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Previously
Functional Programming in OCaml

Today
Introduction to Logic Programming in Prolog

Imperative programming
Computing the sum of the elements of an integer list in Java.

int sum (int[] list) { 

   int result = 0; 
   for (int i = 0; i < list.length; i++) 
       result += list[i]; 
   return result; 

}

Functional Programming
Computing the sum of the elements of an integer list in OCaml.

let rec sum l = match l with 
 | [] -> 0 
 | x::xs -> x + sum xs

Logic Programming



Computing the sum of the elements of an integer list in Prolog.

In [1]:

Notice that this is a declarative reading of the sum of a list.

Declarative vs Operational
This Prolog program says what the sum of a list is.

OCaml and Java programs were about how to compute the sum.
In particular, prolog program does not define control flow through the program.

program is a collection of facts and rules

Prolog Program Answers Questions
           +-----------------+ 

Queries ==> |  Facts + Rules  | ==> Answers 

           +-----------------+ 

              Prolog Program

Facts and rules together build up a database of relations.

Relational view of the sum program
The program

sum([],0) 

sum([H | T], N) :- sum(T,M), N is M+H

inductively defines a table of relations:

Added 2 rule(s).

sum([],0).

sum([H | T], N) :- sum(T,M), N is H+M.



+-------------+ 

| List  | Sum | 

|-------|-----| 

| []    | 0   | 

| [1]   | 1   | 

| [1,2] | 3   | 

| [2]   | 2   | 

| ...   | ... |

Queries are look ups in this table

In [2]:

Of course, the computation model is not to build a database and look up facts.

Why this declarative view?
Many problems in computer science are naturally expressed as declarative programs.

Rule-based AI, Program Analysis (asking questions on code), Type Inference, queries
on graphical programs, UIs.

But the programmer has to convert this to Von Neumann Architecture.

X = 6 .

?- sum([1,2,3],X).



Logic Programming to the rescue
Logic programming the programmer to declaratively express the program
The compiler will figure out how to compute the answers to the queries.

 Prolog = Logic (programmer) + Control (compiler)

Prolog
Is one of the first logic programming languagues

to be precise, it is a family of languages that differ by the choice of control
Invented in 1972, and has many different implementations

We will use SWI-Prolog for our study.

House Stark



Prolog Terms
Prolog programs are made up of terms.

Constants: 1,2,3.14,robb,'House Stark', etc.
also known as atoms.

Variables: Always begin with a capital letter.
X, Y, Sticks, _.

compound terms: male(robb), father(ned,robb).
Top-function symbol/functor: male, father
arity: Number of arguments; male = 1, father = 2.



top function symbols also written down explicitly with arity such as male/1,
father/2.

House Stark -- Facts

In [3]:

House Start -- Queries

In [4]:

In [5]:

Closed world assumption
We know that Ned is the father of Bran.

Let us query our program.

In [6]:

Closed World Assumption: Prolog only knows the fact that it has been told.

Added 6 rule(s).

true.

false.

false.

father(rickard,ned).

father(rickard,brandon).

father(rickard,lyanna).

father(ned,robb).

father(ned,sansa).

father(ned,arya).

?- father(ned,sansa).

?- father(rickard,sansa).

?- father(ned,bran).



Assumes false  for everything else.
Interesting interactions with negation (we will see this later).

Existential Queries
Apart from true/false questions, we can also ask queries that return other answers
(existential queries).

"Who are Ned's children?"

In [7]:

Existential Queries

"Who is the father of Arya?"

In [8]:

"Who are Robb's children?"

In [9]:

Rules
So far what we have done could have been done with a relational database.
Rules define further facts inductively from other facts and rules.
Rules have a head and body.

H :- B1, B2, B3, ..., BN

X = robb ; 

X = sansa ; 

X = arya .

X = ned .

false.

?- father(ned, X).

?- father(X,arya).

?- father(robb,X).



 is true if  is true.

Rules

In [10]:

Observe that Z  only appears on the RHS of the last rule.

Rules

In [11]:

Exercise
Define mother, cousin, uncle, aunt, sibling.

Quiz

Added 3 rule(s).

X = ned ; 

X = brandon ; 

X = lyanna ; 

X = robb ; 

X = sansa ; 

X = arya .

parent(X,Y) :- father(X,Y).

ancestor(X,Y) :- parent(X,Y).

ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).

?- ancestor(rickard,X).



In [12]:

Which of these are valuable?
gold, bauxite, bronze, copper.

Quiz

In [13]:

Unification
At the core of how Prolog computes is Unification.

There are 3 rules for unification:

Atoms unify if they are identical
a & a unify, but not a & b.

Variables unify with anything.
Compound terms unfiy only if their top-function symbols and arities match and their
arguments unify recursively.

Quiz

Added 7 rule(s).

true. 

true. 

false. 

false.

material(gold).

material(aluminium).

process(bauxite,alumina).

process(alumina,aluminium).

process(copper, bronze).

valuable(X) :- material(X).

valuable(X) :- process(X,Y), valuable(Y).

?- valuable(gold).

?- valuable(bauxite).

?- valuable(bronze).

?- valuable(copper).



Which of these unify?

1. a & a
2. a & b
3. a & A
4. a & B
5. tree(l,r) & A

Quiz
Which of these unify?

1. a & a yes
2. a & b no
3. a & A yes
4. a & B yes
5. tree(l,r) & A yes

Quiz
Which of these unify?

1. tree(l,r) & tree(B,C)
2. tree(A,r) & tree(l,C)
3. tree(A,r) & tree(A,B)
4. A & a(A)
5. a & a(A)

Quiz
Which of these unify?

1. tree(l,r) & tree(B,C) yes
2. tree(A,r) & tree(l,C) yes
3. tree(A,r) & tree(A,B) yes
4. A & a(A) yes (mostly), occurs check disabled by default
5. a & a(A) no



Note about prolog notebooks
There are no binders for the rules and facts in prolog.

This is unlike OCaml which has top-level definitions.
Hence, you may see strange behaviours when working with the notebook.

Note about notebooks

In [14]:

In [15]:

Restart the kernel and run again if you find weird results.

Fin. 

Added 1 rule(s).

X = one .

stringofint(1,"one").

?- stringofint(1,X).


