29/10/2019 lec27

Databases

CS3100 Fall 2019

Review

Previously

« Graph Search.

This lecture

» Connections between SQL and Prolog

Relational Databases

» A database is a store of facts.
« A relation database is organized on the principles of relational model
= Consists of one or more tables with rows and named columns
» A table schema captures
= the column names
= types over values
= any constraints on values in each column
= relationship between between columns across different tables
» Structured Query Language (SQL)
= A standard language used to read and write to relational databases.

IMDB database

o For this section, we will focus on a small slice of the IMDB database.

» The database contains information about the movies directed by a few directors.

o The database imdb small.db can be explored using sglite in terminal.

IMDB tables

127.0.0.1:8888/notebooks/lec27/lec27.ipynb

1/13

29/10/2019 lec27

CREATE TABLE tPeople (
person_id varchar primary key,
name varchar,
born integer);

CREATE TABLE tTitles (
title id varchar primary key,
title varchar,
premiered integer,
runtime minutes integer,
genres varchar);

)i

IMDB tables

CREATE TABLE tDirectedBy (
title_ id varchar,
person_id varchar,
primary key (title id, person_id));

CREATE TABLE tRatings (
title id VARCHAR PRIMARY KEY,
rating INTEGER,
votes INTEGER

)i

Representing relational tables in Prolog

e +

| SQL | Prolog |

e +
tables predicate

rows	fact
column names	

schema

tPeople table in Prolog

/* tPeople(person_id, name, born). */
tPeople(nm0634240, "Christopher Nolan",1970).
tPeople(nm0000217, "Martin Scorsese",1942).
tPeople(nm0000233, "Quentin Tarantino",1963).
tPeople (nm0000229, "Steven Spielberg",1946).

Let's load all the data into Prolog from the file imdb small.pl .

127.0.0.1:8888/notebooks/lec27/lec27.ipynb 2/13

29/10/2019 lec27

In [1]:
?- [imdb small].

true.

Select rows in SQL

Get me all the rows from the tPeople table.

sqgqlite> select * from tPeople;
nm0634240 |Christopher Nolan|1970
nm0000217 |Martin Scorsese|1942
nm0000233|Quentin Tarantino|1963
nm0000229|Steven Spielberg|1946

Select rows in Prolog

In prolog, the query is represented by the same predicate that defines the table.

In [2]:
?- tPeople(PersonId,Name,Born).

PersonId = nm0634240, Born = 1970, Name = Christopher Nolan ;

PersonId = nm0000217, Born = 1942, Name = Martin Scorsese ;
PersonId = nm0000233, Born = 1963, Name = Quentin Tarantino ;
PersonId = nm0000229, Born = 1946, Name = Steven Spielberg

Select with filter

Get me all the information about Christopher Nolan from tPeople table.

sqlite> select * from tPeople where name="Christopher Nolan";
nm0634240|Christopher Nolan|1970

In [3]:
?- tPeople(Personld,Name,Born), Name="Christopher Nolan".

PersonId = nm0634240, Born = 1970, Name = Christopher Nolan

Select with filter

sglite> select * from tPeople where born > 1960;
nm0634240|Christopher Nolan|1970
nm0000233|Quentin Tarantino|1963

127.0.0.1:8888/notebooks/lec27/lec27 .ipynb 3/13

29/10/2019 lec27

In [4]:

?- tPeople(PersonId,Name,Born), Born > 1960.

PersonId = nm0634240, Born = 1970, Name = Christopher Nolan ;
PersonId = nm0000233, Born = 1963, Name = Quentin Tarantino .
Projection

Projection is act of choosing a subset of columns from the table.

sqgqlite> select Name,Born from tPeople where born > 1960;
Christopher Nolan|1970
Quentin Tarantino|1963

?- tPeople(_ ,Name,Born), Born > 1960.

Born = 1970, Name = Christopher Nolan ;
Born 1963, Name Quentin Tarantino .

DirectedBy

tDirectBy table contains movies associates a director with the movie that they directed.

sqgqlite> select * from tDirectedBy limit 5;
£t0053416 | nm0000217
tt0054670 |nm0000229
tt0054857 | nm0000229
tt0057680 |nm0000217
tt0058242|nm0000217

In [6]:
?- tDirectedBy(TitleId,PersonId) {5}.

PersonId = nm0000217, TitleId = tt0053416

4
PersonId = nm0000229, TitleId = tt0054670 ;
PersonId = nm0000229, TitleId = tt0054857 ;
PersonId = nm0000217, TitleId = tt0057680 ;
PersonId = nm0000217, TitleId = tt0058242 .

How do we get this information in human readable form?

Joins
We do this through joins. Let's begin with a quick primer on joins.

Given

127.0.0.1:8888/notebooks/lec27/lec27 .ipynb 4/13

29/10/2019 lec27

A
B

{1,2,3,4,5}
{3,4,5,6,7}

e Aninner joinis saidtobe AN B= {3,4,5}.

A left outer join is saidtobe AU(AN B)= {1,2,3,4,5}.

» Aright outer joinissaidtobe (AN B)U B= {3,4,5,6,7}.

« A full outer join is saidtobe AUBU(ANB)= {1,2,3,3,4,5,6,7}.

The outer joins seems to serve no purpose as the term A N B is included in the other terms.

This get more interesting with additional columns.

Joins
Similar to previous example, consider

Persons = {(1,"Spielberg"),(2,"Nolan")}
Directed = {(2,"The Dark Knight"), (3,"Taxi Driver")}

An X join of Persons and Directed on the person id field, selecting name and movie returns,

e X=Inner, {("Nolan", "The Dark Knight)}

e X=Leftouter, {("Spielberg",null), ("Nolan","The Dark Knight)}

X =Right outer, {("Nolan","The Dark Knight), (null,"Taxi Driver"}

e X=Fullouter, {("Spieldberg",null), ("Nolan","The Dark Knight), (null,"Taxi Driver"}

In this lecture, we will only focus on inner joins.

Joins

In order to illustrate other kinds joins in Prolog, let's consider this simple database from the earlier example.

In [7]:
sPerson(1l, "Spielberg").
sPerson(2, "Nolan").

sDirected (2, "The Dark Knight").
sDirected (3, "Taxi Driver").

Added 4 clauses(s).

Inner Join

In [8]:
innerJoin(Title,Director) :- sPerson(PersonlId,Director), sDirected(PersonId,Title).

Added 1 clauses(s).

127.0.0.1:8888/notebooks/lec27/lec27.ipynb 5/13

29/10/2019 lec27

In [9]:
?- innerJoin(Title,Director).

Director = Nolan, Title = The Dark Knight .

Left outer Join

In [10]:

leftOuterJoin(Title,Director) :- innerJoin(Title,Director).
leftOuterJoin(null,Director) :- sPerson(PersonlId,Director), not(sDirected(PersonId,”

Added 2 clauses(s).

In [11]:
?- leftOuterJoin(Title,Director).

Director = Nolan, Title = The Dark Knight ;
Director Spielberg, Title = null

Right outer join

In [12]:
rightOuterJoin(Title,Director) :- innerJoin(Title,Director).
rightOuterJoin(Title,null) :- sDirected(PersonId,Title), not(sPerson(PersonlId,Direct

Added 2 clauses(s).

In [13]:
?- rightOuterJoin(Title,Director).

Director = Nolan, Title = The Dark Knight ;
Director = null, Title = Taxi Driver .

Exercise

Encode full outer join in Prolog and run it on this example.

Joins

Select the movie title and the corresponding ratings.

127.0.0.1:8888/notebooks/lec27/lec27.ipynb 6/13

29/10/2019 lec27

sglite> select tTitles.title, rating from tRatings
inner join tTitles on tTitles.title id = tRatings.title id limit

10;

Firelight|5.6

Who's That Knocking at My Door|6.7

Street Scenes|6.4

Boxcar Berthal|6

Mean Streets|7.3

Alice Doesn't Live Here Anymore|7.3

The Sugarland Express|6.8

Jaws | 8

Taxi Driver|8.3

Close Encounters of the Third Kind|7.6

Joins

Select the movie title and the corresponding ratings.

In [14]:
ratings(Title,Rating) :- tTitles(TitleId,Title, , ,), tRatings(TitleId,Rating,).

Added 1 clauses(s).

In [15]:

?- ratings(Title,Rating).

Rating = 5.6, Title = Firelight ;

Rating = 6.7, Title = Who's That Knocking at My Door ;
Rating = 6.4, Title = Street Scenes ;

Rating = 6, Title = Boxcar Bertha ;

Rating = 7.3, Title = Mean Streets ;

Rating = 7.3, Title = Alice Doesn't Live Here Anymore ;
Rating = 6.8, Title = The Sugarland Express ;

Rating = 8, Title = Jaws ;

Rating = 8.3, Title = Taxi Driver ;

Rating = 7.6, Title = Close Encounters of the Third Kind .
Joins

What is the rating for the movie "Jaws"?

sglite> select rating from tRatings inner join tTitles on tTitles.title id
= tRatings.title id where tTitles.title = "Jaws";
8

In [16]:
?- ratings("Jaws",Rating).

Rating = 8

127.0.0.1:8888/notebooks/lec27/lec27.ipynb 7/13

29/10/2019

Join on 3 tables

Get all the movies directed by Nolan.

sqgqlite> select tTitles.title,
tTitles inner join
.title_ id
inner join tPeople
where tPeople.name
Following|Christopher Nolan
Memento |Christopher Nolan
Insomnia|Christopher Nolan

lec27

tPeople.name from
tDirectedBy on tTitles.title id = tDirectedBy

on tPeople.person id = tDirectedBy.person id
= "Christopher Nolan";

Batman Begins|Christopher Nolan
The Dark Knight|Christopher Nolan

The Prestige|Christopher Nolan
Interstellar|Christopher Nolan

The Dark Knight Rises|Christopher Nolan

Inception|Christopher Nolan
Dunkirk|Christopher Nolan
Tenet |Christopher Nolan

Join on 3-tables

In [17]:

directed(Director,Title) :- tTitles(TitleId,Title, , ,

Added 1 clauses(s).

In [18]:

?- directed("Christopher Nolan",Title).

Title = Following ;
Title = Memento ;

Title = Insomnia ;
Title = Batman Begins ;
Title = The Dark Knight ;

Title = The Prestige ;

Title = Interstellar ;
Title = The Dark Knight Rises ;
Title = Inception ;

Title = Dunkirk

Count
How many movies has Nolan directed?

Use the count function.

sqlite> select count(*)

127.0.0.1:8888/notebooks/lec27/lec27.ipynb

from tTitles inner join tDirectedBy on tTitles.titl

), tPeople(Personld,Director,

8/13

29/10/2019 lec27

e id = tDirectedBy.title id inner join tPeople on tPeople.person_ id = tDire
ctedBy.person_id where tPeople.name = "Christopher Nolan";
11

Count

Use the built-in clause findall/3 .

The built-in predicate findall (+Template, +Goal, -List) isusedto collectalist List of all the
items Template that satisfy some goal Goal .

In [19]:

directedList(D,L) :- findall(F,directed(D,F),L).

Added 1 clauses(s).

In [20]:
numDirected(D,N) :- directedList(D,L), length(L,N).

Added 1 clauses(s).

In [21]:
?- numDirected("Christopher Nolan",N).

N =11

Exercise: Try to build £findall/3 your self?

Avg
What is the average rating for a Spielberg movie?

sglite> select avg(rating) from tRatings
inner join tDirectedBy on tDirectedBy.title id = tRatings.title i
d
inner join tPeople on tPeople.person_id = tDirectedBy.person_ id
where tPeople.name = "Steven Spielberg";
7.31515151515151

Avg

What is the average rating for a Spielberg movie?

127.0.0.1:8888/notebooks/lec27/lec27 .ipynb 9/13

29/10/2019 lec27

In [22]:

ratingOf (Ratings,Name) :- tRatings(TitleId,Ratings,), tDirectedBy(TitleId,PersonId
tPeople(PersonId,Name,).

Added 1 clauses(s).

In [23]:

sum([H],H).
sum([H|T],N)
average(L,A)

- sum(T,M), N is M+H.
- sum(L,S), length(L,N), A is S / N.

Added 3 clauses(s).

In [24]:
averageRatingOf (Name,A) :- tPeople(_ ,Name,),findall(Rating,ratingOf(Rating,Name), L

Added 1 clauses(s).

In [25]:
?- averageRatingOf("Steven Spielberg",A).

A = 7.31515151515 .

Avg
What is the average rating for each of the directors?

sqgqlite> select avg(rating),tPeople.name from tRatings
inner join tDirectedBy on tDirectedBy.title id = tRatings.title i
d
inner join tPeople on tPeople.person_id = tDirectedBy.person id
group by tPeople.name;
.25|Christopher Nolan
.48 |Martin Scorsese
.95714285714286 |Quentin Tarantino
.31515151515151 | Steven Spielberg

N NN 9 0

In [26]:
?- averageRatingOf (X,3).

= 8.25, X = Christopher Nolan ;

= 7.48, X Martin Scorsese ;

= 7.95714285714, X = Quentin Tarantino ;
= 7.31515151515, X = Steven Spielberg

L
|

Upcoming movies

e SQL uses NULL to represent missing values.
e Inthe tTitles table, NULL is used for upcoming movies.

127.0.0.1:8888/notebooks/lec27/lec27 .ipynb 10/13

29/10/2019 lec27

sqglite> select * from tTitles where premiered is NULL;
tt1594575|Untitled George Gershwin Project|||Biography,Drama,Music
tt3675680|The Kidnapping of Edgardo Mortara| | |Drama,History
tt5537002 |Killers of the Flower Moon]|||Crime,Drama,History
tt7428530|Roosevelt]| | |Biography,Drama,History

tt7713358|Untitled Star Trek Project]|||Action,Adventure,Sci-Fi
tt8295436 |Blackhawk| | |Action,Adventure,War

tt8430788|Untitled Ulysses S. Grant Project|||Drama,War

Upcoming movies

In the Prolog version, we use the constant null to represent missing values.

In [27]:
?- tTitles(TitleId,Name,null,null,Genres).

Genres = Biography,Drama,Music, Name = Untitled George Gershwin Projec
t, TitleId = tt1594575 ;

Genres = Drama,History, Name = The Kidnapping of Edgardo Mortara, Titl
eld = tt3675680 ;

Genres = Crime,Drama,History, Name = Killers of the Flower Moon, Title
Id = tt5537002 ;

Genres = Biography,Drama,History, Name
0 ;

Genres = Action,Adventure,Sci-Fi, Name
itleId = tt7713358 ;

Genres Action,Adventure,War, Name = Blackhawk, TitleId = tt8295436 ;
Genres = Drama,War, Name = Untitled Ulysses S. Grant Project, TitleId
= tt8430788

Roosevelt, TitleId = tt742853

Untitled Star Trek Project, T

Dealing with NULL

We will have to deal with null values specially as their semantics is what we choose it to be.
Get me all the movies that are released on likely to be released on or after 2019.

sglite> select * from tTitles where premiered >= 2019;

tt1302006 |The Irishman|2019|209|Biography,Crime,Drama

tt1462764|Untitled Indiana Jones Project|2021||Action,Adventure
tt3581652|West Side Story|2020] |Crime,Drama,Musical

tt6723592|Tenet|2020| |Action,Drama,Thriller

tt7131622|Once Upon a Time... in Hollywood|2019|161|Comedy,Drama
tt9577852|Rolling Thunder Revue: A Bob Dylan Story by Martin Scorsese|2019|
142 |Biography,Documentary,Music

« Does not return movies for which released date is not set.
= We also want potential upcoming movies.

Dealing with NULL

127.0.0.1:8888/notebooks/lec27/lec27.ipynb 11/13

29/10/2019 lec27

sqglite> select * from tTitles where premiered >= 2019 or premiered is null;
tt1302006 |The Irishman|2019|209|Biography,Crime,Drama

tt1462764|Untitled Indiana Jones Project|2021||Action,Adventure
tt1594575|Untitled George Gershwin Project|||Biography,Drama,Music
tt3581652|West Side Story|2020] |Crime,Drama,Musical

tt3675680 |The Kidnapping of Edgardo Mortara| | |Drama,History
tt5537002|Killers of the Flower Moon]|||Crime,Drama,History

tt6723592 |Tenet |2020| |Action,Drama,Thriller

tt7131622|Once Upon a Time... in Hollywood|2019|161|Comedy,Drama

tt7428530 |Roosevelt| | |Biography,Drama,History

tt7713358|Untitled Star Trek Project|||Action,Adventure,Sci-Fi

tt8295436 |Blackhawk| | |Action,Adventure,War

tt8430788|Untitled Ulysses S. Grant Project|||Drama,War

tt9577852 |Rolling Thunder Revue: A Bob Dylan Story by Martin Scorsese|2019 |
142 |Biography,Documentary,Music

Dealing with NULL

In [28]:
premieredAfter (Name,) :- tTitles(_ ,Name,null, ,).
premieredAfter(Name,D) :- tTitles(_,Name,Premiered, ,), not(Premiered=null), Premi¢

Added 2 clauses(s).

In [29]:
?- premieredAfter(M,2019) {20}.

= Untitled George Gershwin Project ;
= The Kidnapping of Edgardo Mortara ;
= Killers of the Flower Moon ;

= Roosevelt ;

= Untitled Star Trek Project ;

= Blackhawk ;

= Untitled Ulysses S. Grant Project ;
= The Irishman ;

= Untitled Indiana Jones Project ;

= West Side Story ;

= Tenet ;

= Once Upon a Time... in Hollywood ;
= Rolling Thunder Revue: A Bob Dylan Story by Martin Scorsese .

RERERRERRRRERERRERR
|

Recursive Queries

SQL has no way to express recursive queries. In Prolog, this is quite natural.

» Let's define a predicate hop between two titles either
= if they were released in the same year, or
= if they were directed by the same person.

127.0.0.1:8888/notebooks/lec27/lec27.ipynb 12/13

29/10/2019 lec27

In [30]:

hop(TitleIdl,TitleId2) :-
tTitles(TitleIdl, ,Premiered, ,),
tTitles(TitleId2, ,Premiered, ,).

hop(TitleIdl,TitleId2) :-
tDirectedBy(TitleIdl,Person),
tDirectedBy(TitleId2,Person).

Added 2 clauses(s).

Recursive Queries

Let's define reachable between two titles if one can be reached from the other by one or more hops.

In [31]:

reachable(TitleIdl,TitleId2,) :- hop(TitleIdl,TitleId2).
reachable(TitleIdl,TitleId2,Visited) :-
hop(TitleIdl,TitleId3), \+member(TitleId3,Visited), reachable(TitleId3,TitleId2,["

Added 2 clauses(s).

Recursive Queries

Finally, let's define connected on movie titles, if the title_ids are reachable.

In [32]:

connected(Titlel,Title2) :-
tTitles(TitleIdl,Titlel, , ,), tTitles(TitleId2,Title2, , ,),
reachable(TitleIdl,TitleId2,[TitleIdl]).

Added 1 clauses(s).

In [33]:
?- connected("Dunkirk","Jaws") {1}.

true.

Fin.

127.0.0.1:8888/notebooks/lec27/lec27.ipynb 13/13

