14/08/2019 lec8

Lambda Calculus : Syntax

CS3100 Fall 2019

Review

Last time

» Higher Order Functions

Today

» Lambda Calculus: Basis of FP!
» Origin, Syntax, substitution, alpha equivalence

Computability

In 1930s

» What does it mean for the function f : N — Nto be computable?

« Informal definition: A function is computable if using pencil-and-paper you can compute
f(n) for any n.

» Three different researchers attempted to formalise computability.

Alan Turning

127.0.0.1:8888/notebooks/lec8/lec8.ipynb 1/15

14/08/2019 lec8

lL..' : o-' /-l_ J

» Defined an idealised computer -- The Turing Machine (1935)

« A function is computable if and only if it can be computed by a
turning machine

« A programming language is turing complete if:

= |t can map every turing machine to a program.

= A program can be written to emulate a turing machine.

= |t is a superset of a known turning complete language.

Alonzo Church

« Developed the A-calculus as a formal system for mathematical
logic (1929 - 1932).

» Postulated that a function is computable (in the intuitive sense) if
and only if it can be written as a lambda term (1935).

127.0.0.1:8888/notebooks/lec8/lec8.ipynb 2/15

14/08/2019 lec8

e Church was Turing's PhD advisor!
» Turing showed that the systems defined by Church and his system
were equivalent.
= Church-Turing Thesis

Kurt Godel

« Defined the class of general recursive functions as the smallest
set of functions containing
= all the constant functions
= the successor function and
= closed under certain operations (such as compositions and
recursion).
» He postulated that a function is computable (in the intuitive sense)
if and only if it is general recursive.

Impact of Church-Turing thesis

» The “Church-Turing Thesis” is by itself is one of the most important ideas on computer
science
= The impact of Church and Turing’s models goes far beyond the thesis itself.

Impact of Church-Turing thesis

« Oddly, however, the impact of each has been in almost completely separate communities
= Turing Machines = Algorithms & Complexity

127.0.0.1:8888/notebooks/lec8/lec8.ipynb 3/15

14/08/2019 lec8

= Lambda Calculus = Programming Languages
» Not accidental

= Turing machines are quite low level = well suited for measuring resources
(efficiency).

= Lambda Calculus is quite high level = well suited for abstraction and composition
(structure).

Programming Language Expressiveness

« So what language features are needed to express all computable functions?
» What's the minimal language that is Turing Complete?
« Observe that many features that we have seen in this class were syntactic sugar
= Multi-argument functions - simulate using partial application
= For loop, while loop - simulate using recursive functions
= Mutable heaps - simulate using functional maps and pass around.

Functional Heap

127.0.0.1:8888/notebooks/lec8/lec8.ipynb 4/15

14/08/2019

In [1]:

lec8

type ('k,'v) heap = 'k -> 'v option

let empty heap : ('k,'v) heap

let set (h ('k,'v) heap) (x
fun k -> if k = x then Some
let get (h ('k,'v) heap) (x

Findlib has been successfully
S:

#require "package";; to

#list;; to

#camlpdo; ; to
x)

#camlpdr;; to

#predicates "p,q,...";; to

Topfind.reset();; to
reloaded

#thread;; to
out[1l]:

type ('k, 'v) heap = 'k -> 'v
Out[l]:
val empty heap : ('k, 'v) heap
Out[1l]:

val set : ('k, 'v) heap -> 'k
>

Out[1l]:

val get : ('k, 'v) heap -> 'k

Functional Heap

127.0.0.1:8888/notebooks/lec8/lec8.ipynb

fun k -> None

'k) (v ¢ 'v) ¢ ('k,'v) heap
v else h k

: 'k) ¢ 'v option = h x
loaded. Additional directive
load a package

list the available packages
load camlp4 (standard synta
load camlp4 (revised syntax)
set these predicates

force that packages will be

enable threads

option

= <fun>

-> 'v => ('k, 'v) heap = <fun

-> 'v option = <fun>

5/15

14/08/2019 lec8

In [2]:

let =
let h = set empty heap "a" 0 in
let h set h "b" 1 in
(get h "a", get h "b", get h "c")

Out[2]:

- : int option * int option * int option = (Some 0, Some 1,
None)

» You can imagine passing around the heap as an implicit extra argument to every
function.
= The issue of storing values of different types, default values, etc. can be orthogonally
addressed.

All you need is Leve Functions.

Lambda Calculus : Syntax

e = X (Variable)
| Ax.e (Abstraction)
| ee (Application)

» This grammar describes ASTs; not for parsing (ambiguous!)
+ Lambda expressions also known as lambda terms
o Ax.eislike fun x -> e

That's it! Nothing but higher order functions

Why Study Lambda Calculus?

« ltis a "core" language
= Very small but still Turing complete
» But with it can explore general ideas
= Language features, semantics, proof systems, algorithms, ...
« Plus, higher-order, anonymous functions (aka lambdas) are now very popular!

127.0.0.1:8888/notebooks/lec8/lec8.ipynb 6/15

14/08/2019 lec8

= C++ (C++11), PHP (PHP 5.3.0), C# (C# v2.0), Delphi (since 2009), Objective C, Java 8,
Swift, Python, Ruby (Procs), ...

= and functional languages like OCaml, Haskell, F#, ...

Three Conventions
1. Scope of A extends as far right as possible

» Subject to scope delimited by parentheses
e AXx.Ay.x y isthe same as Ax. (Ay.(x y))

2. Function Application is left-associative
e Xy zIiS (XY) z
» Same rule as OCaml

3. As a convenience, we use the following syntactic sugar for local declarations
e let x = el in e2 is shortfor (1x.e2) el.

Lambda calculus interpreter in OCaml

» In Assignment 2, you will be implementing a lambda calculus interpreter in OCaml.
« What is the Abstract Syntax Tree (AST)?

type expr =
| Var of string
| Lam of string * expr
| App of expr * expr

Lambda expressions in OCaml

e yis var "y"

e AX.Xx is Lam ("x", Var "x")

e AX.Ay.x yis Lam ("x",(Lam("y",App (Var "x", Var "y"))))
o (Ax.Ay.xy) Ax.x x is

App

(Lam (IIXIII Lam (Ilyll,App (Var "X", Var llyll))),
Lam ("x", App (Var "x", Var "x")))

127.0.0.1:8888/notebooks/lec8/lec8.ipynb 7/15

14/08/2019 lec8

In [3]:
#use "init.ml";;

val parse : string -> Syntax.expr = <fun>

val free variables : string -> Eval.SS.elt list = <fun>

val substitute : string -> string -> string -> string = <fu
n>

In [4]:

parse "y";;

parse "\\x.x";;

parse "\\x.\\y.x y";;

parse "(\\x.\\y.x yv) \\x. x x";;

Out[4]:

- : Syntax.expr = Var "y"

Out[4]:

- : Syntax.expr = Lam ("x", Var "x")

Oout[4]:

- : Syntax.expr = Lam ("x", Lam ("y", App (Var "x", Var
llyll)))

Out[4]:

- : Syntax.expr
App (Lam ("x", Lam ("y", App (Var "x", Var "y"))),
Lam ("x", App (Var "x", Var "x")))

Quiz 1
Ax.(y z) and Ax. y z are equivalent.

1. True
2. False

Quiz 1

Ax.(y z) and Ax. y z are equivalent.

1. True 4

127.0.0.1:8888/notebooks/lec8/lec8.ipynb 8/15

14/08/2019 lec8

2. False
Quiz 2
What is this term’s AST? Ax. x x
App (Lam ("x", Var "x"), Var "x")

Lam (Var "x", Vvar "x", Var "x")
Lam ("x", App (Var "x", Var "x"))
App (Lam (n X n ’ App (n xll ’ n X n)))

w2

Quiz 2
What is this term’s AST? Ax. x x

App (Lam ("x", Var "x"), Var "x")
Lam (Var "x", Var "x", Var "x")

Lam ("x", App (Var "x", Var "x"))
App (Lam ("x", App ("x", "x")))

w2

Quiz 3

This term is equivalent to which of the following?
Ax.xab

1. (Ax.x) (a b)
2. (A1x.x) a) b)
3. Ax.(x (a b))
4. (Ax.((x a) b))

Quiz 3
This term is equivalent to which of the following?

Ax.xab

1. (Ax.x) (a b)
2. (Ax.x) a) b)

127.0.0.1:8888/notebooks/lec8/lec8.ipynb 9/15

14/08/2019 lec8

3. Ax.(x (a b))
4. (Ax.((x a) b))

Free Variables

In
AX. Xy

e The first x is the binder.
e The second x is a bound variable.
» The y is afree variable.

Free Variables
Let F'V (t) denote the free variables in a term ¢.

We can define FV () inductively over the definition of terms as follows:

FV(x) = {x)}
FV(ix.t;)) = FV(@)\ {x}
FV(@) = FV() U FV(t,)

If FV (1) = @ then we say that 7 is a closed term.

Quiz 4

What are the free variables in the following?

1. Ax. x (Ay. y)
2.xyz

B Ax.(Ay.y)xy
4. Ax. (Ay.x) y

Quiz 4

What are the free variables in the following?

127.0.0.1:8888/notebooks/lec8/lec8.ipynb 10/15

14/08/2019 lec8

. ix.x (Ay.y) {}
2.xyz {x,y,z}
30Ax.(Ay.»xy {y}

4. x.(Ay.x)y (¥}

In [5]:

free variables "\\x.x (\\y. y)";;
free variables "x y z";;

free variables "\\x.(\\y. y) x y";;
free variables "\\x.(\\y.x) y";;

Out[5]:

- : Eval.SS.elt list

[]

out[5]:

- : Eval.SS.elt list ["x"; "y"; "z"]

Out[5]:

- : Eval.SS.elt list ["v"]
Out[5]:

- : Eval.SS.elt list = ["y"]

a-equivalence
Lambda calculus uses static scoping (just like OCaml)
Ax. x (Ax. x)
This is equivalent to:
Ax.x (Ay.y)

« Renaming bound variables consistently preserves meaning
= This is called as a-renaming or a-conversion.
» If aterm t; is obtained by a-renaming another term #, then #; and t, are said to be a-
equivalent.

Quiz 5

127.0.0.1:8888/notebooks/lec8/lec8.ipynb 11/15

14/08/2019 lec8

Which of the following equivalences hold?

1.AX.X (Ay.y) y =4 Ay. ¥y (Ax.X) x
2.AX. X (Ay.)y =4 Ay.y (Ax.X) y
3. (Ax.x (Ay.y) y) =4 Aw. w (Aw. w) y

Quiz 5

Which of the following equivalences hold?

1L.Ax.Xx(Ay.Y) y =4 Ay.y (Ax. x) x X
2.Ax.x (Ay.y) y =4 Ay.y (Ax.x) y X
3B Ax. x (Ay.y) y =, Aw. w (Aw. w) y

Substitution

« In order to formally define a-equivalence, we need to define substitutions.
« Substitution replaces free occurrences of a variable x with a lambda term N in some
other term M.
» We write it as M[N/x]. (read "N for x in M").

For example,

(Ax. x Y)[(Az. 2)/y] = Ax.x (Az. 2)

Substitution is quite subtle. So we will start with our intuitions and see how things break
and finally work up to the correct example.

Substitution: Take 1

x[s/x] = s
ys/x] =y ifx#y
(Ay.t)ls/x] = Ay.t[s/x]
(11)ls/x] = (11[s/x]) (12[s/x])

This definition works for most examples. For example,

127.0.0.1:8888/notebooks/lec8/lec8.ipynb 12/15

14/08/2019

lec8

(Ay.)[(Az. z w)Ix] = Ay. Az.z w

Substitution: Take 1
x[s/x]
yls/x]

(Ay.t1)[s/x]
(1 1)[s/x]

s
y ifx#y
Ay. t[s/x]

(t1[s/x]) (t2[s/x])

However, it fails if the substitution is on the bound variable:

(Ax. x)[y/x] = Ax.y

The identity function has become a constant function!

Substitution: Take 2

x[s/x]
yls/x]
(Ax.t1)[s/x]
(Ay. t))[s/x]
(t; to)[s/x]

s
y ifx#y
Ax. 1

Ay. t1[s/x] ifx#y
(t1[s/x]) (t2[s/x1)

However, this is not quite right. For example,

(Ax. y)[x/y] = Ax. x

« The constant function has become a identity function.
« The problem here is that the free x gets captured by the binder x.

Substitution: Take 3

Capture-avoiding substitution

x[s/x] = s
yls/x] y ifx#y
(Ax.t)[s/x] Ax. 1
(Ay. t))[s/x] Ay. t;[s/x] ifx# yandy &€ FV(s)
(t; to)[s/x] (t,[s/x]) (t,[s/x])

127.0.0.1:8888/notebooks/lec8/lec8.ipynb

13/15

14/08/2019 lec8

» Unfortunately, this made substitution a partial function
= There is no valid rule for (Ax. y)[x/y]

Substitution: Take 4

Capture-avoiding substitution + totality

x[s/x] = s
ys/x] =y ifx#y
(Ax.tpls/x] = IAx.ty
(Ay.t)s/x] = Ay.t[s/x] ifx#yandy & FV(s)
(Ay.t)ls/x] = Aw.t[wly]lls/x] ifx # yandy € FV(s)and w is fresh
(t; Is/x] = (4 [s/x]) (t,[s/x])

« A fresh binder is different from every other binder in use (generativity).
* In the case above,

wisfresh =w & FV(t1))U FV(s)U {x}

Now our example works out:

(Ax. y)[xly] = Aw. x

In [6]:
substitute "\\y.x" "x" "\\z.z w"
Oout[6]:

- : string = "Ay.Az.z w"

In [7]:
substitute "\\x.x" "x" "y"
Out[7]:

- : string = "Ax.x"

127.0.0.1:8888/notebooks/lec8/lec8.ipynb 14/15

14/08/2019 lec8

In [8]:
substitute "\\x.y" "y" "x"
out[8]:

- : string = "Ax0.x"

a-equivalence formally

=, is an equivalence (reflexive, transitive, symmetric) relation such that:

M=,M' N=,N'
X =4 X MN =, M"N'

z& FV(M)U FV(N) M]Jz/x] =4 N[zl/y]
Ax. M =, Ay. N

Convention

From now on,

» Unless stated otherwise, we identify lambda terms up to a-equivalence.
= when we speak of lambda terms being equal, we mean that they are a-equivalent

Fin.

127.0.0.1:8888/notebooks/lec8/lec8.ipynb

15/15

