14/08/2019 lec9

Lambda Calculus : Semantics

CS3100 Fall 2019

Review

Last time

o Lambda Calculus: Syntax

Today

e Lambda Calculus: Semantics
= Reductions, Church-Rosser Theorem.

B-reduction

« Lambda Calculus we have been looking so far is untyped.
= No static semantics, only dynamic semantics!

o Aterm of the form (Ax. M) N is called a B-redex.

« The act of evaluating lambda calculus terms is called B-reduction.
= B-reduction replaces (Ax. M) N with M[N/x].

* A term without B-reduxes is said to be in -normal form.

B-reduction, formally

M—)ﬂM,

(Ax.M) N -3 M[N/x] Ax.M —; Ax. M’

M—)ﬂM, N—)ﬂN,
MN —-;M'N MN —-;MN’

127.0.0.1:8888/notebooks/lec9/lec9.ipynb#

1/12

14/08/2019

lec9

Example

(Ax.xx) ((Ax.y) 2)
=5 ((Ax.y) z) (4x.y) 2)
-5 y((Ax.y) z)
—>p VY

Example
Ax.xx) (Ax.y) 2)
-5 ((Ax.y)z) (Ax.y) z)
-5 ((Ax.y) z)y
- VY
Example

Ax.xx) (A x.y) z)
-5 (Ax.xx)y

- VY

Many steps of B-reduction

M=, M’
M—>ﬂ* M’

M—>ﬁM’ M’ — g+ M"
M—)ﬂ* M”

Church-Rossser Theorem

If M — 4+ My and M — s M, then there exists an M’ such that M| — 4+ M’ and

M2 —p* M’

127.0.0.1:8888/notebooks/lec9/lec9.ipynb#

2/12

14/08/2019 lec9

B-normal form

e "B-normal form" = "contains no reduxes"
» Theorem (Uniqueness of B-normal forms). If M —4+ Npand M — 4+ Nyand N and
N> are in B-normal form, then N; =, N>.

* Proof. By Church-Rosser, obtain an IV such that Ny — 4« N and Ny — 4 N.But N|
and N, are in B-normal form. Hence, N =, N; =, N..

B-equivalence
M, =5 M, iff there exists an M’ such that M| — ;- M’ and M, — ;- M'.

Possible Non-termination

Some terms do not have a normal form

127.0.0.1:8888/notebooks/lec9/lec9.ipynb#

3/12

14/08/2019 lec9

Q = (Ax.xx)(Ax.xx)
=5 (Ax.x x) (Ax. x x)
(Ax.x x) (Ax. x x)

-

=

P

Such terms are said to diverge.

Possible Non-termination

Other terms may or may not terminate based on the redux chosen to reduce.

(A x.y) (Ax.x x) (Ax. x x))

(Ax.) (A x . xx) (Ax.x X))
=5 (Ax.) (A x .xx) (Ax.x x))

—p

Reduction Strategies

» Several different reduction strategies have been studied for lambda calculus.
» The B reduction we have seen so far is known as full f-reduction
= Any redex in the term can be reduced at any time.

Full B-reduction formally

M—)ﬂ M’
(Ax.M) N -3 M[N/x] Ax.M —; Ax. M’

M—)ﬂM, N—)ﬂN,
MN —-;M'N MN —-;MN’

» There may be multiple applicable rules for a term.
= The reduction is said to be non-deterministic.

127.0.0.1:8888/notebooks/lec9/lec9.ipynb# 4/12

14/08/2019

Full B-reduction

lec9

For example, we can choose to reduce the innermost redex first:

(Ax. x)((Ax. x) (Az. (Ax.x) 2))
=, id(id(Az. id z))

-

id (id (Az.z2))

B
-5 id(4z.z)
-5 AzZ.Z

Normal order strategy

Reduce leftmost, outermost redex first.

b

=>

In [1]:

#use "init.ml"

id (id (Az.id z))
id (Az.id z)
Az. id z

Az.z

Findlib has been successfully loaded. Additional directive

S:

#require "package";; to

#list;; to

#camlpdo; ; to
X)

#camlpdr; ; to

#predicates "p,q,...";; to

Topfind.reset();; to
reloaded

#thread; ; to

load a package
list the available packages
load camlp4 (standard synta

load camlp4 (revised syntax)
set these predicates

force that packages will be

enable threads

val eval cbv : ?log:bool -> string -> string = <fun>
val eval cbn : ?log:bool -> string -> string = <fun>

val eval normal : ?log:bool ->

127.0.0.1:8888/notebooks/lec9/lec9.ipynb#

string -> string = <fun>

5/12

14/08/2019 lec9

In [2]:
eval normal ~log:true "(\\x.x) ((\\x.x) (\\z.(\\x.x) z))"

(Ax.x) (Az.(Ax.X) 2)
Az.(Ax.X) z

Az.z

out[2]:

- : string = "Az.z"

Normal order strategy, formally
M # Ax. M] M _)ﬁ M’

(Ax. M) N — ; M[N/x] MN—;M'N
M;éﬂle M-’L)ﬁ N—)ﬂAN, M—)ﬂAM,
MN—>I}MN’ /lx.M—>ﬁ/lx.M’

» Rules are deterministic. (how?)

Call-by-name strategy

» Call-by-name is even more restrictive.
= Deterministic
= No reduction under abstraction.

id (id (Az.id z))
— BN id (/IZ id Z)
—sN Az.id z

-/-)ﬁN

127.0.0.1:8888/notebooks/lec9/lec9.ipynb# 6/12

14/08/2019 lec9

In [3]:
eval cbn ~log:true "(\\x.x) ((\\x.x) (\\z.(\\x.x) z))"

= (Ax.X) (Az.(Ax.X) Z)
= Az.(AX.X) 2z

out[3]:

- : string = "Az.(Ax.x) 2"

Call-by-name, formally

M—)ﬂN M/
(Ax. M) N 5y M[N/x] M N =,y M'N

« Arguments not reduced unless they appear on the function position.
= Is a win if arguments not used.
= Same reduxes may need to be reduced multiple times.

(A x.(xy) (x2) (4x.x) a)
- AN ((Ax.x)a y) ((Ax.x)a z)

Call-by-need

 In order to avoid recomputing redexes, use a variant of call-by-name called call-by-need
 Idea: Tree reductions = Graph reductions.

= Always substitute terms by reference

= Redexes are reduced only once.
« Also known as lazy evaluation

= Used by Haskell and Miranda.

» Lazy features also present in OCaml, Perl 6.

Call-by-value

Always reduce functions and then arguments before application.

127.0.0.1:8888/notebooks/lec9/lec9.ipynb# 712

14/08/2019 lec9

id (id (Az.id z))
=gy id (Az.id 2)
=g Az.idz

In [4]:
eval cbv ~log:true "(\\x.x) ((\\x.x) (\\z.(\\x.x) z))"
Out[4]:

- : string = "Az.(Ax.x) 2"

Call-by-value, formally

M—)ﬁVM’ M—/—)ﬂV N—)ﬂVN,
MN =z, M'N MN =z, MN'

(Ax.M) N -z, M[N/x]

« Also known as strict evaluation
» Used by almost all lanugages, including OCaml.

Normalization

Given a term and a reduction strategy, the term is said to normalise under that reduction
strategy if reducing that term leads to a B-normal form.

Weak Normalisation: A term is said to weakly normalise under a given reduction strategy if
there exists some sequence of reductions leading to a B-normal form.

Strong Normalisation: A term is said to strongly normalise under a given reduction strategy if
every reduction leads to a B-normal form.

No distinction between weak and strong if the reduction is deterministic (normal order, call-by-
name and call-by-value). Why?

Normalization: Examples

127.0.0.1:8888/notebooks/lec9/lec9.ipynb# 8/12

14/08/2019 lec9

o Q= (Ax.x x) (Ax. x x)is neither weakly or strongly normalising under full-beta, normal
order, call-by-name and call-by-value reduction strategies.
o (Ax.y)Qis
= Weakly normalising but not strongly normalising under full beta reduction.
= Normalises under normal order and call-by-name.
= No normal form under call-by-value.

In [5]:
eval normal ~log:true "(\\x.y) ((\\x.x x) (\\x.x x))"

= (Ax.X) (Az.(MAx.X) 2)
Az.(Ax.x) z

Out[5]:

- : string ="y

In [6]:
eval cbn ~log:true "(\\x.y) ((\\x.x x) (\\x.x x))"

=y
=y
out[6]:

- : string = "y

127.0.0.1:8888/notebooks/lec9/lec9.ipynb# 9/12

14/08/2019

In [7]:

eval cbv ~log:true "(\\x.y)

(Ax.
(Ax.
(Ax.
(Ax.
(Ax.
(Ax.
(Ax
(Ax.
(Ax.
(Ax.
(Ax.
(Ax.
(Ax.
(Ax
(Ax.
(Ax.
(Ax.
(Ax.
(Ax.

Normalization: Examples

Y)
Y)
Y)
Y)
Y)
Y)

-Y)

Y)
Y)
Y)
Y)
Y)
Y)

-Y)

Y)
Y)
Y)
Y)
Y)

((Ax.
((Ax.
((Ax.
((Ax.
((Ax.
((Ax.
((Ax.
((Ax.
((Ax.
((Ax.
((Ax.
((Ax.
((Ax.
((Ax.
((Ax.
((Ax.
((Ax.
((Ax.
((Ax.

MM X XM M X M M X M M X M X X XX XN

(Ax.
(Ax.
(Ax.
(Ax.
(Ax.
(Ax.
(Ax.
(Ax.
(Ax.
(Ax.
(Ax.
(Ax.
(Ax.
(Ax.
(Ax.
(Ax.
(Ax.
(Ax.
(Ax.

MM X M M X M M X M M X M X X XX XN

X))
x))
x))
X))
X))
X))
X))
X))
X))
x))
x))
X))
X))
X))
X))
X))
X))
x))
x))

» AX. x is strongly normalising
» Every beta-normal form is strongly normalising.
o (Ax.y) (Ax.x) (Ax.x))is

= Strongly normalising under full-beta, normal order, call-by-name and call-by-value.

In [8]

eval cbv ~log:true " (\\x.y)

= (Ax.y) (AX.X)

=Y

Out[8]

- : string =

127.0.0.1:8888/notebooks/lec9/lec9.ipynb#

y

((\\x.x X)

lec9

(\M\x.x x))"

(\\x.x))"

10/12

14/08/2019

lec9

In [9]:
eval cbn ~log:true " (\\x.y) ((\\x.x) (\\x.x))"
out[9]:

- : string = "y

In [10]:

eval normal ~log:true "(\\x.y) ((\\x.x) (\\x.x))"

=Yy

=y

Out[1l0]:

- : string = "y"
Extensionality

s B-equivalence the best notion of "equality" between A-terms?
= We do not have (Ax. sin x) =; sin.
= But, (Ax. sin x) M =5 sin M, forany M.

Add n-equivalence

x # FV(M)
Ax. M x =, M

pn-equivalence captures equality of lambda terms nicely.

n-reduction

x # FV(M)
AX.Mx—, M

We have applied this rule informally throughout the class in our OCaml examples.

List.map (fun x -> shirt color x) 1
equivalent to

List.map shirt color 1

127.0.0.1:8888/notebooks/lec9/lec9.ipynb#

11/12

14/08/2019 lec9

127.0.0.1:8888/notebooks/lec9/lec9.ipynb# 12/12

