
05/08/2019 lec5

127.0.0.1:8888/notebooks/lec5/lec5.ipynb 1/11

Datatypes

CS3100
Fall
2019

Review
Previously

Function definition and application

Anonymous and recursive functions

Tail call optimisation

This lecture,

Data types

Pattern matching

Type
aliases
OCaml support the definition of aliases for existing types. For example,

In [19]:

In [20]:

Out[19]:

type int_float_pair = int * float

Out[20]:

val x : int * float = (10, 3.14)

type int_float_pair = int * float

let x = (10, 3.14)

05/08/2019 lec5

127.0.0.1:8888/notebooks/lec5/lec5.ipynb 2/11

In [21]:

Records
Records in OCaml represent a collection of named elements.

A simple example is a point record containing x, y and z fields:

In [22]:

Records:
Creation
and
access
We can create instances of our point type using { ... } , and access the elements of a point

using the . operator:

In [23]:

Records:
Functional
update

Out[21]:

val y : int_float_pair = (10, 3.14)

Out[22]:

type point = { x : int; y : int; z : int; }

Out[23]:

val origin : point = {x = 0; y = 0; z = 0}

Out[23]:

val get_y : point -> int = <fun>

let y : int_float_pair = x

type point = {
 x : int;
 y : int;
 z : int;
}

let origin = { y = 0; x = 0;z = 0 }

let get_y (r : point) = r.y

05/08/2019 lec5

127.0.0.1:8888/notebooks/lec5/lec5.ipynb 3/11

New records can also be created from existing records using the with keyword.

In [24]:

p is a new record with the same fields as origin except z .

origin remains unchanged!

In [25]:

Records:
Field
punning
Another useful trick with records is field punning, which allows you to replace:

In [26]:

with

In [27]:

Product
Types

Out[24]:

val p : point = {x = 0; y = 0; z = 10}

Out[25]:

- : point = {x = 0; y = 0; z = 0}

Out[26]:

val mk_point : int -> int -> int -> point = <fun>

Out[27]:

val mk_point : int -> int -> int -> point = <fun>

let p = { origin with z = 10 }

origin

let mk_point x y z = { x = x; y = y; z = z }

let mk_point x y z = { x; y; z }

05/08/2019 lec5

127.0.0.1:8888/notebooks/lec5/lec5.ipynb 4/11

Records and tuples are known as product
types.

Each value of a product type includes all of the types that constitute the product.

type person_r = {name: string; age: int; height: float}
type person_t = string * int * float

Records are indexed by names whereas tuples are indexed by positions (1st, 2nd, etc.).

what
is
the
sum
type?

VARIANTS

Defining
variants
The type definition syntax is:

type t =
| C1 of t1
| C2 of t2
| C3 of t2
| ...

C1, C2, C2 are known as constructors

t1, t2 and t3 are optional data carried by constructor

Also known as Algebraic
Data
Types

In [28]:

Out[28]:

type color = Red | Green | Blue

type color =
 | Red
 | Green
 | Blue

05/08/2019 lec5

127.0.0.1:8888/notebooks/lec5/lec5.ipynb 5/11

In [29]:

In [30]:

In [31]:

In [32]:

Recursive
variant
types
Let's define an integer list

Out[29]:

val v : color * color = (Green, Red)

Out[30]:

type point = { x : int; y : int; }

Out[30]:

type shape =
 Circle of point * float
 | Rect of point * point
 | ColorPoint of point * color

Out[31]:

- : shape = Circle ({x = 4; y = 3}, 2.5)

Out[32]:

- : shape = Rect ({x = 3; y = 4}, {x = 7; y = 9})

let v = (Green , Red)

type point = {x : int; y : int}

type shape =
 | Circle of point * float (* center, radius *)
 | Rect of point * point (* lower-left, upper-right *)
 | ColorPoint of point * color

Circle ({x=4;y=3}, 2.5)

Rect ({x=3;y=4}, {x=7;y=9})

05/08/2019 lec5

127.0.0.1:8888/notebooks/lec5/lec5.ipynb 6/11

In [33]:

In [34]:

Nil and Cons originate from Lisp.

String
List
type stringlist =
 | SNil
 | Scons of string * stringlist

Now what about pointlist , shapelist , etc?

Parameterized
Variants

In [35]:

Out[33]:

type intlist = INil | ICons of int * intlist

Out[34]:

- : intlist = ICons (1, ICons (2, ICons (3, INil)))

Out[35]:

type 'a lst = Nil | Cons of 'a * 'a lst

type intlist =
 | INil
 | ICons of int * intlist

ICons (1, ICons (2, ICons (3, INil)))

type 'a lst =
 Nil
 | Cons of 'a * 'a lst

05/08/2019 lec5

127.0.0.1:8888/notebooks/lec5/lec5.ipynb 7/11

In [36]:

In [37]:

Type
Variable
Variable: name standing for an unknown value

Type
Variable: name standing for an unknown type

Java example is List<T>

OCaml syntax for type variable is a single quote followed by an identifier

' foo , 'key , ' value
Most often just 'a , 'b .

Pronounced "alpha", "beta" or "quote a", "quote b".

Polymorphism
The type 'a lst that we had defined earlier is a polymorphic
data
type.

poly = many, morph = change.

write functionality that works for many data types.

Related to Java Generics and C++ template instantiation.

In 'a lst , lst is known as a type
constructor.
constructs types such as int lst , string lst , shape lst , etc.

OCaml
built-in
lists
are
just
variants
OCaml effectively codes up lists as variants:

Out[36]:

- : int lst = Cons (1, Cons (2, Nil))

Out[37]:

- : string lst = Cons ("Hello", Cons ("World", Nil))

Cons (1, Cons (2, Nil))

Cons ("Hello", Cons("World", Nil))

05/08/2019 lec5

127.0.0.1:8888/notebooks/lec5/lec5.ipynb 8/11

type 'a list = [] | :: of 'a * 'a list

[] and :: are constuctors.

Just a bit of syntactic magic to use [] and :: as constructors rather than alphanumeric

identifiers.

In [38]:

In [39]:

Null
"I call it my billion-dollar mistake. It was the invention of the null reference in 1965. At that time,

I was designing the first comprehensive type system for references in an object-oriented

language. My goal was to ensure that all use of references should be absolutely safe, with

checking performed automatically by the compiler. But
I
couldn’t
resist
the
temptation
to
put
in
a
null
reference,
simply
because
it
was
so
easy
to
implement. This has led to

innumerable errors, vulnerabilities, and system crashes, which have probably caused a billion

dollars of pain and damage in the last forty years."

-
Sir
Tony
Hoare

Option:
A
Built-in
Variant
OCaml does not have a null value.

type 'a option = None | Some of 'a

Out[38]:

- : 'a list = []

Out[39]:

- : int list = [1; 2]

[]

1::2::[]

05/08/2019 lec5

127.0.0.1:8888/notebooks/lec5/lec5.ipynb 9/11

In [40]:

In [41]:

Out[40]:

- : 'a option = None

Out[41]:

- : int option = Some 10

None

Some 10

05/08/2019 lec5

127.0.0.1:8888/notebooks/lec5/lec5.ipynb 10/11

In [42]:

When
to
use
option
types
type student = { name : string; rollno : string;
 marks : int}

what value will you assign for marks field before the exams are taken?

0 is not a good answer since it might also be the case that the student actually

scored 0.

type student = { name : string; rollno : string;
 marks : int option }

Use None to indicate the exam has not been taken.

Question
Given records, variants and tuples, which one would you pick for the following cases?

1. Represent currency denominations 10, 20, 50, 100, 200, 500, 2000.

2. Students who have name and roll numbers.

3. A dessert which has a sauce, a creamy component, and a crunchy component.b

Tuples are convenient for local uses

Returning a pair of values

Pattern matching multiple things at once.

Fin.

Out[42]:

- : string option = Some "Hello"

Some "Hello"

05/08/2019 lec5

127.0.0.1:8888/notebooks/lec5/lec5.ipynb 11/11

