Lambda Calculus : Semantics

CS3100 Fall 2019

Review

Last time

Lambda Calculus: Syntax

Today

- Lambda Calculus: Semantics
 - Reductions, Church-Rosser Theorem.

β-reduction

- Lambda Calculus we have been looking so far is untyped.
 - No static semantics, only dynamic semantics!
- A term of the form $(\lambda x. M) N$ is called a **\beta-redex**.
- The act of evaluating lambda calculus terms is called β -reduction.
 - β -reduction replaces ($\lambda x. M$) N with M[N/x].
- A term without β -reduxes is said to be in β -normal form.

β-reduction, formally

$$\frac{M \to_{\beta} M'}{(\lambda x. M) N \to_{\beta} M[N/x]} = \frac{M \to_{\beta} M'}{\lambda x. M \to_{\beta} \lambda x. M'}$$

$$\frac{M \rightarrow_{\beta} M'}{M N \rightarrow_{\beta} M' N} \qquad \frac{N \rightarrow_{\beta} N'}{M N \rightarrow_{\beta} M N'}$$

Example

 $(\lambda \ x \ . \ x \ x) \ ((\lambda x \ . \ y) \ z)$ $\rightarrow_{\beta} \qquad ((\lambda \ x \ . \ y) \ z \) \ ((\lambda x \ . \ y) \ z)$ $\rightarrow_{\beta} \qquad y \ ((\lambda \ x \ . \ y) \ z \)$ $\rightarrow_{\beta} \qquad y \ ((\lambda \ x \ . \ y) \ z \)$

Example

 $(\lambda \ x \ . \ x \ x) \ ((\lambda x \ . \ y) \ z)$ $\rightarrow_{\beta} \qquad ((\lambda x \ . \ y) \ z) \ ((\lambda \ x \ . \ y) \ z \)$ $\rightarrow_{\beta} \qquad ((\lambda \ x \ . \ y) \ z \) \ y$ $\rightarrow_{\beta} \qquad ((\lambda \ x \ . \ y) \ z \) \ y$

Example

$$(\lambda x. x x)((\lambda x. y) z)$$

$$\rightarrow_{\beta} (\lambda x. x x) y$$

$$\rightarrow_{\beta} y y$$

Many steps of β-reduction

$$\frac{M =_{\alpha} M'}{M \to_{\beta^*} M'}$$

$$\frac{M \to_{\beta} M' \quad M' \to_{\beta^*} M''}{M \to_{\beta^*} M''}$$

Church-Rossser Theorem

If $M \to_{\beta^*} M_1$ and $M \to_{\beta^*} M_2$ then there exists an M' such that $M_1 \to_{\beta^*} M'$ and $M_2 \to_{\beta^*} M'$.

β-normal form

- " β -normal form" \Rightarrow "contains no reduxes"
- Theorem (Uniqueness of β -normal forms). If $M \to_{\beta^*} N_1$ and $M \to_{\beta^*} N_2$ and N_1 and N_2 are in β -normal form, then $N_1 =_{\alpha} N_2$.
- **Proof.** By Church-Rosser, obtain an N such that $N_1 \rightarrow_{\beta^*} N$ and $N_2 \rightarrow_{\beta^*} N$. But N_1 and N_2 are in β -normal form. Hence, $N =_{\alpha} N_1 =_{\alpha} N_2$.

β-equivalence

 $M_1 =_{\beta} M_2$ iff there exists an M' such that $M_1 \rightarrow_{\beta^*} M'$ and $M_2 \rightarrow_{\beta^*} M'$.

Possible Non-termination

Some terms do not have a normal form

Such terms are said to **diverge**.

Possible Non-termination

Other terms may or may not terminate based on the redux chosen to reduce.

 $(\lambda x . y) ((\lambda x. x x) (\lambda x. x x))$ $\rightarrow_{\beta} y$

 $(\lambda x. y) ((\lambda x . x x) (\lambda x. x x))$ $\rightarrow_{\beta} (\lambda x. y) ((\lambda x . x x) (\lambda x. x x))$ $\rightarrow_{\beta} \dots$

Reduction Strategies

- Several different reduction strategies have been studied for lambda calculus.
- The β reduction we have seen so far is known as full β -reduction
 - Any redex in the term can be reduced at any time.

Full β-reduction formally

$$\frac{M \to_{\beta} M'}{(\lambda x. M) N \to_{\beta} M[N/x]} = \frac{M \to_{\beta} M'}{\lambda x. M \to_{\beta} \lambda x. M'}$$

$$\frac{M \to_{\beta} M'}{M N \to_{\beta} M' N} \qquad \qquad \frac{N \to_{\beta} N'}{M N \to_{\beta} M N'}$$

- There may be multiple applicable rules for a term.
 - The reduction is said to be non-deterministic.

Full β-reduction

For example, we can choose to reduce the innermost redex first:

 $(\lambda x. x)((\lambda x. x) (\lambda z. (\lambda x. x) z))$ $=_{\alpha} id (id (\lambda z. id z))$ $\rightarrow_{\beta} id (id (\lambda z. z))$ $\rightarrow_{\beta} id (\lambda z. z)$ $\rightarrow_{\beta} \lambda z. z$

Normal order strategy

Reduce leftmost, outermost redex first.

 $id (id (\lambda z. id z))$ $\rightarrow_{\hat{\beta}} \quad id (\lambda z. id z)$ $\rightarrow_{\hat{\beta}} \quad \lambda z. id z$ $\rightarrow_{\hat{\beta}} \quad \lambda z. z$

In [1]:

```
#use "init.ml"
```

```
Findlib has been successfully loaded. Additional directive
s:
 #require "package";; to load a package
 #list;;
                          to list the available packages
 #camlp4o;;
                          to load camlp4 (standard synta
X)
 #camlp4r;;
                          to load camlp4 (revised syntax)
 #predicates "p,q,...";; to set these predicates
  Topfind.reset();;
                     to force that packages will be
reloaded
 #thread;;
                           to enable threads
val eval cbv : ?log:bool -> string -> string = <fun>
val eval cbn : ?log:bool -> string -> string = <fun>
val eval normal : ?log:bool -> string -> string = <fun>
```

In [2]:

eval_normal ~log:true "(\\x.x) ((\\x.x) (\\z.(\\x.x) z))"

```
= (\lambda x.x) (\lambda z.(\lambda x.x) z)
= \lambda z.(\lambda x.x) z
= \lambda z.z
Out[2]:
```

- : string = " $\lambda z.z$ "

Normal order strategy, formally

$$\overline{(\lambda x. M) N \rightarrow_{\hat{\beta}} M[N/x]}$$

$$\frac{M \neq \lambda x. M_1 \quad M \not\rightarrow_{\hat{\beta}} \quad N \rightarrow_{\hat{\beta}} N'}{M N \rightarrow_{\hat{\beta}} M N'}$$

$$\frac{M \neq \lambda x. M_1 \quad M \to_{\hat{\beta}} M'}{M N \to_{\hat{\beta}} M' N}$$

$$M' = M \to_{\hat{\alpha}} M'$$

$$\frac{\lambda x. M \to_{\hat{\beta}} M}{\lambda x. M \to_{\hat{\beta}} \lambda x. M'}$$

• Rules are deterministic. (how?)

Call-by-name strategy

- Call-by-name is even more restrictive.
 - Deterministic
 - No reduction under abstraction.

 $id (id (\lambda z. id z))$ $\rightarrow_{\beta N} \quad id (\lambda z. id z)$ $\rightarrow_{\beta N} \quad \lambda z. id z$ $\not_{\beta N}$

In [3]:

eval_cbn ~log:true "($\langle x.x \rangle$ (($\langle x.x \rangle$ ($\langle x.x \rangle$ z))"

= $(\lambda x.x) (\lambda z.(\lambda x.x) z)$ = $\lambda z.(\lambda x.x) z$

Out[3]:

- : string = " $\lambda z.(\lambda x.x) z$ "

Call-by-name, formally

$$\frac{M \to_{\beta N} M'}{(\lambda x. M) N \to_{\beta N} M[N/x]} = \frac{M \to_{\beta N} M'}{M N \to_{\beta N} M' N}$$

- Arguments not reduced unless they appear on the function position.
 - Is a win if arguments not used.
 - Same reduxes may need to be reduced multiple times.

$$(\lambda x . (x y) (x z)) ((\lambda x. x) a)$$

$$\rightarrow \beta N$$
 (($\lambda x. x$) $a y$) (($\lambda x. x$) $a z$)

Call-by-need

- In order to avoid recomputing redexes, use a variant of call-by-name called call-by-need
- Idea: Tree reductions \Rightarrow Graph reductions.
 - Always substitute terms by reference
 - Redexes are reduced only once.
- Also known as lazy evaluation
 - Used by Haskell and Miranda.
 - Lazy features also present in OCaml, Perl 6.

Call-by-value

Always reduce functions and then arguments before application.

 $id (id (\lambda z. id z))$ $\rightarrow_{\beta V} id (\lambda z. id z)$ $\rightarrow_{\beta V} \lambda z. id z$ $\neq_{\beta V}$

In [4]:

eval_cbv ~log:true "($\langle x.x \rangle$ (($\langle x.x \rangle$ ($\langle x.x \rangle$ z))"

Out[4]:

```
- : string = "\lambda z.(\lambda x.x) z"
```

Call-by-value, formally

$$\frac{M \to_{\beta V} M'}{M N \to_{\beta V} M' N} \qquad \frac{M \nrightarrow_{\beta V} N \to_{\beta V} N'}{M N \to_{\beta V} M N'}$$
$$\frac{N \nrightarrow_{\beta V}}{(\lambda x. M) N \to_{\beta V} M[N/x]}$$

- Also known as strict evaluation
 - Used by almost all lanugages, including OCaml.

Normalization

Given a term and a reduction strategy, the term is said to normalise under that reduction strategy if reducing that term leads to a β -normal form.

Weak Normalisation: A term is said to weakly normalise under a given reduction strategy if there exists some sequence of reductions leading to a β -normal form.

Strong Normalisation: A term is said to strongly normalise under a given reduction strategy if every reduction leads to a β -normal form.

No distinction between weak and strong if the reduction is **deterministic** (normal order, call-by-name and call-by-value). Why?

Normalization: Examples

- $\Omega = (\lambda x. x x) (\lambda x. x x)$ is neither weakly or strongly normalising under full-beta, normal order, call-by-name and call-by-value reduction strategies.
- $(\lambda x. y) \Omega$ is
 - Weakly normalising but not strongly normalising under full beta reduction.
 - Normalises under normal order and call-by-name.
 - No normal form under call-by-value.

In [5]:

```
eval_normal ~log:true "(\langle x.y \rangle ((\langle x.x \rangle) (\langle x.x \rangle)"
```

```
= (\lambda x \cdot x) (\lambda z \cdot (\lambda x \cdot x) z)
= \lambda z \cdot (\lambda x \cdot x) z
```

```
Out[5]:
```

```
-: string = "y"
```

In [6]:

```
eval_cbn ~log:true "(\langle x.y \rangle ((\langle x.x \rangle) "
```

= y = y Out[6]:

-: string = "y"

In [7]:

eval_cbv ~log:true "($\langle x.y \rangle$ (($\langle x.x x \rangle$) ($\langle x.x x \rangle$)"
= $(\lambda x \cdot y) ((\lambda x \cdot x x) (\lambda x \cdot x x))$
$= (\lambda x. y) ((\lambda x. x x) (\lambda x. x x))$
$= (\lambda x \cdot y) ((\lambda x \cdot x x) (\lambda x \cdot x x))$
$= (\lambda x \cdot y) ((\lambda x \cdot x x) (\lambda x \cdot x x))$
$= (\lambda x \cdot y) ((\lambda x \cdot x \cdot x) (\lambda x \cdot x \cdot x))$
$= (\lambda x \cdot y) ((\lambda x \cdot x \cdot x) (\lambda x \cdot x \cdot x))$
$= (\lambda x \cdot y) ((\lambda x \cdot x \cdot x) (\lambda x \cdot x \cdot x))$
$= (\lambda x. y) ((\lambda x. x x) (\lambda x. x x))$
$= (\lambda x. y) ((\lambda x. x x) (\lambda x. x x))$
$= (\lambda \mathbf{x} \cdot \mathbf{y}) ((\lambda \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x}) (\lambda \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x}))$
$= (\lambda \mathbf{x} \cdot \mathbf{y}) ((\lambda \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x}) (\lambda \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x}))$
$= (\lambda \mathbf{x} \cdot \mathbf{y}) ((\lambda \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x}) (\lambda \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x}))$
$= (\lambda \mathbf{x} \cdot \mathbf{y}) ((\lambda \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x}) (\lambda \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x}))$
$= (\lambda \mathbf{x} \cdot \mathbf{y}) ((\lambda \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x}) (\lambda \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x}))$
$= (\lambda \mathbf{x} \cdot \mathbf{y}) ((\lambda \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x}) (\lambda \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x}))$
$= (\lambda \mathbf{x} \cdot \mathbf{y}) ((\lambda \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x}) (\lambda \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x}))$
$= (\lambda \mathbf{x} \mathbf{y}) ((\lambda \mathbf{x} \mathbf{x} \mathbf{x}) (\lambda \mathbf{x} \mathbf{x} \mathbf{x}))$
$= (\lambda \mathbf{x} \mathbf{y}) ((\lambda \mathbf{x} \cdot \mathbf{x} \mathbf{x}) (\lambda \mathbf{x} \cdot \mathbf{x} \mathbf{x}))$
$= (\lambda \mathbf{x} \cdot \mathbf{y}) ((\lambda \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x}) (\lambda \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x}))$ $= (\lambda \mathbf{y} \cdot \mathbf{y}) (\lambda \mathbf{y} \cdot \mathbf{y} \cdot \mathbf{y})$
$= (\Lambda \mathbf{A} \cdot \mathbf{y}) ((\Lambda \mathbf{A} \cdot \mathbf{A} \cdot \mathbf{A}) (\Lambda \mathbf{A} \cdot \mathbf{A} \cdot \mathbf{A}))$

Normalization: Examples

- $\lambda x. x$ is strongly normalising
 - Every beta-normal form is strongly normalising.
- $(\lambda x. y) ((\lambda x. x) (\lambda x. x))$ is
 - Strongly normalising under full-beta, normal order, call-by-name and call-by-value.

In [8]:

```
eval_cbv ~log:true "((x,y) (((x,x))"
```

```
= (λx.y) (λx.x)
= y
Out[8]:
- : string = "y"
```

In [9]:

eval_cbn ~log:true "($\langle x.y \rangle$ (($\langle x.x \rangle$)"

Out[9]:

- : string = "y"

In [10]:

eval_normal ~log:true "(\\x.y) ((\\x.x) (\\x.x))"

= у

= у

Out[10]:

- : string = "y"

Extensionality

- Is β-equivalence the best notion of "equality" between λ-terms?
 - We do not have $(\lambda x. sin x) =_{\beta} sin$.
 - But, $(\lambda x. \sin x) M =_{\beta} \sin M$, for any M.

Add η -equivalence

$$\frac{x \neq FV(M)}{\lambda x. M \ x =_n M}$$

 $\beta\eta$ -equivalence captures equality of lambda terms nicely.

η -reduction

$$\frac{x \neq FV(M)}{\lambda x. M \ x \rightarrow_{\eta} M}$$

We have applied this rule informally throughout the class in our OCaml examples.

```
List.map (fun x -> shirt_color x) l
```

equivalent to

List.map shirt_color 1

Fin.