Prolog Basics

CS3100 Fall 2019

Review

Previously

» Functional Programming in OCaml

Today

« Introduction to Logic Programming in Prolog

Imperative programming
Computing the sum of the elements of an integer list in Java.

int sum (int[] list) {
int result 0;
for (int i = 0; i < list.length; i++)

result += list[i];
return result;

Functional Programming

Computing the sum of the elements of an integer list in OCaml.

let rec sum 1 = match 1 with
| 11 ->0
| x::xs -> x + sum xs

Logic Programming

Computing the sum of the elements of an integer list in Prolog.

In [1]:
sum([],0).
sum([H | T], N) :- sum(T,M), N is H+M.

Added 2 rule(s).

Notice that this is a declarative reading of the sum of a list.

Declarative vs Operational

» This Prolog program says what the sum of a list is.
= OCaml and Java programs were about how to compute the sum.

 In particular, prolog program does not define control flow through the program.
= program is a collection of facts and rules

Prolog Program Answers Questions

Queries ==> | Facts + Rules | ==> Answers

Prolog Program

Facts and rules together build up a database of relations.

Relational view of the sum program

The program

sum([],0)
sum([H | T], N) :- sum(T,M), N is M+H

inductively defines a table of relations:

List	Sum
===	===~
[1]	o
[11	1
11,21	3
[21 | 2 |
[I

Queries are look ups in this table

In [2]:
?- sum([1,2,3],X).

X =6

Of course, the computation model is not to build a database and look up facts.

Why this declarative view?

» Many problems in computer science are naturally expressed as declarative programs.
= Rule-based Al, Program Analysis (asking questions on code), Type Inference, queries
on graphical programs, Uls.
» But the programmer has to convert this to Von Neumann Architecture.

Central Processing Unit

Control Unit

Input
Device

Output

Arithmetic/Logic Unit -
Device

Memory Unit

Logic Programming to the rescue

» Logic programming the programmer to declaratively express the program
» The compiler will figure out how to compute the answers to the queries.

Prolog = Logic (programmer) + Control (compiler)

Prolog

« Is one of the first logic programming languagues

= to be precise, it is a family of languages that differ by the choice of control
» Invented in 1972, and has many different implementations

= We will use SWI-Prolog for our study.

House Stark

FAMILY TREE

telltal line.
Oesontine © Tell Tales

Prolog Terms
Prolog programs are made up of terms.

o Constants: 1,2,3.14,robb,'House Stark', etc.
= also known as atoms.
« Variables: Always begin with a capital letter.
= X, Y, Sticks, _.
» compound terms: male(robb), father(ned,robb).
= Top-function symbol/functor: male, father
= arity: Number of arguments; male = 1, father = 2.

o top function symbols also written down explicitly with arity such as male/1,
father/2.

House Stark -- Facts

In [3]:

father(rickard,ned).
father(rickard,brandon).
father(rickard, lyanna).
father(ned, robb).

father (ned,sansa).
father(ned,arya).

Added 6 rule(s).

House Start -- Queries

In [4]:
?- father(ned,sansa).

true.

In [5]:
?- father(rickard,sansa).

false.

Closed world assumption

We know that Ned is the father of Bran.

Let us query our program.

In [6]:
?- father(ned,bran).

false.

» Closed World Assumption: Prolog only knows the fact that it has been told.

» Assumes false for everything else.
« Interesting interactions with negation (we will see this later).

Existential Queries

» Apart from true/false questions, we can also ask queries that return other answers
(existential queries).

"Who are Ned's children?"

In [7]:

?- father(ned, X).

X = robb ;
X = sansa ;
X = arya .

Existential Queries
"Who is the father of Arya?"

In [8]:
?- father(X,arya).

X = ned .
"Who are Robb's children?"

In [9]:
?- father(robb,X).

false.

Rules

« So far what we have done could have been done with a relational database.
» Rules define further facts inductively from other facts and rules.
« Rules have a head and body.

= H :- Bl, B2, B3, ..., BN

= Histrueif Bl A B2A B3... BN is true.

Rules

In [10]:

parent(X,Y) :- father(X,Y).

ancestor(X,Y) :- parent(X,Y).

ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).

Added 3 rule(s).

Observe that z only appears on the RHS of the last rule.

Rules

In [117:
?- ancestor(rickard,X).

= ned ;

= brandon ;
= lyanna ;
= robb ;

= sansa ;

= arya .

XXX X X X

Exercise

Define mother, cousin, uncle, aunt, sibling.

Quiz

In [12]:

material(gold).

material (aluminium).

process (bauxite,alumina).
process(alumina,aluminium).

process (copper, bronze).

valuable(X) :- material(X).

valuable(X) :- process(X,Y), valuable(Y).

Added 7 rule(s).

e Which of these are valuable?
= gold, bauxite, bronze, copper.

Quiz

In [13]:

?- valuable(gold).

?- valuable(bauxite).
?- valuable(bronze).
?- valuable(copper).

true.
true.
false.
false.

Unification
At the core of how Prolog computes is Unification.
There are 3 rules for unification:

» Atoms unify if they are identical
= a & a unify, but not a & b.
» Variables unify with anything.
» Compound terms unfiy only if their top-function symbols and arities match and their
arguments unify recursively.

Quiz

Which of these unify?

1.a&a
2.a&b
3.a&A
4.a&B
5. tree(l,n) & A

Quiz
Which of these unify?

1.a&ayes
2.a&bno
3. a&Ayes
4. a& Byes
5. tree(l,r) & A yes

Quiz
Which of these unify?

1. tree(l,r) & tree(B,C)

2. tree(A,r) & tree(l,C)

3. tree(A,r) & tree(A,B)
4. A & a(A)

5.a&a(A)

Quiz
Which of these unify?

1. tree(l,r) & tree(B,C) yes

2. tree(A,r) & tree(l,C) yes

3. tree(A,r) & tree(A,B) yes

4. A & a(A) yes (mostly), occurs check disabled by default
5.a&a(A) no

Note about prolog notebooks

« There are no binders for the rules and facts in prolog.
= This is unlike OCaml which has top-level definitions.
» Hence, you may see strange behaviours when working with the notebook.

Note about notebooks

In [14]:
stringofint(1l, "one").

Added 1 rule(s).

In [15]:
?- stringofint(1l,X).

X = one .

Restart the kernel and run again if you find weird results.

Fin.

