
Prolog Basics

CS3100 Fall 2019

Review

Previously
Functional Programming in OCaml

Today
Introduction to Logic Programming in Prolog

Imperative programming
Computing the sum of the elements of an integer list in Java.

int sum (int[] list) {

 int result = 0;
 for (int i = 0; i < list.length; i++)
 result += list[i];
 return result;

}

Functional Programming
Computing the sum of the elements of an integer list in OCaml.

let rec sum l = match l with
 | [] -> 0
 | x::xs -> x + sum xs

Logic Programming

Computing the sum of the elements of an integer list in Prolog.

In [1]:

Notice that this is a declarative reading of the sum of a list.

Declarative vs Operational
This Prolog program says what the sum of a list is.

OCaml and Java programs were about how to compute the sum.
In particular, prolog program does not define control flow through the program.

program is a collection of facts and rules

Prolog Program Answers Questions
 +-----------------+

Queries ==> | Facts + Rules | ==> Answers

 +-----------------+

 Prolog Program

Facts and rules together build up a database of relations.

Relational view of the sum program
The program

sum([],0)

sum([H | T], N) :- sum(T,M), N is M+H

inductively defines a table of relations:

Added 2 rule(s).

sum([],0).

sum([H | T], N) :- sum(T,M), N is H+M.

+-------------+

| List | Sum |

|-------|-----|

| [] | 0 |

| [1] | 1 |

| [1,2] | 3 |

| [2] | 2 |

| ... | ... |

Queries are look ups in this table

In [2]:

Of course, the computation model is not to build a database and look up facts.

Why this declarative view?
Many problems in computer science are naturally expressed as declarative programs.

Rule-based AI, Program Analysis (asking questions on code), Type Inference, queries
on graphical programs, UIs.

But the programmer has to convert this to Von Neumann Architecture.

X = 6 .

?- sum([1,2,3],X).

Logic Programming to the rescue
Logic programming the programmer to declaratively express the program
The compiler will figure out how to compute the answers to the queries.

 Prolog = Logic (programmer) + Control (compiler)

Prolog
Is one of the first logic programming languagues

to be precise, it is a family of languages that differ by the choice of control
Invented in 1972, and has many different implementations

We will use SWI-Prolog for our study.

House Stark

Prolog Terms
Prolog programs are made up of terms.

Constants: 1,2,3.14,robb,'House Stark', etc.
also known as atoms.

Variables: Always begin with a capital letter.
X, Y, Sticks, _.

compound terms: male(robb), father(ned,robb).
Top-function symbol/functor: male, father
arity: Number of arguments; male = 1, father = 2.

top function symbols also written down explicitly with arity such as male/1,
father/2.

House Stark -- Facts

In [3]:

House Start -- Queries

In [4]:

In [5]:

Closed world assumption
We know that Ned is the father of Bran.

Let us query our program.

In [6]:

Closed World Assumption: Prolog only knows the fact that it has been told.

Added 6 rule(s).

true.

false.

false.

father(rickard,ned).

father(rickard,brandon).

father(rickard,lyanna).

father(ned,robb).

father(ned,sansa).

father(ned,arya).

?- father(ned,sansa).

?- father(rickard,sansa).

?- father(ned,bran).

Assumes false for everything else.
Interesting interactions with negation (we will see this later).

Existential Queries
Apart from true/false questions, we can also ask queries that return other answers
(existential queries).

"Who are Ned's children?"

In [7]:

Existential Queries

"Who is the father of Arya?"

In [8]:

"Who are Robb's children?"

In [9]:

Rules
So far what we have done could have been done with a relational database.
Rules define further facts inductively from other facts and rules.
Rules have a head and body.

H :- B1, B2, B3, ..., BN

X = robb ;

X = sansa ;

X = arya .

X = ned .

false.

?- father(ned, X).

?- father(X,arya).

?- father(robb,X).

 is true if is true.

Rules

In [10]:

Observe that Z only appears on the RHS of the last rule.

Rules

In [11]:

Exercise
Define mother, cousin, uncle, aunt, sibling.

Quiz

Added 3 rule(s).

X = ned ;

X = brandon ;

X = lyanna ;

X = robb ;

X = sansa ;

X = arya .

parent(X,Y) :- father(X,Y).

ancestor(X,Y) :- parent(X,Y).

ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).

?- ancestor(rickard,X).

In [12]:

Which of these are valuable?
gold, bauxite, bronze, copper.

Quiz

In [13]:

Unification
At the core of how Prolog computes is Unification.

There are 3 rules for unification:

Atoms unify if they are identical
a & a unify, but not a & b.

Variables unify with anything.
Compound terms unfiy only if their top-function symbols and arities match and their
arguments unify recursively.

Quiz

Added 7 rule(s).

true.

true.

false.

false.

material(gold).

material(aluminium).

process(bauxite,alumina).

process(alumina,aluminium).

process(copper, bronze).

valuable(X) :- material(X).

valuable(X) :- process(X,Y), valuable(Y).

?- valuable(gold).

?- valuable(bauxite).

?- valuable(bronze).

?- valuable(copper).

Which of these unify?

1. a & a
2. a & b
3. a & A
4. a & B
5. tree(l,r) & A

Quiz
Which of these unify?

1. a & a yes
2. a & b no
3. a & A yes
4. a & B yes
5. tree(l,r) & A yes

Quiz
Which of these unify?

1. tree(l,r) & tree(B,C)
2. tree(A,r) & tree(l,C)
3. tree(A,r) & tree(A,B)
4. A & a(A)
5. a & a(A)

Quiz
Which of these unify?

1. tree(l,r) & tree(B,C) yes
2. tree(A,r) & tree(l,C) yes
3. tree(A,r) & tree(A,B) yes
4. A & a(A) yes (mostly), occurs check disabled by default
5. a & a(A) no

Note about prolog notebooks
There are no binders for the rules and facts in prolog.

This is unlike OCaml which has top-level definitions.
Hence, you may see strange behaviours when working with the notebook.

Note about notebooks

In [14]:

In [15]:

Restart the kernel and run again if you find weird results.

Fin.

Added 1 rule(s).

X = one .

stringofint(1,"one").

?- stringofint(1,X).

