
Streams, Laziness and Memoization

CS3100 Fall 2019

Review

Previously

Modular Programming

Namespacing, Abstraction, Code Reuse

Structures, Signatures, Functors

This lecture

Streams: Programming with infinite data structures

Laziness: Call-by-need evaluation

Recursive values

In OCaml, we can define recursive functions.

we can also define recursive values

In [1]:

Out[1]:

val ones : int list = [1; <cycle>]

(* Infinite list of ones *)
let rec ones = 1::ones

In [2]:

Even though the list is infinite, the data structure uses finite memory.

Infinite data structures

Infinite data structures are not just an intellectual curiosity.

Infinite sequences such as primes and fibonacci numbers.

Streams of input read from file or socket.

Game trees which may be infinite

Every possible move leads to branch in the tree.

Imagine game trees where a piece could chase the other around forever.

Limitations of cyclic structures

Suppose we want to convert the infinite list zero_ones to string, the obvious solutions don't

work.

Out[2]:

val zero_ones : int list = [0; 1; <cycle>]

(* Infinite list of alternating 0s and 1s *)
let rec zero_ones = 0::1::zero_ones

In [3]:

List to Streams

We can start with the list type

type 'a list = Nil | Cons of 'a * 'a list

and make a stream type.

In [4]:

There is no Nil since the streams are infinite.

Doesn't quite work

Stack overflow during evaluation (looping recursion?).
Raised by primitive operation at file "list.ml", line 88, c
haracters 20-23
Called from file "list.ml", line 88, characters 32-39
Called from file "list.ml", line 88, characters 32-39
Called from file "list.ml", line 88, characters 32-39
Called from file "list.ml", line 88, characters 32-39
Called from file "list.ml", line 88, characters 32-39
Called from file "list.ml", line 88, characters 32-39
Called from file "list.ml", line 88, characters 32-39
Called from file "list.ml", line 88, characters 32-39
Called from file "list.ml", line 88, characters 32-39
Called from file "list.ml", line 88, characters 32-39
Called from file "list.ml", line 88, characters 32-39
Called from file "list.ml", line 88, characters 32-39
Called from file "list.ml", line 88, characters 32-39
Called from file "list.ml", line 88, characters 32-39
Called from file "list.ml", line 88, characters 32-39
Called from file "list.ml", line 88, characters 32-39
C ll d f fil "li t l" li 88 h t 32 39

Out[4]:

type 'a stream = Cons of 'a * 'a stream

let zero_ones_string = List.map string_of_int zero_ones

type 'a stream = Cons of 'a * 'a stream

In [5]:

In [6]:

In [7]:

Pausing the execution

We need a way to pause the execution rather than recursively applying to the rest of the

list.

Use thunks: unit -> 'a functions.

Out[5]:

val zero_ones : int stream = Cons (0, Cons (1, <cycle>))

Out[6]:

val to_string : int stream -> string stream = <fun>

Stack overflow during evaluation (looping recursion?).
Raised by primitive operation at file "[6]", line 1, charac
ters 55-67
Called from file "[6]", line 1, characters 55-67
Called from file "[6]", line 1, characters 55-67
Called from file "[6]", line 1, characters 55-67
Called from file "[6]", line 1, characters 55-67
Called from file "[6]", line 1, characters 55-67
Called from file "[6]", line 1, characters 55-67
Called from file "[6]", line 1, characters 55-67
Called from file "[6]", line 1, characters 55-67
Called from file "[6]", line 1, characters 55-67
Called from file "[6]", line 1, characters 55-67
Called from file "[6]", line 1, characters 55-67
Called from file "[6]", line 1, characters 55-67
Called from file "[6]", line 1, characters 55-67
Called from file "[6]", line 1, characters 55-67
Called from file "[6]", line 1, characters 55-67
Called from file "[6]", line 1, characters 55-67
Called from file "[6]" line 1 characters 55 67

let rec zero_ones = Cons (0, Cons (1, zero_ones))

let rec to_string (Cons(x,xs)) = Cons(string_of_int x, to_string xs)

to_string zero_ones

In [8]:

Pausing the execution

In [9]:

In [10]:

Streams again

In [11]:

Exception: Failure "error".
Raised at file "stdlib.ml", line 33, characters 22-33
Called from file "[8]", line 1, characters 8-24
Called from file "toplevel/toploop.ml", line 180, character
s 17-56

Out[9]:

val f : unit -> 'a = <fun>

Exception: Failure "error".
Raised at file "stdlib.ml", line 33, characters 22-33
Called from file "toplevel/toploop.ml", line 180, character
s 17-56

Out[11]:

type 'a stream = Cons of 'a * (unit -> 'a stream)

let v = failwith "error"

let f = fun () -> failwith "error"

f ()

type 'a stream = Cons of 'a * (unit -> 'a stream)

In [12]:

In [13]:

In [14]:

More Stream functions

In [15]:

In [16]:

Out[12]:

val zero_ones : int stream = Cons (0, <fun>)

Out[13]:

val hd : 'a stream -> 'a = <fun>

Out[14]:

val tl : 'a stream -> 'a stream = <fun>

Out[15]:

val take : int -> 'a stream -> 'a list = <fun>

Out[16]:

- : int list = [0; 1; 0; 1; 0; 1; 0; 1; 0; 1]

let rec zero_ones = Cons (0, fun () -> Cons (1, fun () -> zero_ones))

let hd (Cons (x, _)) = x

let tl (Cons (_, xs)) = xs ()

let rec take n s =
 if n = 0 then []
 else (hd s)::(take (n-1) (tl s))

take 10 zero_ones

In [17]:

In [18]:

Higher order functions on streams

In [19]:

In [20]:

In [21]:

Higher order functions on streams

Out[17]:

val drop : int -> 'a stream -> 'a stream = <fun>

Out[18]:

- : int stream = Cons (1, <fun>)

Out[19]:

val map : ('a -> 'b) -> 'a stream -> 'b stream = <fun>

Out[20]:

val zero_ones_str : string stream = Cons ("0", <fun>)

Out[21]:

- : string list = ["0"; "1"; "0"; "1"; "0"; "1"; "0"; "1";
"0"; "1"]

let rec drop n s =
 if n = 0 then s
 else drop (n-1) (tl s)

drop 1 zero_ones

let rec map f s = Cons (f (hd s), fun () -> map f (tl s))

let zero_ones_str = map string_of_int zero_ones

take 10 zero_ones_str

In [22]:

In [23]:

Higher order functions on streams

In [24]:

In [25]:

Primes

Sieve of Eratosthenes: Neat way to compute primes.

Start with a stream s of [2;3;4;.....] .

At each step,

p = hd s is a prime.

return a new stream s' such that

Out[22]:

val filter : ('a -> bool) -> 'a stream -> 'a stream = <fun>

Out[23]:

- : int list = [1; 1; 1; 1; 1; 1; 1; 1; 1; 1]

Out[24]:

val zip : ('a -> 'b -> 'c) -> 'a stream -> 'b stream -> 'c
stream = <fun>

Out[25]:

- : (int * string) stream = Cons ((0, "0"), <fun>)

(** [filter p s] returns a new stream where every element [x] in [s]
 such that [p x = true] is removed *)
let rec filter p s =
 if p (hd s) then filter p (tl s)
 else Cons (hd s, fun () -> filter p (tl s))

let s' = filter ((=) 0) zero_ones in
take 10 s'

let rec zip f s1 s2 = Cons (f (hd s1) (hd s2), fun () -> zip f (tl s1) (

zip (fun x y -> (x,y)) zero_ones zero_ones_str

In the first step,

prime = 2
new stream = [3;5;7;9;11;13;15;17;....]

In the second step,

prime = 3
new stream = [5;7;11;13;17;19;23;....]

Primes

In [26]:

In [27]:

Out[26]:

val from : int -> int stream = <fun>

Out[26]:

- : int stream = Cons (2, <fun>)

Out[27]:

val primes_stream : int stream = Cons (2, <fun>)

let rec from n = Cons (n, fun () -> from (n+1));;
from 2

let primes_stream =
 let rec primes s = Cons (hd s, fun () ->
 primes @@ filter (fun x -> x mod (hd s) = 0) (tl s))
 in primes (from 2)

In [28]:

Fibonacci sequence

Let's consider Fibonacci sequence

s1 = [1;1;2;3;5;8;13;...]
Let's consider the tail of s1

s2 = [1;2;3;5;8;13;....]
Let's zip s1 and s2 by adding together the elements:

s3 = [2;3;5;6;13;21;...]
s3 is nothing but the tail of tail of fibonacci sequence.

If we were to prepend [1;1] to s3 we will have the fibonacci sequence.

Fibonacci sequence

In [29]:

Out[28]:

- : int list =
[2; 3; 5; 7; 11; 13; 17; 19; 23; 29; 31; 37; 41; 43; 47; 5
3; 59; 61; 67; 71;
73; 79; 83; 89; 97; 101; 103; 107; 109; 113; 127; 131; 13

7; 139; 149; 151;
157; 163; 167; 173; 179; 181; 191; 193; 197; 199; 211; 22

3; 227; 229; 233;
239; 241; 251; 257; 263; 269; 271; 277; 281; 283; 293; 30

7; 311; 313; 317;
331; 337; 347; 349; 353; 359; 367; 373; 379; 383; 389; 39

7; 401; 409; 419;
421; 431; 433; 439; 443; 449; 457; 461; 463; 467; 479; 48

7; 491; 499; 503;
509; 521; 523; 541]

Out[29]:

val fibs : int stream = Cons (1, <fun>)

take 100 @@ primes_stream

let rec fibs =
 Cons (1, fun () ->
 Cons (1, fun () ->
 zip (+) fibs (tl fibs)))

In [30]:

Fibonacci sequence

Each time we force the computation of the next element, we compute the fibonacci of

previous element twice.

Not immediately apparent, but this is equivalent to:

let rec fib n = if n < 2 then 1 else fib (n-1) + fib (n-2)

There is an exponential increase in the running time of fib(n) for each increase in n .

Lazy Values

It would be nice to save the results of the execution for previously seen values and reuse

them.

This is the idea behind lazy values in OCaml.

Lazy values are the opt-in, explicit, call-by-need reduction strategy for OCaml

Rest of the language is strict i.e, call-by-value

Lazy module in OCaml is:

module Lazy = struct
 type 'a t = 'a lazy_t
 val force : 'a t -> 'a

end

OCaml has syntactic support for lazy values through the lazy keyword.

Lazy values

In [31]:

Out[30]:

- : int list = [1; 1; 2; 3; 5; 8; 13; 21; 34; 55]

Out[31]:

val v : int lazy_t = <lazy>

take 10 fibs

let v = lazy (10 + (print_endline "Hello"; 20))

In [32]:

In [33]:

Lazy fib

In [34]:

In [35]:

In [36]:

Lazy stream

Let's redefine the stream using lazy values.

Hello

Out[32]:

- : int = 30

Out[33]:

- : int = 30

Out[34]:

val fib30lazy : int lazy_t = <lazy>

Out[35]:

- : int = 832040

Out[36]:

val fib31lazy : int = 1346269

Lazy.force v

Lazy.force v

let fib30lazy = lazy (take 30 fibs |> List.rev |> List.hd)

Lazy.force fib30lazy

let fib31lazy = take 31 fibs |> List.rev |> List.hd

In [37]:

In [38]:

Fibs Lazy Streams

In [39]:

Out[37]:

type 'a stream = Cons of 'a * 'a stream Lazy.t

Out[38]:

val hd : 'a stream -> 'a = <fun>

Out[38]:

val tl : 'a stream -> 'a stream = <fun>

Out[38]:

val take : int -> 'a stream -> 'a list = <fun>

Out[38]:

val zip : ('a -> 'b -> 'c) -> 'a stream -> 'b stream -> 'c
stream = <fun>

Out[39]:

val fibslazystream : int stream = Cons (1, <lazy>)

type 'a stream = Cons of 'a * 'a stream Lazy.t

let hd (Cons (x,l)) = x
let tl (Cons (x,l)) = Lazy.force l
let rec take n s =
 if n = 0 then [] else (hd s)::(take (n-1) (tl s))
let rec zip f s1 s2 =
 Cons (f (hd s1) (hd s2), lazy (zip f (tl s1) (tl s2)))

let rec fibslazystream =
 Cons (1, lazy (
 Cons (1, lazy (
 zip (+) fibslazystream (tl fibslazystream)))))

In [40]:

You can see that this is fast!

Memoization

Lazy values in OCaml are a specific efficient implementation of the general idea of caching

called Memoization.

Add caching to functions to retrieve results fast.

In [41]:

Expensive identity

Out[40]:

- : int list =
[1; 1; 2; 3; 5; 8; 13; 21; 34; 55; 89; 144; 233; 377; 610;
987; 1597; 2584;
4181; 6765; 10946; 17711; 28657; 46368; 75025; 121393; 196

418; 317811;
514229; 832040]

Out[41]:

val memo : ('a -> 'b) -> 'a -> 'b = <fun>

take 30 fibslazystream

let memo f =
 let cache = Hashtbl.create 16 in
 fun v ->
 match Hashtbl.find_opt cache v with
 | None ->
 let res = f v in
 Hashtbl.add cache v res;
 res
 | Some res -> res

In [42]:

In [43]:

In [44]:

Memoizing expensive identity

In [45]:

In [46]:

Memoizing recursive functions

Memoizing recursive functions is a bit more tricky.

We need to tie the recursive knot

Out[42]:

val spin : int -> unit = <fun>

Out[43]:

val expensive_id : 'a -> 'a = <fun>

Out[44]:

- : int = 10

Out[45]:

val memoized_expensive_id : '_weak1 -> '_weak1 = <fun>

Out[46]:

- : int = 11

let rec spin n = if n = 0 then () else spin (n-1)

let expensive_id x = spin 200000000; x

expensive_id 10

let memoized_expensive_id = memo expensive_id

memoized_expensive_id 11

In [47]:

In [48]:

Memoizing recursive functions

Simply doing let memo_fib = memo fib will only memoize the outer calls and not the

recursive calls.

In [49]:

In [50]:

Tying the recursive knot

This function should remind you of the definition we used for Y combinator.

Out[47]:

val fib : int -> int = <fun>

Out[48]:

- : int = 165580141

Out[49]:

val memo_fib : int -> int = <fun>

Out[50]:

- : int = 165580141

let rec fib n =
 if n < 2 then 1 else fib(n-2) + fib(n-1)

fib 40

let memo_fib = memo fib

memo_fib 40

In [51]:

The idea is to provide an f which is the memoized version of

let rec f n = if n < 2 then 1 else f (n-1) + f(n-2)

We will use a reference to tie the knot.

Tying the recursive knot

memo_rec will memoize recursive function that take an explicit recursive function argument

such as fib_norec .

In [52]:

In [53]:

Out[51]:

val fib_norec : (int -> int) -> int -> int = <fun>

Out[52]:

val memo_rec : (('a -> 'b) -> 'a -> 'b) -> 'a -> 'b = <fun>

Out[53]:

val fib_memo : int -> int = <fun>

let fib_norec f n = if n < 2 then 1 else f (n-1) + f(n-2)

let memo_rec f_norec =
 (* define a reference [f] to a function which will never be invoked *)
 let f = ref (fun _ -> assert false) in
 (* memoize the "eta-expanded" [f_norec] function by dereferencing [f].
 let f_rec_memo = memo (fun x -> f_norec !f x) in
 (* [f] is not dereferenced yet *)
 f := f_rec_memo; (* update [f] to the recursive memoized function *)
 f_rec_memo

let fib_memo = memo_rec fib_norec

In [54]:

Edit distance

Memoization is a general solution for dynamic programming.

Let's compute edit distance (aka Levenshtein distance) between two strings.

Example:

edit_distance("kitten","sitting") = 3

itten -> itten

sitt n -> sitt n

sittin -> sittin

Timing the execution

In [55]:

Edit distance

Out[54]:

- : int = 1346269

Out[55]:

val time_it : ('a -> 'b) -> 'a -> 'b * float = <fun>

fib_memo 30

(* Returns the execution time of [f v] in milliseconds *)
let time_it f v =
 let s = Unix.gettimeofday() in
 let res = f v in
 let e = Unix.gettimeofday () in
 (res, (e -. s) *. 1000.)

In [56]:

Edit distance

In [57]:

Edit distance

In [58]:

Memoize edit distance

Out[56]:

val edit_distance : ?log:bool -> string * string -> int = <
fun>

Out[57]:

- : int * float = (2, 2.72679328918457031)

Out[58]:

- : int * float = (2, 7467.10491180419922)

let rec edit_distance ?log (s,t) =
 let open String in
 if log = Some true then print_endline (s ^ " " ^ t);
 match String.length s, String.length t with
 | 0,x | x,0 -> x
 | len_s, len_t ->
 let s' = sub s 0 (len_s - 1) in
 let t' = sub t 0 (len_t - 1) in
 List.fold_left (fun acc v -> min acc v) max_int [
 edit_distance ?log (s',t) + 1; (* insert at end of s *)
 edit_distance ?log (s,t') + 1; (* delete from end of s *)
 edit_distance ?log (s',t') +
 if get s (len_s-1) = get t (len_t-1) then 0 else 1
]

time_it (edit_distance ~log:false) ("OCaml", "ocaml")

time_it (edit_distance ~log:false) ("OCaml 4.08", "ocaml 4.08")

In [59]:

Memoize edit distance

In [60]:

In [61]:

Fin.

Out[59]:

val edit_distance_norec :
 ?log:bool -> (string * string -> int) -> string * string
-> int = <fun>

Out[60]:

val memo_edit_distance : string * string -> int = <fun>

Out[61]:

- : int * float = (2, 0.500917434692382812)

let rec edit_distance_norec ?log f (s,t) =
 let open String in
 if log = Some true then print_endline (s ^ " " ^ t);
 match String.length s, String.length t with
 | 0,x | x,0 -> x
 | len_s, len_t ->
 let s' = sub s 0 (len_s - 1) in
 let t' = sub t 0 (len_t - 1) in
 List.fold_left (fun acc v -> min acc v) max_int [
 f (s',t) + 1; (* insert at end of s *)
 f (s,t') + 1; (* delete from end of s *)
 f (s',t') +
 if get s (len_s-1) = get t (len_t-1) then 0 else 1
]

let memo_edit_distance = memo_rec (edit_distance_norec ~log:false)

time_it memo_edit_distance ("OCaml 4.08", "ocaml 4.08")

