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Previously
Prolog basics

This lecture
Logical foundations of prolog

First-order logic
Syntax, Semantics and properties

Definite Clause programs
Syntax, semantics, connection to prolog, SLD resolution

First-order logic
Terms and functions:

Natural numbers
Consider the terms for encoding natural numbers .

Constant: Let  be .
Functions: Given the natural numbers  and , let the function

 represent the successor of 
 represent the product of  and .



 represent the square of .

First-order logic

Predicates on natural numbers
 - the natural number  is even.

 - the natural number  is odd.
 - the natural number  is prime.

 - the natural number  divides .
 - the natural number  is less than or equal to 
 - the natural number  is greater than .

Precedence
From strongest to weakest

1. 
2. 
3. 
4. 
5. 

Precedence
Hence,

can be simplified to



Some statements on natural numbers
Every natural number is even or odd, but not both.
A natural number is even if and only if it is divisible by two.
If some natural number, , is even, then so is .

Some statements on natural numbers
Every natural number is even or odd, but not both.

A natural number is even if and only if it is divisible by two.

If some natural number, , is even, then so is .

Some statements on natural numbers
A natural number  is even if and only if  is odd.
Any prime number that is greater than 2 is odd.
For any three natural numbers , , and , if  divides  and  divides , then  divides .

Some statements on natural numbers
A natural number  is even if and only if  is odd.

Any prime number that is greater than 2 is odd.

For any three natural numbers , , and , if  divides  and  divides , then  divides .

Some statements on natural numbers
There exists an odd composite number (recall, composite number is greater than 1 and not
prime).
Every natural number greater than one has a prime divisor.



Some statements on natural numbers.
There exists an odd composite (not prime) number.

Every natural number greater than one has a prime divisor.

Logical Equivalences

Logical Equivalences

Pick  as  and  as .

Pick  as  and  as .

Inference rules

Interpretation



p
What we have seen so far is a syntactic study of first-order logic.

Semantics = meaning of first-order logic formulas.
Given an alphabet  from which terms are drawn from and a domain , an interpretation
maps:

each constant  to an element in 
each -ary function  to a function 
each -ary preducate  to a relation 

Interpretation
For our running example, choose the domain of natural numbers  with

The constant  maps to .
The function  maps to the function 
The predicate  maps to the relation 

Models
A model for a set of first-order logic formulas is equivalent to the assignment to truth
variables in predicate logic.
A interpretation  for a set of first-order logic formulas  is a model for  iff every
formula of  is true in .
If  is a model for , we write , which is read as "models" or "satisfies".

Models
Take . The following are models for 

Domain ,  maps to ,  maps to  and le maps to .
Domain ,  maps to ,  maps to  and le maps to .
Domain ,  maps to ,  maps to  and le maps to .

whereas the following aren't:

The integer domain , 
Domain ,  maps to ,  maps to  and le maps to 

Quiz



Which of these interpretations are models of ?

1. Domain ,  maps to 1,  maps to  and le maps to .
2. Domain ,  maps to 1,  maps to  and le maps to .
3. Domain ,  maps to 0,  maps to  and le maps to .
4. Domain is the domain of sets,  maps to ,  maps to  and 

.

Quiz
Which of these interpretations are models of ?

1. Domain ,  maps to 1,  maps to  and le maps to . yes
2. Domain ,  maps to 1,  maps to  and le maps to . yes
3. Domain ,  maps to 0,  maps to  and le maps to . no
4. Domain is the domain of sets,  maps to ,  maps to  and 

. yes

Models
A set of forumulas  is said to be satisfiable if there is a model  for .
Some formulas do not have models. Easiest one is 

Such (set of) formulas are said to be unsatisfiable.

Logical consequence & validity
Given a set of formulas , a formula  is said to be a logical consequence of  iff for every
model  of , .

How can you prove this?

Show that  is false in every model  of .
Equivalent to,  is unsatisfiable.

A formula  is said to be valid, if it is true in every model (written as ).

Theorem: It is undecidable whether a given first-order logic formula  is valid.

Restricting the language



Clearly, the full first-order logic is not a practical model for computation as it is
undecidable.

How can we do better?
Restrict the language such that the language is semi-decidable.
A language  is said to be decidable if there exists a turing machine that

accepts every string in L and
rejects every string not in L

A language  is said to be semi-decidable if there exists a turing machine that
accepts every string in L and
for every string not in L, rejects it or loops forever.

Definite logic programs
Definite clauses are such a restriction on first-order logic that is semi-decidable.
Prolog is basically programming with definite clauses.
In order to define definite clauses formally, we need some auxiliary definitions.

Definite clauses
An atomic forumla is a formula without connectives.

 and 
but not , 

A clause is a first-order logic formula of the form , where every  is an
atomic formula (a postive literal) or the negation of an atomic formula (a negative literal).
A definite clause is a clause with exactly one positive literal.

Usually written down as, , for .
or more simply, , for .

A definite program is a finite set of definite clauses.

Definite Clauses and Prolog
Prolog facts are definite clauses with no negative literals.

The prolog fact even(z)  is equivalent to
the definite clause , where  stands for true.

Prolog rules are definite clauses.
The prolog rule ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y)  is
equivalent to
the definite clause 



equivalent to, 

Consistency of Definite Clause Programs
Every definite clause program has a model!
Proof

there is no way to encode negative information in definite clause programs.
Hence, there is no way to construct an inconsistent system (such as ).
Therefore, every definite clause program has a model.

Models for Logic Programs
Every definite clause program has a model

How do we compute this model?
Why? In order to provide a semantics for logic program.

More Definitions! :-( 

Herbrand Universe
Given a logic program , the Herbrand universe of the logic program  is the set of all
ground terms that can be formed from the constants and function symbols in .
For our encoding of natural numbers, with the constant  and the function , the
Herbrand universe is .
If there are no function symbols, the Herbrand universe is finite.
If there are no constants, add an arbitrary constant to form the Herbrand base.

Herbrand Base
The Herbrand base, denoted by  is the set of all ground goals that can be formed
from the predicates in  and the terms of the Herbrand universe.
For our encoding of natural numbers, let  be the only predicate.

Then, .
Herbrand base is infinite if Herbrand universe is.



Herbrand Interpretation and Herbrand models
Interpretation of a logic program is the subset of the Herbrand base.

An interpretation assigns true or false to elements of the Herbrand base.
A goal is true if it belongs to the interpretation.

A model  of a logic program is an interpretation such that for all ground instantiations of
the form , if  to  belongs to , then  belongs to .

Herbrand Interpretation and Herbrand models
Let the logic progam be

even(z). 
even(s(s(X)) :- even(X).

A Herbrand model of this program includes $\{\even{z},\even{s(s(z))},\ldots\}$.

Least Herbrand Model
But the Herbrand model may also include elements from 

.
There are an infinite number of Herbrand models if the Herbrand base is infinite.

Hence, we define a least Herbrand model, which is the intersection of every Herbrand
model.

Least Herbrand Model does not include elements from .
Least Herbrand Model precisely defines the declarative meaning of the logic program.

Every logic program has a least Herbrand model.

Quiz
Given a language  with constants robb , rickard  and ned , predicates father/2  and 
ancestor/2 , and facts father(rickard,ned)  and father(ned,robb) , and rules 
ancestor(X,Y) :- father(X,Y)  and ancestor(X,Y) :- father(X,Z), 
ancestor(Z,Y)  which of these statements are true?

1. Herbrand Universe  is infinite.
2. Herbrand Base  is finite.
3. father(ancestor(robb))  .
4. father(ned,ned)  , where  is a Herbrand model of the program.
5. father(ned,ned)  , where  is the least Herbrand model of the program.



Quiz
Given a language  with constants robb , rickard  and ned , predicates father/2  and 
ancestor/2 , and facts father(rickard,ned)  and father(ned,robb) , and rules 
ancestor(X,Y) :- father(X,Y)  and ancestor(X,Y) :- father(X,Z), 
ancestor(Z,Y)  which of these statements are true?

1. Herbrand Universe  is infinite. false
2. Herbrand Base  is finite. true
3. father(ancestor(robb))  . false
4. father(ned,ned)  , where  is a Herbrand model of the program. true
5. father(ned,ned)  , where  is the least Herbrand model of the program. false

Answering Prolog Queries
Least Herbrand Model is only used to discuss semantics

Not used for computation by Prolog.
How does prolog compute the answers to queries?

Prolog Queries
Let us assume that the prolog program  is family tree of House Stark encoded in the
previous lecture.
We would like to answer "is Rickard the ancestor of Robb?"

We construct a logical statement

which is the negation of the original question.

Prolog Queries
The system attempts to show that  is false in every model of .

equivalent to showing  is unsatisfiable.
Then, we can conclude that for every model  of , .

that is, "Rickard is the ancestor of Robb".



SLD Resolution
The whole point of restricting the first-order logic language to definite clauses is to have a
better decision procedue.
There is a semi-decidable decision procedure for definite clauses called SLD resolution.

SLD = Selective Linear Resolution with Definite Clauses.
given an unsatisfiable set of formulae it is guaranteed to derive false
however given a satisfiable set, it may never terminate.

SLD Resolution example
father(rickard,ned). 
father(rickard,brandon). 
father(rickard,lyanna). 
father(ned,robb). 
father(ned,sansa). 
father(ned,arya). 
parent(X,Y) :- father(X,Y). 
ancestor(X,Y) :- parent(X,Y). 
ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y). 
?- ancestor(rickard, robb).

SLD Resolution example
The logical version goal is .
The system attemps to disprove this by finding a counter-example.

How can I derive ancestor(rickard,robb) ?
I can see a rule ancestor(X,Y) :- parent(X,Y)  which allows me to derive 
ancestor(X,Y) .

the logical equivalent is, .
Deduce:

Apply  rule for  and  and pick  and .
Apply  rule on the result to get a new goal .

The original goal to derive ancestor(rickard,robb)  has been replaced by the goal to
derive parent(rickard,robb) .

SLD Resolution example
How can you derive parent(rickard,robb) ?



Observe the rule parent(X,Y) :- father(X,Y)
logical equivalent is .

Deduce: Apply rules  and .
New goal: father(rickard,robb) .
No fact matches this goal!

Backtrack!

SLD Resolution example
How can I derive ancestor(rickard, robb) ?
Observe the rule ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y)

logical equivalent is 
Deduce: Apply rules  in that order.
We get two new goals, parent(rickard,Z)  and ancestor(Z,robb)  where Z  is
the same variable introduced by .

SLD Resolution example
The goal parent(rickard,Z)  in turn leads to the goal father(rickard,Z) .

The first rule father(rickard,ned)  unifies with this goal with Z = ned .
Hence, the first goal is proved.

The other goal is now specialised to ancestor(ned,robb) .
The second goal can now be proved as ancestor(ned,robb)   
parent(ned,robb)   father(ned,robb) .

We have a fact father(ned,robb) . Hence, proved.

SLD Resolution example
By deriving q = ancestor(rickard,robb)  from the given program , we have
shown that  is unsatisfiable.
Hence, ancestor(rickard,robb)  is a logical consequence of the given program .

Computation is deduction
When a prolog program computes the result of the query, it is performing logical deduction
through SLD resolution.
In our example,

We picked the clauses in the order they appear in the program



We picked the clauses in the order they appear in the program
Did a depth-first search for proof
Given the conjunction of goals , chose to prove  first.

SWI-Prolog implementation has the same behaviour
Other prolog implementation may choose different strategies BFS instead of DFS, pick
last conjunct in a conjunction of goals, etc.

Tracing in SWI-Prolog
father(rickard,ned). 
father(rickard,brandon). 
father(rickard,lyanna). 
father(ned,robb). 
father(ned,sansa). 
father(ned,arya). 
parent(X,Y) :- father(X,Y). 
ancestor(X,Y) :- parent(X,Y). 
ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y). 
?- ancestor(rickard, robb).

Fin. 


