07/08/2019 lec7

Higher Order Programming

CS3100 Fall 2019

Review

Last time

» Pattern Matching

Today

* New Idioms and library functions.
» Map, Reduce and Other higher order functions.

Double and Square

In [24]:

2 * x
X * X

let double x
let square x

Out[24]:

val double : int -> int <fun>
Out[24]:

val square : int -> int = <fun>

In [25]:
double 10
out[25]:

- : int = 20

127.0.0.1:8888/notebooks/lec7/lec7.ipynb 1/14

07/08/2019 lec7

In [26]:
square 2
out[26]:

- : int = 4

Quad and Fourth

In [27]:

let quad x = 2 * 2 * x
let fourth x = (x * x) * (x * X)

out[27]:
val quad : int -> int = <fun>
Oout[27]:

val fourth : int -> int = <fun>

In [28]:
quad 10
Out[28]:

- : int = 40

In [29]:
fourth 2
out[29]:

- : int = 16

Quad and Fourth

Abstract away the details using double and square .

127.0.0.1:8888/notebooks/lec7/lec7.ipynb 2/14

07/08/2019 lec7

In [30]:
let quad x = double (double x)
out[307]:

val quad : int -> int = <fun>

In [31]:
quad 10
Out[31]:

- : int = 40

In [32]:
let fourth x = square (square x)
Out[32]:

val fourth : int -> int = <fun>

In [33]:
fourth 2
out[33]:

- : int = 16

Quad and Fourth

Abstract the act of applying twice.

In [34]:
let twice f x = £ (f x)
out[34]:

1

val twice : ('a -> 'a) -> 'a -> 'a = <fun>

127.0.0.1:8888/notebooks/lec7/lec7 .ipynb 3/14

07/08/2019

In [35]:

let quad x twice double x
out[35]:

val quad : int -> int = <fun>

In [36]:
let quad = twice double
Out[36]:

val quad : int -> int = <fun>

In [37]:
quad 10

Out[37]:

- : int 40

Quad and Fourth

Abstract the act of applying twice.

In [38]:
let fourth = twice square
out[38]:

val fourth : int -> int = <fun>

In [39]:
fourth 2
out[39]:

- : int = 16

Applying a function for an arbitrary number of times

Instead of twice, what if | wanted to apply n time over an argument where n is supplied as

an argument

127.0.0.1:8888/notebooks/lec7/lec7.ipynb

lec7

4/14

07/08/2019 lec7

In [40]:

let rec apply n £ x =
if n =1 then f x
else f (apply (n-1) f x)

Out[40]:

val apply : int -> ('a -> 'a) -> 'a -> 'a = <fun>

In [41]:
let quad = apply 6 double
Out[41l]:

val quad : int -> int = <fun>

In [42]:
quad 10
Out[42]:

- : int = 640

Higher Order Programming over Lists

Map
&
Fold

(sibling of reduce)

127.0.0.1:8888/notebooks/lec7/lec7.ipynb 5/14

07/08/2019 lec7

AAAAAAA § OF TECHNOLOCY DECEMBER 10, 2018 ISSUE

THE FRIENDSHIP THAT MADE
GOOCGLE HUGE

; Coding together at the same computer, Jeff Dean and Sanjay Ghemawat
5 changed the course of the company—and the Internet.

By James Somers f L]

001000100000000100000100002000£0000
00100010 110000 107 0011

001000 SR
mnmm ‘=’ |

MapReduce

"'[Google’s MapReduce] abstraction is inspired by the map and

reduce primitives present in Lisp and many other runciional
languages. "

[Dean and Ghemawat, 2008]

Map

map (fun x -> shirt color(x)) [

127.0.0.1:8888/notebooks/lec7/lec7 .ipynb 6/14

07/08/2019 lec7

[; Blue ; Red]

Map

map shirt_color [

[; Blue ; Red]

Map

List.map takesalist [al; a2; ...; an] and ahigher-order function £ and returns
[f al; £ a2; ...; £ an].

127.0.0.1:8888/notebooks/lec7/lec7 .ipynb 7/14

07/08/2019 lec7

In [43]:
List.map
out[43]:

- : ('a->"'b) -=> 'a list -> 'b list = <fun>

In [44]:
List.map (fun x -> x + 1) [1;2;3]
Out[44]:

- : int list = [2; 3; 4]

Map

In [45]:

let rec map £ 1 =
match 1 with

| 11 ->1]
| x::xs => £ x :: (map £ xs)

Out[45]:

val map : ('a -> 'b) -> 'a list -> 'b list = <fun>
Is there a problem with this implementation?

» Not tail recursive.
= Generally not an issue with map over list.
= Recursion depth bound by the size of the list.

rev._map

127.0.0.1:8888/notebooks/lec7/lec7.ipynb 8/14

07/08/2019 lec7

In [46]:

let rec rev_map £ 1 acc =
match 1 with
| 1 -> acc
| x::xs -> rev map £ xs (f x::acc)

Out[46]:

val rev map : ('a -> 'b) -> 'a list -> 'b list -> 'b list =
<fun>

In [47]:

let 1 = rev map (fun x -> x + 1) [1;2;3] [] in
List.rev 1

Out[47]:

- : int list = [2; 3; 4]

Fold

« Fold is a function for combining elements.
» Fold is very powerful => very generic / difficult to understand.
o Let's take a simple example first.

In [48]:

let rec sum of elements acc 1 =
match 1 with
| 11 -> acc
| x::xs -> sum of elements (x + acc) xs

let sum of elements = sum of elements 0

out[48]:

val sum_of_ elements : int -> int list -> int = <fun>
Oout[48]:

val sum of elements : int list -> int = <fun>

127.0.0.1:8888/notebooks/lec7/lec7 .ipynb 9/14

07/08/2019 lec7

In [49]:
sum of elements [1;2;3;4;5]
out[49]:

- : int = 15

Fold
What is going on here?

let rec sum of elements acc 1 =
match 1 with
| 11 -> acc
| x::xs -> sum of elements (x + acc) xs

let sum of elements = sum of elements 0

« There is traversal over the shape of the list.

e Thereis an accumulator which keeps track of the current sum so far.
» Thereis a function + that is applied to each element and accumulator.
e Thereisthe initial value of the accumulator whichis 0.

Fold (left)

as natural transformation of the data structure.

OO OBRO

127.0.0.1:8888/notebooks/lec7/lec7.ipynb 10/14

07/08/2019

lec7

Fold

In [50]:
List.fold left
Out[50]:

- : ('a->"b->'a) -=> 'a -> 'b list -> 'a = <fun>

e Firstargument: ('a -> 'b -> 'a) is the function appplied to each element.

= 'a isaccumulator and 'b is current list element
* Second argument: 'a is the initial value of the accumulator.
Third argumment: 'b list is the list.
* Result: 'a is the value of the accumulator at the end of the traversal.

Sum of elements using fold_left

let rec sum of elements acc 1 =
match 1 with
| [1 -> acc
| x::xs -> sum of elements (x + acc) xs

let sum of elements = sum of elements 0

In [51]:

List.fold left (fun acc x -> acc + x) 0 [1;2;3;4;5]

Out[51]:
- : int = 15
In [52]:

let rec fold left f acc 1 =
match 1 with
| 11 -> acc
| x::xs -> fold left f (f acc x) xs

Out[52]:

val fold left : ('a -> 'b -=> 'a) -=> 'a -> 'b list -> 'a = <
fun>

127.0.0.1:8888/notebooks/lec7/lec7.ipynb

11/14

07/08/2019 lec7

fold_right

Fold from the right.

eQ:-. °¢

fold_right

In [53]:
List.fold_right
Out[53]:

- : ('a->"b -> "'b) -> 'a list -> 'b -> 'b = <fun>

In [54]:

let rec fold _right £ 1 acc =
match 1 with
| 11 -> acc
| x::xs -> £ x (fold right f xs acc)

out[54]:

val fold right : ('a -=> 'b -> 'b) -> 'a list -> 'b -> 'b =
<fun>

+ Not tail recursive!

Behold the power of fold

Any time you need to traverse the list, you can use fold .

127.0.0.1:8888/notebooks/lec7/lec7.ipynb 12/14

07/08/2019

In [55]:
let rev
Out[55]:

val rev

In [56]:
let leng
out[56]:

val leng

In [57]:
let map
out[57]:

val map

e map

Exerci

lec7

1 = fold left (fun acc x -> x :: acc) [] 1

: 'a list -> 'a list = <fun>

th 1 = fold left (fun acc _ -> acc + 1) 0 1

th : 'a list -> int = <fun>

f 1 = fold right (fun x acc -> (f x) :: acc) 1 []

: ('a -> 'b) -> 'a list -> 'b list = <fun>

is not tail recursive since fold right is not a tail recursive function.

se

Implement exists : ('a -> bool) -> 'a list -> bool function. exists p 1

returns true if there exists an element e in 1 suchthat p e istrue. Otherwise, exists

p 1 returns false .

In [58]:

let exists p 1 = failwith "not implemented"

Out[58]:

val exists : 'a -=> 'b -> 'c = <fun>

127.0.0.1:8888/notebooks/lec7/lec7 .ipynb

13/14

07/08/2019

lec7

In [59]:
assert (exists (fun e -> e = 0) [1;3;0] = true)

Exception: Failure "not implemented".

Raised at file "stdlib.ml", line 33, characters 22-33
Called from file "[59]", line 1, characters 8-39

Called from file "toplevel/toploop.ml", line 180, character
s 17-56

Exercise

Implement append : 'a list -> 'a list -> 'a list using fold right.

In [60]:
let append 11 12 = failwith "not implemented"
Out[60]:

val append : 'a -> 'b -> 'c = <fun>

In [61]:
assert (append [1;2] [3;4] = [1;2;3;4])

Exception: Failure "not implemented".

Raised at file "stdlib.ml", line 33, characters 22-33
Called from file "[61]", line 1, characters 8-26

Called from file "toplevel/toploop.ml", line 180, character
s 17-56

127.0.0.1:8888/notebooks/lec7/lec7 .ipynb

14/14

