
14/08/2019 lec9

127.0.0.1:8888/notebooks/lec9/lec9.ipynb# 1/12

Lambda Calculus : Semantics
CS3100 Fall 2019

Review

Last time
Lambda Calculus: Syntax

Today
Lambda Calculus: Semantics

Reductions, Church-Rosser Theorem.

β-reduction
Lambda Calculus we have been looking so far is untyped.

No static semantics, only dynamic semantics!
A term of the form is called a β-redex.
The act of evaluating lambda calculus terms is called β-reduction.

β-reduction replaces with .
A term without β-reduxes is said to be in β-normal form.

β-reduction, formally

14/08/2019 lec9

127.0.0.1:8888/notebooks/lec9/lec9.ipynb# 2/12

Example

Example

Example

Many steps of β-reduction

Church-Rossser Theorem
If and then there exists an such that and

.

14/08/2019 lec9

127.0.0.1:8888/notebooks/lec9/lec9.ipynb# 3/12

β-normal form
"β-normal form" "contains no reduxes"
Theorem (Uniqueness of β-normal forms). If and and and

 are in β-normal form, then .

Proof. By Church-Rosser, obtain an such that and . But
and are in β-normal form. Hence, .

β-equivalence
 iff there exists an such that and .

Possible Non-termination
Some terms do not have a normal form

14/08/2019 lec9

127.0.0.1:8888/notebooks/lec9/lec9.ipynb# 4/12

Such terms are said to diverge.

Possible Non-termination
Other terms may or may not terminate based on the redux chosen to reduce.

Reduction Strategies
Several different reduction strategies have been studied for lambda calculus.
The β reduction we have seen so far is known as full β-reduction

Any redex in the term can be reduced at any time.

Full β-reduction formally

There may be multiple applicable rules for a term.
The reduction is said to be non-deterministic.

14/08/2019 lec9

127.0.0.1:8888/notebooks/lec9/lec9.ipynb# 5/12

Full β-reduction
For example, we can choose to reduce the innermost redex first:

Normal order strategy
Reduce leftmost, outermost redex first.

In [1]:

Findlib has been successfully loaded. Additional directive

s:

 #require "package";; to load a package

 #list;; to list the available packages

 #camlp4o;; to load camlp4 (standard synta

x)

 #camlp4r;; to load camlp4 (revised syntax)

 #predicates "p,q,...";; to set these predicates

 Topfind.reset();; to force that packages will be

reloaded

 #thread;; to enable threads

val eval_cbv : ?log:bool -> string -> string = <fun>

val eval_cbn : ?log:bool -> string -> string = <fun>

val eval_normal : ?log:bool -> string -> string = <fun>

#use "init.ml"

14/08/2019 lec9

127.0.0.1:8888/notebooks/lec9/lec9.ipynb# 6/12

In [2]:

Normal order strategy, formally

Rules are deterministic. (how?)

Call-by-name strategy
Call-by-name is even more restrictive.

Deterministic
No reduction under abstraction.

= (λx.x) (λz.(λx.x) z)
= λz.(λx.x) z
= λz.z

Out[2]:

- : string = "λz.z"

eval_normal ~log:true "(\\x.x) ((\\x.x) (\\z.(\\x.x) z))"

14/08/2019 lec9

127.0.0.1:8888/notebooks/lec9/lec9.ipynb# 7/12

In [3]:

Call-by-name, formally

Arguments not reduced unless they appear on the function position.
Is a win if arguments not used.
Same reduxes may need to be reduced multiple times.

Call-by-need
In order to avoid recomputing redexes, use a variant of call-by-name called call-by-need
Idea: Tree reductions Graph reductions.

Always substitute terms by reference
Redexes are reduced only once.

Also known as lazy evaluation
Used by Haskell and Miranda.
Lazy features also present in OCaml, Perl 6.

Call-by-value
Always reduce functions and then arguments before application.

= (λx.x) (λz.(λx.x) z)
= λz.(λx.x) z

Out[3]:

- : string = "λz.(λx.x) z"

eval_cbn ~log:true "(\\x.x) ((\\x.x) (\\z.(\\x.x) z))"

14/08/2019 lec9

127.0.0.1:8888/notebooks/lec9/lec9.ipynb# 8/12

In [4]:

Call-by-value, formally

Also known as strict evaluation
Used by almost all lanugages, including OCaml.

Normalization
Given a term and a reduction strategy, the term is said to normalise under that reduction
strategy if reducing that term leads to a β-normal form.

Weak Normalisation: A term is said to weakly normalise under a given reduction strategy if
there exists some sequence of reductions leading to a β-normal form.

Strong Normalisation: A term is said to strongly normalise under a given reduction strategy if
every reduction leads to a β-normal form.

No distinction between weak and strong if the reduction is deterministic (normal order, call-by-
name and call-by-value). Why?

Normalization: Examples

Out[4]:

- : string = "λz.(λx.x) z"

eval_cbv ~log:true "(\\x.x) ((\\x.x) (\\z.(\\x.x) z))"

14/08/2019 lec9

127.0.0.1:8888/notebooks/lec9/lec9.ipynb# 9/12

 is neither weakly or strongly normalising under full-beta, normal
order, call-by-name and call-by-value reduction strategies.

 is
Weakly normalising but not strongly normalising under full beta reduction.
Normalises under normal order and call-by-name.
No normal form under call-by-value.

In [5]:

In [6]:

= (λx.x) (λz.(λx.x) z)
= λz.(λx.x) z

Out[5]:

- : string = "y"

= y

= y

Out[6]:

- : string = "y"

eval_normal ~log:true "(\\x.y) ((\\x.x x) (\\x.x x))"

eval_cbn ~log:true "(\\x.y) ((\\x.x x) (\\x.x x))"

14/08/2019 lec9

127.0.0.1:8888/notebooks/lec9/lec9.ipynb# 10/12

In [7]:

Normalization: Examples
 is strongly normalising

Every beta-normal form is strongly normalising.
 is

Strongly normalising under full-beta, normal order, call-by-name and call-by-value.

In [8]:

= (λx.y) ((λx.x x) (λx.x x))
= (λx.y) ((λx.x x) (λx.x x))
= (λx.y) ((λx.x x) (λx.x x))
= (λx.y) ((λx.x x) (λx.x x))
= (λx.y) ((λx.x x) (λx.x x))
= (λx.y) ((λx.x x) (λx.x x))
= (λx.y) ((λx.x x) (λx.x x))
= (λx.y) ((λx.x x) (λx.x x))
= (λx.y) ((λx.x x) (λx.x x))
= (λx.y) ((λx.x x) (λx.x x))
= (λx.y) ((λx.x x) (λx.x x))
= (λx.y) ((λx.x x) (λx.x x))
= (λx.y) ((λx.x x) (λx.x x))
= (λx.y) ((λx.x x) (λx.x x))
= (λx.y) ((λx.x x) (λx.x x))
= (λx.y) ((λx.x x) (λx.x x))
= (λx.y) ((λx.x x) (λx.x x))
= (λx.y) ((λx.x x) (λx.x x))
= (λx.y) ((λx.x x) (λx.x x))

(λ) ((λ) (λ))

= (λx.y) (λx.x)
= y

Out[8]:

- : string = "y"

eval_cbv ~log:true "(\\x.y) ((\\x.x x) (\\x.x x))"

eval_cbv ~log:true "(\\x.y) ((\\x.x) (\\x.x))"

14/08/2019 lec9

127.0.0.1:8888/notebooks/lec9/lec9.ipynb# 11/12

In [9]:

In [10]:

Extensionality
Is β-equivalence the best notion of "equality" between λ-terms?

We do not have .
But, , for any .

Add -equivalence

-equivalence captures equality of lambda terms nicely.

-reduction

We have applied this rule informally throughout the class in our OCaml examples.

List.map (fun x -> shirt_color x) l

equivalent to

List.map shirt_color l

Out[9]:

- : string = "y"

= y

= y

Out[10]:

- : string = "y"

eval_cbn ~log:true "(\\x.y) ((\\x.x) (\\x.x))"

eval_normal ~log:true "(\\x.y) ((\\x.x) (\\x.x))"

14/08/2019 lec9

127.0.0.1:8888/notebooks/lec9/lec9.ipynb# 12/12

Fin.

