambda Calculus
CS3100 Fall 2019

Review

Previously

» Lambda calculus encodings
= Booleans, Arithmetic, Pairs, Recursion, Lists

Today
o Simply Typed Lambda Calculus

Need for typing

» Consider the untyped lambda calculus
= false = Ax.Ay.y
= 0= AxX.Ay.y
« Since everything is encoded as a function...
= We can easily misuse terms...
o false 0 — Ay.y
o if O then ...
= ...because everything evaluates to some function
» The same thing happens in assembly language
= Everything is a machine word (a bunch of bits)
= All operations take machine words to machine words

How to fix these errors?

Typed Lambda Calculus

e Lambda Calculus + Types — Simply Typed Lambda Calculus (1 ™)

127.0.0.1:8888/notebooks/lec11/lec11.ipynb

1/13

31/08/2019 lecll

Simple Types

A,B = B (base type)
| A — B (functions)
| AxB (products)
| 1 (unit)

B is base types like int, bool, float, string, etc.
+ x binds stronger than —
" AxB—>Cis AxB)—C
*« — isright associative.
= 4—>B—>CisA—(B—0)
= Same as OCaml
If we include neither base types nor 1, the system is degenerate. Why?
= Degenerate = No inhabitant.

Raw Terms

M,N := «x (variable)
MN (application)
Ax:A.M (abstraction)
(M,N) (pair)

fst M (project-1)
snd M (project-2)
O (unit)

Typing Judgements

e M:A4 means that the term M has type 4.
» Typing rules are expressed in terms of typing judgements.
= An expression of formx: 4, x,:4,,...,x,:4, = M:4
= Under the assumption x;:4,,x,:4,, ...,x,:4,, M has type 4.
= Assumptions are usually types for free variables in M.
+ UseT for assumptions.
s HM:A
+ Assume no repetitions in assumptions.
= alpha-convert to remove duplicate names.

127.0.0.1:8888/notebooks/lec11/lec11.ipynb 2/13

31/08/2019

lecll

Quiz
GivenT,x:4,y:B + M:C, which of the following is true?

1. M: C holds

2.xeTl

3.y¢rl

4. 4 and B may be the same type

5. x and y may be the same variable

Quiz
GivenT,x:4,y: B+ M:C Which of the following is true?

1. M: C holds X (M may not be a closed term)

2. x € I X (I has no duplicates)

3.y ¢ T @ (I has no duplicates)

4. 4 and B may be the same type (4 and B are type variables)
5. x and y may be the same variable X (I" has no duplicates)

Typing rules for A

TxdFxa) IF (.1 wmin)
I'-M:A—-B T'HN:4) I'x:A+- M:B .
T'FMN:B (—elim) T A= g (o)
I'M:AxB _ T'-M:AxB ,
TF fstarg (< eliml) TFsndag (¢ €im2)
I'-M:4 TFN:B
(x intro)

T+ (M,N):4AxB

Typing derivation

127.0.0.1:8888/notebooks/lec11/lec11.ipynb

3/13

31/08/2019 lecll

xX:A—>A,y:AFx:4A— A4 (var) xX:A— A, y:AF

(var)

X:A—>A,y:AF-x:A— A x:A—> A, y:AF (xy): 4

xX:A—>A,y:AF-x(xy): 4

xX:A—>AF (Ay:4.x(xy):4— A

F(x:4A—>A.ly:A.x(xy): (4 —> A4) > 4 —

Typing derivation

» For each lambda term, there is exactly one type rule that applies.
= Unique rule to lookup during typing derivation.

Typability

« Not all .~ terms can be assigned a type. For example,
o fst (Ax. M)
e (M,N)P
» Surprisingly, we cannot assign a type for Ax. x x in A~ (or OCaml)
= x is applied to itself. So its argument type should the type of x!

On fst and snd

In OCaml, we can define fst and snd as:

In [2]:

let fst (a,b) = a

let snd (a,b) =D

Out[2]:

val fst : 'a * 'b -> 'a = <fun>
out[2]:

val snd : 'a * 'b -> 'b <fun>

» Observe that the types are polymorphic.
» But no polymorphismin 1~
= fst and snd are keywords in 4

—

127.0.0.1:8888/notebooks/lec11/lec11.ipynb

4/13

31/08/2019 lecll

» For a given type 4 x B, we can define
= (Ap:AxB. fstp): 4
= (Ap:A xB. sndp):B

Reductions in 4

B_) (x:A.M)N — M[N/x]
(n-) A Mx — M ifx & FV(M)
(:Bx,l) fSt <M,N> — M
(,Bx,z) snd (M,N) — N
(ny) (stM,sndM) —> M
(congl) MM (con2) N—N'
con, -, con —_—
& MN-—->M N & MN— MN
MM

© Jx:A.M— Ix:AM'

Type Soundness

» Well-typed programs do not get stuck.
= stuck = not a value & no reduction rule applies.
= fst (Ax. x) is stuck.
= () ()is stuck.
 In practice, well-typed programs do not have runtime errors.

Theorem (Type Soundness). If + M:4 and M — M, then either M is a value or there exists an
M suchthat M — M.

Proved using two lemmas progress and preservation.

Preservation
If a term M is well-typed, and M can take a step to M’ then Mis well-typed.
Lemma (Preservation). If - M:4and M — M, then + M : A.

Proof is by induction on the reduction relation M — M.

127.0.0.1:8888/notebooks/lec11/lec11.ipynb 5/13

31/08/2019 lecll

Preservation : Case f _

Lemma (Preservation). If - M:4 and M — M, then - M :A.

Recall, (5_,) ruleis (Ax: 4. M) N — M/[N/x].

Assume + M:A.Here M = (Ax:B. M) N and M = M[N/x].
We know M is well-typed. And from the typing derivation know that x: B - M,:4 and + N:B.

Lemma (substitution). If x: B+ M:4 and + N:B, then + M[N/x]:A.

By substitution lemma, + M[N/x]: A. Therefore, preservation holds.

Progress

Progress says that if a term M is well-typed, then either M is a value, or there is an M’ such that
M can take a step to M .

Lemma (Progress). If - M: A then either M is a value or there exists an M’ suchthat M — M.
Proof is by induction on the derivation of + M: A4.

» Case var does not apply
o Cases unit, x intro and — intro are trivial; they are values.
» Reduction is possible in other cases as M is well-typed.

Type Safety = Progress + Preservation

Expressive power of 1

» Clearly, not all untyped lambda terms are well-typed.
= Any term that gets stuck is ill-typed.
« Are there terms that are ill-typed but do not get stuck?

« Unfortunately, the answer is yes!
= Consider Ax. x. In A, we must assign type for x
= Pick a concrete type for x

127.0.0.1:8888/notebooks/lec11/lec11.ipynb

6/13

31/08/2019

o Ax:l.x.
= (Ax:1.x) ((), ()) isill-typed, but does not get stuck.

Expressive power of 1

lecll

« As mentioned earlier, we can no longer write recursive function.
= (Ax. xx) (Ax. x x)

+ Every well-typed 1~ term terminates!
= 17 is strongly normalising.

Connections to propositional logic

Consider the following types

(I) (4xB)—4

2) A—>B—>(Ax%xB)
B =B —->B->0—->U—-0

4) A—>A4—4

5) (4—>4) —>B)—B

(6) 4—(4xB)
7 -0 -C

Can you find closed terms of these types?

Connections to propositional logic

(D
@
3)
“4)
®)
(6)
O

(AxB)—> A4

A— B — (4 xB)
d—>B—->B->0—->UA—-0
A—A— A

(4 —4)—>B)—B

A — (4% B)

4A-0C-C

A different question

Ax:A x B.fstx

Ax:A.y:B.{x,y)

Ax:A— B ly:B— C.Az:A.y (x2)
Ax:A. Ay A.x

Ax:(A— A) > B.x(Ay:4.y)

can't find a closed term

can't find a closed term

« Given a type, whether there exists a closed term for it?
* Replace — with = and x with A.

127.0.0.1:8888/notebooks/lec11/lec11.ipynb

7/13

31/08/2019

(M
2
)
4
®)
(6)
(M

lecll

(AAB) = 4

A = B = (AAB)

=B = B= 0 = (4 = 0
A= A = A4

(4 = 4) = B) = B

A = (AAB)

4= 0 = C

What can we say about the validity of these logical formulae?

A different question

(M
@
A3)
“)
®)
(6)
0

(AANB) = 4

A = B = (AAB)

4= B = B=>0 = Ad= 0
A= A = 4

(4 = A = B) = B

A = (AAB)

4= 0 = C

(1) — (5) are valid, (6) and (7) are not!

Proving a propositional logic formula

e How to prove (4 A B) = A?

= Assume 4 A B holds. By the first conjunct, 4 holds. Hence, the proof.

o Consider the program Jx: A x B. fst x.

= Observe the close correspondence of this program to the proof.

» What is the type of this program? (4 x B) — A.

= QObserve the close correspondence of this type to the proposition.
» Curry-Howard correspondence between 2~ and propositional logic.

Curry-Howard Correspondence

» Proposition:Proof :: Type:Program
« Intuitionistic/constructive logic and not classical logic

= Law of excluded middle (4 v —4) does not hold for an arbitrary A4.

o Can't prove by contradiction
= In order to prove, construct the proof object!

127.0.0.1:8888/notebooks/lec11/lec11.ipynb

8/13

31/08/2019 lecll

Propositional Intuitionistic Logic

Formulas:4,B::=a |4 —> B |AAB|T
where « is atomic formulae.
A derivation is
XA x4y x4, A

where 4, 4,, ... are assumptions, x;, x,, ... are names for those assumptions and 4 is the

formula derived from those assumptions.

Derivations through natural deduction

m (axiom) m (T intro)
'-4 = B T'+4 i ILx:A+B _
-3 (= elim) FI—A=>B(=>MWO)
I'-AAB il I'-AAB i
Sy (A eliml) -3 (A elim2)
'-4 T'HB .
TTraag ()

Curry Howard Isomorphism

» Allows one to switch between type-theoretic and proof-theoretic views of the world at will.
= used by theorem provers and proof assistants such as coq, HOL/Isabelle, etc.
» Reductions of 1~ terms corresponds to proof simplification.

Curry Howard Isomorphism

L7 Propositional Intuitionistic Logic
Types Propositions
1 T
x A
— =
Programs Proofs
Reduction Proof Simplification

127.0.0.1:8888/notebooks/lec11/lec11.ipynb 9/13

31/08/2019 lecll

What about v ?

Disjunction
Extend the logic with:
Formulas: 4,B::=... |AVB| Ll
TH4 ' TFB ,
TEAVE (V introl) TEAVE (V intro2)
) 'FAvB T,x:A+-C T,y:BFC)

TEC (L elim) e (Vv elim)

Sum Types

Extend \stlc with:

\[\begin{array}{rrcl} \text{Simple Types: } & A,B & ::= & \Ildots \mid A + B \mid 0 \\ \text{Raw
Terms: } & M,N,P & ::= & \Idots \mid \case{M}{x:A{N}y:BH{P} \\ & & \mid & \in{B{M} \mid
\inr{A}{M} \mid \square_{A} ~M \end{array} \|

The OCaml equivalent of this sum type is:
type ('a,'b) either = Inl of 'a | Inr of 'b

» Similarto fst and snd, there is no polymorphism in \stlc.
= Hence, inl and inr are keywords.

Explicit Type Annotation for inl and inr

Raw Terms: M,N,P = ...|caseMofinlx:4=> N |inly:B=> P
| ml[BIM|inr[A]M| O,M

» Observe that the term for inl and inr require explicit type annotation.
« Without that inl () has many possible types captured by 1 + 4.
= Bottom up type checking is not possible as 4 is left undefined.
o No type inference or polymorphismin A7
» Add explicit annotation and preserve bottom-up type checking property.

Sum Types : Contradiction

127.0.0.1:8888/notebooks/lec11/lec11.ipynb 10/13

31/08/2019 lecll

Extend \stlc with:

\[\begin{array}{rrcl} \text{Simple Types: } & A,B & ::= & \Idots \mid A + B \mid 0 \\ \text{Raw
Terms: } & M,N,P & ::= & \Idots \mid \case{M}{x:A{NHy:BH{P} \\ & & \mid & \in{BK{M} \mid

\inr{A{M} \mid \square_{A} ~M \end{array} \]

o The type 0 is an uninhabited type
= There are no values of this type.
» The OCaml equivalent is an empty variant type:

type zero = |

Sum Types : Static Semantics

Extend 1~ with:

T+ M:A R T+ M:B R
T B MA+s oY) Fo A (7 nrod)

''-M:4+B T,x:AFN:C T,y:B+P:C

4 ol
FI—caseMofinlx:A:>N|inly:B=;,p:C(elim)

Tk M:0
rroma Y

Casting and type soundness

» Recall, Type soundness => well-typed programs do not get stuck
= Preservation: - M:4 and M — M', then + M :4

e But O, changes the type of the expression
= |s type soundness lost?

» Consider x:0.(0, _, ;%) ()

= This term is well-typed.
= x is not a function.
= If we are able to call this function, the program would get szuck.

« There is no way to call this function since the type 0 is uninhabited!
= Type Soundness is preserved.

127.0.0.1:8888/notebooks/lec11/lec11.ipynb

11/13

31/08/2019 lecll

Sum Types : Dynamic Semantics

Extend — with:

MM
case Mofinlx;:4 = Ny | inlx,:B = N, — case M ofinlx;:4 = Ny | inlx,:B = N,

M=inl [B]M
case Mofinlx,;:4 = Ny | inlx,:B = N, —>N1[M,/x1]

M=inr[A] M
case Mofinlx;:4 = Ny | inlx,:B = N, —>N2[M'/x2]

Type Erasure

« Although we carry around type annotations during reduction, we do not examine them.
= No runtime type checking to see if function is applied to appropriate arguments, etc.
» Most compilers drop the types in the compiled form of the program (erasure).

erase(x) = x
erase(M N) = erase(M) erase(V)
erase(Ax: 4. M) = Jx.erase(M)
erase(inr [A] M) = erase(inr erase(M))

etc.

Type erasure

Theorem (Type erasure).

1. If M — M’ under the 2~ reduction relation, then erase(M) — erase(M') under untyped
reduction relation.
2. If erase(M) — N under the untyped reduction relation, then there exists a .~ term M such

that M — M under 2~ reduction relation and erase(M) = N .

Static vs Dynamic Typing

o OCaml, Haskell, Standard ML are statically typed languages.
= Only well-typed programs are allowed to run.

127.0.0.1:8888/notebooks/lec11/lec11.ipynb 12/13

31/08/2019 lecll

= Type soundness holds; well-typed programs do no get stuck.
= Types can be erased at compilation time.
« What about Python, JavaScript, Clojure, Perl, Lisp, R, etc?

= Dynamically typed languages.

= No type checking at compile time; anything goes.
o x = lambda a : a + 10; x("Hello") is aruntime error.

= Allows more programs to run, but types need to be checked at runtime.
o Types cannot be erased!

Fin

127.0.0.1:8888/notebooks/lec11/lec11.ipynb 13/13

