Logical Foundations

CS3100 Fall 2019

Review

Previously

» Prolog basics

This lecture

» Logical foundations of prolog
= First-order logic
o Syntax, Semantics and properties
= Definite Clause programs
o Syntax, semantics, connection to prolog, SLD resolution

First-order logic

Terms and functions:

term := constant | variable | functions

functions := f(z1,12,...,tn) | g(t1,12,....,tn)
where f and g are function symbols.

where t1,t2... are terms.

Natural numbers

Consider the terms for encoding natural numbers N.

« Constant: Let z be 0.

» Functions: Given the natural numbers x and y, let the function
= s(x) represent the successor of x
= mul(x, y) represent the product of x and y.

= square(x) represent the square of x.

First-order logic

t Eterm = constant | variable | functions

f,g € formulas := p(t,...,t,) where pis the predicate symbol
| ~flfAglfVvelf—-glfeg
| VX.f|3X.f where X isavariable

Predicates on natural numbers

« even(x) - the natural number x is even.

o 0odd(x) - the natural number x is odd.

 prime(x) - the natural number X is prime.

« divides(x, y) - the natural number x divides y.

 le(x, y) - the natural number Xx is less than or equal to y
+ gt(x, y) - the natural number Xx is greater than y.

Precedence
From strongest to weakest

1.
2.V
3. A
4, >, &

5.V, 3

Precedence

Hence,
((=b) A ¢) > a)
can be simplified to

-b A c—a

Some statements on natural numbers

« Every natural number is even or odd, but not both.
» A natural number is even if and only if it is divisible by two.

e |f some natural number, x, is even, then so is x2.

Some statements on natural numbers

» Every natural number is even or odd, but not both.
» Vx.((even(x) VvV odd(x)) A —(even(x) A odd(x)))

e A natural number is even if and only if it is divisible by two.
= Vx.even(x) < divides(2, x)

« If some natural number, X, is even, then so is x?.
» Vx.even(x) — even(square(x))

Some statements on natural numbers

A natural number x is even if and only if x + 1 is odd.
» Any prime number that is greater than 2 is odd.
« For any three natural numbers x, y, and z, if x divides y and y divides z, then x divides z.

Some statements on natural numbers

A natural number x is even if and only if x + 1 is odd.
= Vx.even(x) < odd(s(x))

» Any prime number that is greater than 2 is odd.
= Vx.prime(x) A gt(x,s(s(z))) — odd(x)

« For any three natural numbers x, y, and z, if x divides y and y divides z, then x divides z.
= Vx, y, z.divides(x, y) A divides(y, z) — divides(x, z)

Some statements on natural numbers

» There exists an odd composite number (recall, composite number is greater than 1 and not
prime).
» Every natural number greater than one has a prime divisor.

Some statements on natural numbers.

o There exists an odd composite (not prime) number.

= dx.odd(x) A composite(x)

» Every natural number greater than one has a prime divisor.
= Vx.gt(x,s(z)) — (Ip. prime(p) A divides(p, x))

Logical Equivalences
- f
f—g
feg
~(fVeg
(fAg)
-Vx. f(x)
—3dx. f(x)

Logical Equivalences

Vx. (f(x) A g(x)
Vx. (f(x) V g(x)

Pick f as even and g as odd.

Ax. (f(x) v g(x))
Ax. (f(x) A g(x))

Pick f as even and g as odd.

Inference rules

%

#

g
0 g
dx. f(x)

Interpretation

f

~fveg
(f—=8nEg->))
~fAg

fVvg

dx. 2 f(x)

Vx. = f(x)

(Vx. f(x)) A (Vx. g(x))
(Vx. f(x)) v (Vx. g(x))

(3x. f(x)) v 3x. g(x))
(3x. f(x)) A 3x. g(x))

E
f@ VB
f g

AT
re (AD)

» What we have seen so far is a syntactic study of first-order logic.
= Semantics = meaning of first-order logic formulas.
» Given an alphabet A from which terms are drawn from and a domain D, an interpretation
maps:
= each constant ¢ € A to an element in D
= each n-ary function f € A to a function D" — D
= each n-ary preducate p € A to arelation D; X ... X D,

Interpretation

For our running example, choose the domain of natural numbers N with

o The constant z maps to 0.
» The function s(x) maps to the function s(x) = x + 1
» The predicate le maps to the relation <

Models

« A model for a set of first-order logic formulas is equivalent to the assignment to truth
variables in predicate logic.

» Ainterpretation M for a set of first-order logic formulas P is a model for P iff every
formula of P is true in M.

o If M is a model for f, we write M F f, which is read as "models" or "satisfies".

Models

Take f = Vy.le(z, y). The following are models for f

o Domain N, z maps to 0, s(x) maps to s(x) = x + 1 and le maps to <.
« Domain N, z maps to 0, s(x) maps to s(x) = x + 2 and le maps to <.
o Domain N, z maps to 0, s(x) maps to s(x) = x and le maps to <.

whereas the following aren't:

» The integer domain Z, ...
« Domain N, z maps to 0, s(x) maps to s(x) = x + 1 and le maps to >

Quiz

Which of these interpretations are models of f = Vy.le(z, y)?

1. Domain N, z maps to 1, s(x) maps to s(x) = x + 1 and le maps to <.

2. Domain N, z maps to 1, s(x) maps to s(x) = x * 2 and le maps to <.

3. Domain N, z maps to 0, s(x) maps to s(x) = x + 1 and le maps to <.

4. Domain is the domain of sets, z maps to @, s(x) maps to s(x) = {x} and
le(x,y)=x C yVde€ y.le(x,e).

Quiz
Which of these interpretations are models of f = Vy.le(z, y)?

1. Domain N, z maps to 1, s(x) maps to s(x) = x + 1 and le maps to <. yes

2. Domain N, z maps to 1, s(x) maps to s(x) = x * 2 and le maps to <. yes

3. Domain N, z maps to 0, s(x) maps to s(x) = x + 1 and le maps to <. no

4. Domain is the domain of sets, z maps to @, s(x) maps to s(x) = {x} and
le(x,y)=x CyVdee€y.le(x,e).yes

Models

» A set of forumulas P is said to be satisfiable if there is a model M for P.
« Some formulas do not have models. Easiest one is f A 7 f
= Such (set of) formulas are said to be unsatisfiable.

Logical consequence & validity

Given a set of formulas P, a formula f is said to be a logical consequence of P iff for every
model M of P, M E f.

How can you prove this?

« Show that = f is false in every model M of P.
= Equivalent to, P U — f is unsatisfiable.

A formula f is said to be valid, if it is true in every model (written as F f).

Theorem: It is undecidable whether a given first-order logic formula f is valid.

Restricting the language

» Clearly, the full first-order logic is not a practical model for computation as it is
undecidable.
= How can we do better?
» Restrict the language such that the language is semi-decidable.
» Alanguage L is said to be decidable if there exists a turing machine that
= accepts every string in L and
= rejects every string notin L
» Alanguage L is said to be semi-decidable if there exists a turing machine that
= accepts every string in L and
= for every string not in L, rejects it or loops forever.

Definite logic programs

» Definite clauses are such a restriction on first-order logic that is semi-decidable.
» Prolog is basically programming with definite clauses.
« In order to define definite clauses formally, we need some auxiliary definitions.

Definite clauses

« An atomic forumla is a formula without connectives.
= even(x) and prime(x)
= but not meven(x), even(x) V prime(y)
A clause is a first-order logic formula of the form V(L; V ... vV L,), where every L; is an
atomic formula (a postive literal) or the negation of an atomic formula (a negative literal).
A definite clause is a clause with exactly one positive literal.
» V(Ag VA ...V-A,)
= Usually written down as, Aj < A; A ... A A,,forn > 0.
= or more simply, Ay < Aq,...,A,,forn > 0.
A definite program is a finite set of definite clauses.

Definite Clauses and Prolog

» Prolog facts are definite clauses with no negative literals.
= The prolog fact even(z) is equivalent to
= the definite clause Vz. even(z) <« T, where T stands for true.
» Prolog rules are definite clauses.
= The prolog rule ancestor(X,Y) :- parent(X,%Z), ancestor(Z,Y) is
equivalent to
= the definite clause Vx, y, z. ancestor(x, y) < parent(x, z) A ancestor(z, y)

= equivalent to, Vx, y. ancestor(x, y) < Jz. parent(x, z) A ancestor(z, y)

Consistency of Definite Clause Programs

» Every definite clause program has a model!

» Proof
= there is no way to encode negative information in definite clause programs.
= Hence, there is no way to construct an inconsistent system (such as f A = f).
= Therefore, every definite clause program has a model.

Models for Logic Programs

» Every definite clause program has a model
= How do we compute this model?
= Why? In order to provide a semantics for logic program.

More Definitions! :-(

Herbrand Universe

» Given a logic program P, the Herbrand universe of the logic program U (P) is the set of all
ground terms that can be formed from the constants and function symbols in P.

« For our encoding of natural numbers, with the constant z and the function s(x), the
Herbrand universe is { z, 5(2), s(s(2)), ...}.

« If there are no function symbols, the Herbrand universe is finite.

« If there are no constants, add an arbitrary constant to form the Herbrand base.

Herbrand Base

» The Herbrand base, denoted by B(P) is the set of all ground goals that can be formed
from the predicates in P and the terms of the Herbrand universe.
« For our encoding of natural numbers, let even(x) be the only predicate.
= Then, B(P) = {even(z), even(s(z)), ...}.
» Herbrand base is infinite if Herbrand universe is.

Herbrand Interpretation and Herbrand models

« Interpretation of a logic program is the subset of the Herbrand base.
= An interpretation assigns true or false to elements of the Herbrand base.
= A goalis true if it belongs to the interpretation.
» A model M of a logic program is an interpretation such that for all ground instantiations of
the form A <« By, B,, ..., B,,, if B to B,, belongs to M, then A belongs to M.

Herbrand Interpretation and Herbrand models

Let the logic progam be

even(z).
even(s(s(X)) :- even(X).

A Herbrand model of this program includes $\{\even{z},\even{s(s(z))},\Idots\}$.

Least Herbrand Model

» But the Herbrand model may also include elements from
S = {evens(z), evens(s(s(z))), ...}.
= There are an infinite number of Herbrand models if the Herbrand base is infinite.
» Hence, we define a least Herbrand model, which is the intersection of every Herbrand
model.
= Least Herbrand Model does not include elements from ,S'.
» Least Herbrand Model precisely defines the declarative meaning of the logic program.
= Every logic program has a least Herbrand model.

Quiz

Given a language .S with constants robb , rickard and ned , predicates father/2 and
ancestor/2 , and facts father(rickard,ned) and father(ned,robb) , and rules
ancestor(X,Y) :- father(X,Y) and ancestor(X,Y) :- father(X,2z),
ancestor(Z,Y) which of these statements are true?

1. Herbrand Universe U(.S) is infinite.

2. Herbrand Base B(.S) is finite.

3. father(ancestor(robb)) € B(S).

4. father(ned,ned) € M, where M is a Herbrand model of the program.

5. father(ned,ned) € M, where M is the least Herbrand model of the program.

Quiz

Given a language .S with constants robb , rickard and ned , predicates father/2 and
ancestor/2 , and facts father(rickard,ned) and father(ned,robb) , and rules
ancestor(X,Y) :- father(X,Y) and ancestor(X,Y) :- father(X,2z),
ancestor(Z,Y) which of these statements are true?

1. Herbrand Universe U(.S) is infinite. false

2. Herbrand Base B(.S) is finite. true

3. father(ancestor(robb)) € B(S). false

4. father(ned,ned) € M, where M is a Herbrand model of the program. true

5. father(ned,ned) € M, where M is the least Herbrand model of the program. false

Answering Prolog Queries

» Least Herbrand Model is only used to discuss semantics
= Not used for computation by Prolog.
» How does prolog compute the answers to queries?

Prolog Queries

» Let us assume that the prolog program P is family tree of House Stark encoded in the
previous lecture.
» We would like to answer "is Rickard the ancestor of Robb?"
= g = ancestor(rickard, robb)
» We construct a logical statement
» —-ancestor(rickard, robb)
= which is the negation of the original question.

Prolog Queries

« The system attempts to show that ~ancestor(rickard, robb) is false in every model of P.
= equivalent to showing P U {—ancestor(rickard, robb)} is unsatisfiable.

« Then, we can conclude that for every model M of P, M F gq.
= that is, "Rickard is the ancestor of Robb".

SLD Resolution

» The whole point of restricting the first-order logic language to definite clauses is to have a
better decision procedue.
» There is a semi-decidable decision procedure for definite clauses called SLD resolution.
= SLD = Selective Linear Resolution with Definite Clauses.
= given an unsatisfiable set of formulae it is guaranteed to derive false
= however given a satisfiable set, it may never terminate.

SLD Resolution example

father(rickard,ned).
father(rickard,brandon).
father(rickard, lyanna).
father(ned, robb).
father(ned,sansa).
father(ned,arya).

parent(X,Y) :- father(X,Y).
ancestor(X,Y) :- parent(X,Y).
ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).

?- ancestor(rickard, robb).

SLD Resolution example

» The logical version goal is mancestor(rickard,robb).
» The system attemps to disprove this by finding a counter-example.
= How can | derive ancestor(rickard,robb) ?
e lcanseearule ancestor(X,Y) :- parent(X,Y) which allows me to derive
ancestor(X,Y) .
= the logical equivalent is, Vx, y. (ancestor(x, y) < parent(x,y)).
» Deduce:
» Apply (VE) rule for x and y and pick x = rickard and y = robb.
= Apply (— E) rule on the result to get a new goal parent(rickard, robb).
» The original goal to derive ancestor (rickard,robb) has been replaced by the goal to
derive parent(rickard,robb) .

SLD Resolution example

» How can you derive parent(rickard,robb) ?

Observe the rule parent(X,Y) :- father(X,Y)
= logical equivalent is Vx, y. parent(x, y) < father(x,y).
Deduce: Apply rules (VE) and (— E).
New goal: father(rickard,robb) .
» No fact matches this goal!
= Backtrack!

SLD Resolution example

How can | derive ancestor(rickard, robb) ?
Observe the rule ancestor(X,Y) :- parent(X,%Z), ancestor(Z,Y)
= logical equivalent is Vx, y. ancestor(x, y) < 3z. parent(x, z) A ancestor(z, y)
» Deduce: Apply rules (VE), (— E),(3I), (AI) in that order.
» We get two new goals, parent(rickard,Z) and ancestor(Z,robb) where z is
the same variable introduced by (31).

SLD Resolution example

» The goal parent(rickard,z) inturnleads tothe goal father(rickard,Z) .
= The first rule father(rickard,ned) unifies with this goal with z = ned.
= Hence, the first goal is proved.

» The other goal is now specialised to ancestor (ned, robb) .

» The second goal can now be proved as ancestor(ned,robb) <«

parent (ned,robb) <« father(ned,robb) .
= We have a fact father(ned, robb) . Hence, proved.

SLD Resolution example

o Byderiving g = ancestor(rickard,robb) from the given program P, we have
shown that P U {—q} is unsatisfiable.
» Hence, ancestor(rickard, robb) is a logical consequence of the given program P.

Computation is deduction

» When a prolog program computes the result of the query, it is performing logical deduction
through SLD resolution.

e In our example,
= We nicked the clalises in the order thev annear in the nroaram

R o T TR T e ot T il e LR TR SR R

= Did a depth-first search for proof
= Given the conjunction of goals g1 A g2, chose to prove gl first.
» SWI-Prolog implementation has the same behaviour
= Other prolog implementation may choose different strategies BFS instead of DFS, pick
last conjunct in a conjunction of goals, etc.

Tracing in SWI-Prolog

father(rickard,ned).
father(rickard,brandon).
father(rickard, lyanna).
father(ned, robb).
father(ned,sansa).
father(ned,arya).

parent(X,Y) :- father(X,Y).
ancestor(X,Y) :- parent(X,Y).
ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).

?- ancestor(rickard, robb).

Fin.

