Logical Foundations

CS3100 Fall 2019

Review

Previously

Prolog basics

This lecture

- Logical foundations of prolog
 - First-order logic
 - Syntax, Semantics and properties
 - Definite Clause programs
 - Syntax, semantics, connection to prolog, SLD resolution

First-order logic

Terms and functions:

term := constant | variable | functions functions := f(t1, t2, ..., tn) | g(t1, t2, ..., tn)where f and g are function symbols. where t1,t2... are terms.

Natural numbers

Consider the terms for encoding natural numbers \mathbb{N} .

- Constant: Let z be 0.
- Functions: Given the natural numbers x and y, let the function
 - s(x) represent the successor of x
 - mul(*x*, *y*) represent the product of *x* and *y*.

• square(*x*) represent the square of *x*.

First-order logic

 $t \in \text{term}$:= constant | variable | functions

 $f, g \in \text{formulas} := p(t_1, \dots, t_n) \text{ where } p \text{ is the predicate symbol}$ $| \neg f | f \land g | f \lor g | f \rightarrow g | f \leftrightarrow g$ $| \forall X. f | \exists X. f \text{ where } X \text{ is a variable}$

Predicates on natural numbers

- even(x) the natural number x is even.
- odd(x) the natural number x is odd.
- prime(*x*) the natural number *x* is prime.
- divides(x, y) the natural number x divides y.
- le(x, y) the natural number x is less than or equal to y
- gt(x, y) the natural number x is greater than y.

Precedence

From strongest to weakest

- 1. ¬
- 2. V
- 3. \land
- 4. \rightarrow , \leftrightarrow
- 5. ∀,∃

Precedence

Hence,

$$((\neg b) \land c) \rightarrow a)$$

can be simplified to

 $\neg b \land c \rightarrow a$

Some statements on natural numbers

- Every natural number is even or odd, but not both.
- A natural number is even if and only if it is divisible by two.
- If some natural number, x, is even, then so is x^2 .

Some statements on natural numbers

- Every natural number is even or odd, but not both.
 - $\forall x. ((\operatorname{even}(x) \lor \operatorname{odd}(x)) \land \neg(\operatorname{even}(x) \land \operatorname{odd}(x)))$
- A natural number is even if and only if it is divisible by two.
 - $\forall x. \operatorname{even}(x) \leftrightarrow \operatorname{divides}(2, x)$
- If some natural number, x, is even, then so is x^2 .
 - $\forall x. \operatorname{even}(x) \rightarrow \operatorname{even}(\operatorname{square}(x))$

Some statements on natural numbers

- A natural number x is even if and only if x + 1 is odd.
- Any prime number that is greater than 2 is odd.
- For any three natural numbers *x*, *y*, and *z*, if *x* divides *y* and *y* divides *z*, then *x* divides *z*.

Some statements on natural numbers

- A natural number x is even if and only if x + 1 is odd.
 - $\forall x. \operatorname{even}(x) \leftrightarrow \operatorname{odd}(\operatorname{s}(x))$
- Any prime number that is greater than 2 is odd.
 - $\forall x. \operatorname{prime}(x) \land \operatorname{gt}(x, \operatorname{s}(\operatorname{s}(z))) \to \operatorname{odd}(x)$
- For any three natural numbers *x*, *y*, and *z*, if *x* divides *y* and *y* divides *z*, then *x* divides *z*.
 - $\forall x, y, z. \operatorname{divides}(x, y) \land \operatorname{divides}(y, z) \rightarrow \operatorname{divides}(x, z)$

Some statements on natural numbers

- There exists an odd composite number (recall, composite number is greater than 1 and not prime).
- Every natural number greater than one has a prime divisor.

Some statements on natural numbers.

- There exists an odd composite (not prime) number.
 - $\exists x. \operatorname{odd}(x) \land \operatorname{composite}(x)$
- Every natural number greater than one has a prime divisor. • $\forall x \ gt(x \ s(z)) \rightarrow (\exists n \ prime(n) \land divides(n \ x))$
 - $\forall x. \operatorname{gt}(x, \operatorname{s}(z)) \to (\exists p. \operatorname{prime}(p) \land \operatorname{divides}(p, x))$

Logical Equivalences

$\neg \neg f$	≡	f
$f \rightarrow g$	≡	$\neg f \lor g$
$f \leftrightarrow g$	≡	$(f \to g) \land (g \to f)$
$\neg (f \lor g)$	≡	$\neg f \land \neg g$
$\neg (f \land g)$	≡	$\neg f \lor \neg g$
$\forall x. f(x)$	≡	$\exists x. \neg f(x)$
$\exists x. f(x)$	≡	$\forall x. \neg f(x)$

Logical Equivalences

$$\forall x. (f(x) \land g(x)) \equiv (\forall x. f(x)) \land (\forall x. g(x)) \forall x. (f(x) \lor g(x)) \not\equiv (\forall x. f(x)) \lor (\forall x. g(x))$$

Pick f as *even* and g as *odd*.

$\exists x. (f(x) \lor g(x))$	≡	$(\exists x. f(x)) \lor (\exists x. g(x))$
$\exists x. (f(x) \land g(x))$	≢	$(\exists x. f(x)) \land (\exists x. g(x))$

Pick f as *even* and g as *odd*.

Inference rules $\frac{f \quad f \rightarrow g}{g} \quad (\rightarrow E) \qquad \frac{\forall x. f(x)}{f(t)} \quad (\forall E)$ $\frac{f(t)}{\exists x. f(x)} \quad (\exists I) \qquad \frac{f \quad g}{f \land g} \quad (\land I)$

Interpretation

- What we have seen so far is a syntactic study of first-order logic.
 - Semantics = meaning of first-order logic formulas.
- Given an alphabet A from which terms are drawn from and a domain D, an **interpretation** maps:
 - each constant $c \in A$ to an element in \mathcal{D}
 - each *n*-ary function $f \in A$ to a function $\mathcal{D}^n \to \mathcal{D}$
 - each *n*-ary preducate $p \in A$ to a relation $D_1 \times \ldots \times D_n$

Interpretation

For our running example, choose the domain of natural numbers ${\mathbb N}$ with

- The constant *z* maps to 0.
- The function s(x) maps to the function s(x) = x + 1
- The predicate le maps to the relation \leq

Models

- A **model** for a set of first-order logic formulas is equivalent to the assignment to truth variables in predicate logic.
- A interpretation *M* for a set of first-order logic formulas *P* is a model for *P* iff every formula of *P* is true in *M*.
- If M is a model for f, we write $M \vDash f$, which is read as "models" or "satisfies".

Models

Take $f = \forall y. le(z, y)$. The following are models for f

- Domain \mathbb{N} , z maps to 0, s(x) maps to s(x) = x + 1 and le maps to \leq .
- Domain \mathbb{N} , z maps to 0, s(x) maps to s(x) = x + 2 and le maps to \leq .
- Domain \mathbb{N} , z maps to 0, s(x) maps to s(x) = x and le maps to \leq .

whereas the following aren't:

- The integer domain \mathbb{Z}, \ldots
- Domain \mathbb{N} , z maps to 0, s(x) maps to s(x) = x + 1 and le maps to \geq

Quiz

Which of these interpretations are models of $f = \forall y. le(z, y)$?

- 1. Domain \mathbb{N} , z maps to 1, s(x) maps to s(x) = x + 1 and le maps to \leq .
- 2. Domain \mathbb{N} , *z* maps to 1, s(x) maps to s(x) = x * 2 and le maps to \leq .
- 3. Domain \mathbb{N} , *z* maps to 0, *s*(*x*) maps to *s*(*x*) = *x* + 1 and le maps to <.
- 4. Domain is the domain of sets, *z* maps to \emptyset , s(x) maps to $s(x) = \{x\}$ and $le(x, y) = x \subseteq y \lor \exists e \in y$. le(x, e).

Quiz

Which of these interpretations are models of $f = \forall y. le(z, y)$?

- 1. Domain \mathbb{N} , z maps to 1, s(x) maps to s(x) = x + 1 and le maps to \leq . yes
- 2. Domain \mathbb{N} , z maps to 1, s(x) maps to s(x) = x * 2 and le maps to \leq . yes
- 3. Domain \mathbb{N} , *z* maps to 0, s(x) maps to s(x) = x + 1 and le maps to <. **no**
- 4. Domain is the domain of sets, *z* maps to \emptyset , s(x) maps to $s(x) = \{x\}$ and $le(x, y) = x \subseteq y \lor \exists e \in y$. le(x, e). **yes**

Models

- A set of forumulas *P* is said to be **satisfiable** if there is a model *M* for *P*.
- Some formulas do not have models. Easiest one is $f \wedge \neg f$
 - Such (set of) formulas are said to be **unsatisfiable**.

Logical consequence & validity

Given a set of formulas P, a formula f is said to be a logical consequence of P iff for every model M of P, $M \models f$.

How can you prove this?

- Show that $\neg f$ is false in every model M of P.
 - Equivalent to, $P \cup \neg f$ is **unsatisfiable**.

A formula f is said to be **valid**, if it is true in every model (written as $\models f$).

Theorem: It is undecidable whether a given first-order logic formula f is **valid**.

Restricting the language

- Clearly, the full first-order logic is not a practical model for computation as it is undecidable.
 - How can we do better?
- Restrict the language such that the language is **semi-decidable**.
- A language L is said to be **decidable** if there exists a turing machine that
 - accepts every string in L and
 - rejects every string not in L
- A language L is said to be **semi-decidable** if there exists a turing machine that
 - accepts every string in L and
 - for every string not in L, rejects it or loops forever.

Definite logic programs

- Definite clauses are such a restriction on first-order logic that is semi-decidable.
- Prolog is basically programming with definite clauses.
- In order to define definite clauses formally, we need some auxiliary definitions.

Definite clauses

- An atomic forumla is a formula without connectives.
 - even(x) and prime(x)
 - but not \neg even(x), even(x) \lor prime(y)
- A clause is a first-order logic formula of the form $\forall (L_1 \lor ... \lor L_n)$, where every L_i is an atomic formula (a postive literal) or the negation of an atomic formula (a negative literal).
- A definite clause is a clause with exactly one positive literal.
 - $\forall (A_0 \lor \neg A_1 \ldots \lor \neg A_n)$
 - Usually written down as, $A_0 \leftarrow A_1 \land \ldots \land A_n$, for $n \ge 0$.
 - or more simply, $A_0 \leftarrow A_1, \ldots, A_n$, for $n \ge 0$.
- A definite program is a finite set of definite clauses.

Definite Clauses and Prolog

- Prolog facts are definite clauses with no negative literals.
 - The prolog fact even(z) is equivalent to
 - the definite clause $\forall z. \operatorname{even}(z) \leftarrow \top$, where \top stands for true.
- Prolog rules are definite clauses.
 - The prolog rule ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y) is equivalent to
 - the definite clause $\forall x, y, z$. ancestor $(x, y) \leftarrow \text{parent}(x, z) \land \text{ancestor}(z, y)$

• equivalent to, $\forall x, y$. ancestor $(x, y) \leftarrow \exists z$. parent $(x, z) \land$ ancestor(z, y)

Consistency of Definite Clause Programs

- Every definite clause program has a model!
- Proof
 - there is no way to encode negative information in definite clause programs.
 - Hence, there is no way to construct an inconsistent system (such as $f \land \neg f$).
 - Therefore, every definite clause program has a model.

Models for Logic Programs

- Every definite clause program has a model
 - How do we compute this model?
 - Why? In order to provide a semantics for logic program.

More Definitions! :-(

Herbrand Universe

- Given a logic program P, the Herbrand universe of the logic program U(P) is the set of all ground terms that can be formed from the constants and function symbols in P.
- For our encoding of natural numbers, with the constant *z* and the function *s*(*x*), the Herbrand universe is {*z*, *s*(*z*), *s*(*s*(*z*)), ...}.
- If there are no function symbols, the Herbrand universe is finite.
- If there are no constants, add an arbitrary constant to form the Herbrand base.

Herbrand Base

- The Herbrand base, denoted by B(P) is the set of all ground goals that can be formed from the predicates in P and the terms of the Herbrand universe.
- For our encoding of natural numbers, let even(x) be the only predicate.
 - Then, $B(P) = \{even(z), even(s(z)), ...\}.$
- Herbrand base is infinite if Herbrand universe is.

Herbrand Interpretation and Herbrand models

- Interpretation of a logic program is the subset of the Herbrand base.
 - An interpretation assigns true or false to elements of the Herbrand base.
 - A goal is true if it belongs to the interpretation.
- A model *M* of a logic program is an interpretation such that for all ground instantiations of the form *A* ← *B*₁, *B*₂, ..., *B_n*, if *B*₁ to *B_n* belongs to *M*, then *A* belongs to *M*.

Herbrand Interpretation and Herbrand models

Let the logic progam be

even(z).
even(s(s(X)) :- even(X).

A Herbrand model of this program includes ${\overline{z}, even{s(s(z))}, dots}}.$

Least Herbrand Model

- · But the Herbrand model may also include elements from
 - $S = \{evens(z), evens(s(s(z))), \dots\}.$
 - There are an infinite number of Herbrand models if the Herbrand base is infinite.
- Hence, we define a least Herbrand model, which is the intersection of every Herbrand model.

• Least Herbrand Model does not include elements from S.

- Least Herbrand Model precisely defines the declarative meaning of the logic program.
 - Every logic program has a least Herbrand model.

Quiz

```
Given a language S with constants robb, rickard and ned, predicates father/2 and ancestor/2, and facts father(rickard, ned) and father(ned, robb), and rules ancestor(X,Y) :- father(X,Y) and ancestor(X,Y) :- father(X,Z), ancestor(Z,Y) which of these statements are true?
```

- 1. Herbrand Universe U(S) is infinite.
- 2. Herbrand Base B(S) is finite.
- 3. father(ancestor(robb)) $\in B(S)$.
- 4. father(ned, ned) $\in M$, where M is a Herbrand model of the program.
- 5. father(ned, ned) $\in M$, where M is the least Herbrand model of the program.

Quiz

Given a language S with constants robb, rickard and ned, predicates father/2 and ancestor/2, and facts father(rickard, ned) and father(ned, robb), and rules ancestor(X,Y) :- father(X,Y) and ancestor(X,Y) :- father(X,Z), ancestor(Z,Y) which of these statements are true?

- 1. Herbrand Universe U(S) is infinite. false
- 2. Herbrand Base B(S) is finite. true
- 3. father(ancestor(robb)) $\in B(S)$. false
- 4. father(ned, ned) $\in M$, where M is a Herbrand model of the program. true
- 5. father(ned, ned) $\in M$, where M is the least Herbrand model of the program. false

Answering Prolog Queries

- · Least Herbrand Model is only used to discuss semantics
 - Not used for computation by Prolog.
- How does prolog compute the answers to queries?

Prolog Queries

- Let us assume that the prolog program *P* is family tree of House Stark encoded in the previous lecture.
- We would like to answer "is Rickard the ancestor of Robb?"
 - $q = \operatorname{ancestor}(rickard, robb)$
- We construct a logical statement
 - ¬ancestor(*rickard*, *robb*)
 - which is the **negation** of the original question.

Prolog Queries

- The system attempts to show that \neg ancestor(*rickard*, *robb*) is false in every model of *P*.
 - equivalent to showing $P \cup \{\neg \operatorname{ancestor}(rickard, robb)\}$ is unsatisfiable.
- Then, we can conclude that for every model M of $P, M \vDash q$.
 - that is, "Rickard is the ancestor of Robb".

SLD Resolution

- The whole point of restricting the first-order logic language to definite clauses is to have a better decision procedue.
- There is a semi-decidable decision procedure for definite clauses called SLD resolution.
 - SLD = Selective Linear Resolution with Definite Clauses.
 - given an unsatisfiable set of formulae it is guaranteed to derive false
 - however given a satisfiable set, it may never terminate.

SLD Resolution example

```
father(rickard,ned).
father(rickard,brandon).
father(rickard,lyanna).
father(ned,robb).
father(ned,sansa).
father(ned,arya).
parent(X,Y) :- father(X,Y).
ancestor(X,Y) :- parent(X,Y).
ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).
?- ancestor(rickard, robb).
```

SLD Resolution example

- The logical version goal is ¬ancestor(rickard,robb).
- The system attemps to disprove this by finding a counter-example.
 - How can I derive ancestor(rickard, robb) ?
- I can see a rule ancestor(X,Y) :- parent(X,Y) which allows me to derive ancestor(X,Y).
 - the logical equivalent is, $\forall x, y$. (*ancestor*(x, y) \leftarrow *parent*(x, y)).
- Deduce:
 - Apply $(\forall E)$ rule for x and y and pick x = rickard and y = robb.
 - Apply $(\rightarrow E)$ rule on the result to get a new goal *parent*(*rickard*, *robb*).
- The original goal to derive ancestor(rickard,robb) has been replaced by the goal to derive parent(rickard,robb).

SLD Resolution example

How can you derive parent(rickard,robb) ?

- Observe the rule parent(X,Y) :- father(X,Y)
 - logical equivalent is $\forall x, y. parent(x, y) \leftarrow father(x, y)$.
- **Deduce**: Apply rules $(\forall E)$ and $(\rightarrow E)$.
- New goal: father(rickard,robb).
- No fact matches this goal!
 - Backtrack!

SLD Resolution example

- How can I derive ancestor (rickard, robb)?
- Observe the rule ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y)
- logical equivalent is $\forall x, y. ancestor(x, y) \leftarrow \exists z. parent(x, z) \land ancestor(z, y)$
- **Deduce**: Apply rules $(\forall E), (\rightarrow E), (\exists I), (\land I)$ in that order.
- We get two new goals, parent(rickard,Z) and ancestor(Z,robb) where Z is the same variable introduced by $(\exists I)$.

SLD Resolution example

- The goal parent(rickard,Z) in turn leads to the goal father(rickard,Z).
 - The first rule father(rickard, ned) unifies with this goal with Z = ned.
 - Hence, the first goal is proved.
- The other goal is now specialised to ancestor(ned, robb).
- The second goal can now be proved as ancestor(ned,robb) \leftarrow

parent(ned,robb) \leftarrow father(ned,robb).

We have a fact father(ned, robb). Hence, proved.

SLD Resolution example

- By deriving q = ancestor(rickard, robb) from the given program P, we have shown that $P \cup \{\neg q\}$ is unsatisfiable.
- Hence, ancestor(rickard, robb) is a logical consequence of the given program P.

Computation is deduction

- When a prolog program computes the result of the query, it is performing logical deduction through SLD resolution.
- In our example,
 - We picked the clauses in the order they appear in the program

- Did a depth-first search for proof
- Given the conjunction of goals $g1 \wedge g2$, chose to prove g1 first.
- SWI-Prolog implementation has the same behaviour
 - Other prolog implementation may choose different strategies BFS instead of DFS, pick last conjunct in a conjunction of goals, etc.

Tracing in SWI-Prolog

```
father(rickard,ned).
father(rickard,brandon).
father(rickard,lyanna).
father(ned,robb).
father(ned,sansa).
father(ned,arya).
parent(X,Y) :- father(X,Y).
ancestor(X,Y) :- parent(X,Y).
ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).
?- ancestor(rickard, robb).
```

Fin.