Programs and Proofs

KC Sivaramakrishnan
Spring 2020

[T

MADRAS %==*

Building Reliable Software

® Suppose you run a software company

® Support you've sunk 30+ person-years into developing the
“next big thing”:

* Boeing Dreamliner2 flight controller
* Autonomous vehicle control software for Tesla
* Gene therapy DNA tailoring algorithms

* Super-efficient green-energy power grid controller

® How do you avoid disasters!?

* Turns out software endangers lives

Boeing 737 Max Crashes

® |nvolved in two crashes
+ Lion Air Flight 610 on October 29,2018 — 189 dead
+ Ethiopian Airlines Flight 302 on March 10,2019 — 157 dead

® The crash is attributed to design errors including flight control
software

+ The position of larger engines on 737 Max generated addition lift

- /1 - /1
= " S [T e A *,‘ e e * —

=
LIS T SR

.....................
Engine placement on the third-gen

Boeing 737 Max Crashes

Manoeuvring Characteristics Augmentation System (MCAS)

+ Software to sense angle of attack (AoA) from a sensor and automatically
compensate

Crashes due to AoA sensor data but also due to MCAS software

Every time MCAS was switched on and off again, it acted like first time
pitching nose lower

4+ incorrect spec not including history

Max 0.8 degrees pitch during testing, which was changed to 2.4 after

+ Executing conditions not reflective of testing

MCAS completely ignored that pilots were desperately pulling back on
the yoke

+ Incorrect spec not considering environment

Not an isolated incident

NASA’s Mars Climate Orbiter

+ A sub contractor on the engineering team failed to make a simple conversion from
English units to metric

+ $125 million

Ariane 5 Flight 501

+ The software had tried to cram a 64-bit number into a | 6-bit space.
+ Crashed both the primary and the backup computer

+ $500 million payload lost + $XXX to fix the flaw.

Hawaii Sends Out a State-Wide False Alarm About a Missile Strike

+ there were “troubling” design flaws in the Hawaii Emergency Management Agency’s alert
origination software.

The Equifax social security hack

+ 143 million of their consumer records (names, SSN, credit card numbers) were stolen
by attackers.

Approaches to Validation

Social

+ Code reviews

+ Extreme/pair programming
Methodological

+ Design patterns

+ Test-driven development
+ Version control

+ Bug Tracking
Technological

+ Static analysis

+ Fuzzers

Mathematical

+ Sound Type Systems

4+ Formal verification

——

All of these methods should be used!

Even the most formal can still

have holes:
* did you prove the right thing?
* do your assumptions match reality?

Verification

® Scaled to |0s of lines of code in 1970s

® Now, research projects scale to real software:
+ CompCert:A verified C compiler
+ sel4: verified microkernel OS

+ Ynot: verified DBMS, web services

® |n another 40 years!?

Proof Assistants

You give assistant a theorem

You and assistant cooperate to find the proof
+ Human guides the construction

4+ Machine does the low-level details

Example: Coq, NuPRL, Isabelle HOL

Coq

e |984:. Coquand and Huet implement Coq based on calculus of
inductive constructions Thierry Coquand Gérard Huet

® |992: Coq ported to Caml

® Now implemented in OCaml

G Verified
/ Sroer OCaml
program

guidance with tactics

= Coq Proof of

theorem

theorem

Automated Theorem Proving

® You give the prover a theorem

® The prover either:
+ Finds a proof
+ Finds a counter example
+ Times out

e Eg,

+ /Z3:Microsoft has started shipping with device driver developer kit
since Windows 7/

+ ACL2: used to verify AMD chip compliance with |IEEE floating point
specification, as well as parts of the Java virtual machine

F*

A solver-aided (Z3) general purpose programming language

Write programs and write theorems about the programs

+ F* will discharge the proof obligations to the Z3 solver, but proofs can
also be interactive

Programs can be extracted to OCaml, F#, C,WASM and ASM.

Main use case is Project Everest at Microsoft — a drop in
replacement for HTTPS stack

+ Verified implementations of TLS |.2 and 1.3, and underlying
cryptographic primitives.

This course

® Providing a mathematical foundation for rigorous analysis of realistic
software systems

+ Increasingly on demand as almost everything humans
interact with is increasingly mediated by software

e We will look at
+ Formal logical reasoning about program correctness through

+ Coq proof assistant, a tool for machine checked mathematical
theorem proving and

+ F+%*,a general-purpose programming language aimed at program
verifi cation

Why Proof Assistants / Solver-aided PLs!?

® Reasoning about program correctness presupposes the ability
to read and write mathematical proofs

+ Humans are bad at writing proofs with pen-and-paper — terribly
buggy!

® Proof assistants allow humans to carefully construct machine
checked proofs

+ “obvious to see that it holds” is no longer possible
® Proof assistants = | TA per student!
® Homework
+ Watch “Lambda: the Ultimate TA” by Benjamin Pierce

< https://vimeo.com/6615365

https://vimeo.com/6615365

Course Contents

® Basics of mathematical logic
+ Logic::CS = Calculus::EE,Civil,Mech
® Functional Programming
+ Programs as data, polymorphism, recursion

+ Specification and verification

e PL theory

+ transition systems, operational semantics, lambda calculus, Hoare
logic, separation logic, weakest precondition, dependent types,
monadic effects, etc.

Course Details

Lectures will be mostly developing programs and proofs interactively
+ In Coq and F-star

+ Students are encouraged to bring their laptops and follow along.

CS3100 OCaml portions are a pre-requisite

+ Please go through the lecture materials (available on my website) if you aren’t
comfortable with functional programming.

Weekly assighments
+ Expect them to consume 8-10 hours (but may take significantly longer/shorter).
Collaboration encouraged but not plagiarism.

+ For example, OK to discuss intermediate lemma, but no copying of proof is
allowed.

+ Will follow the institute policy on plagiarism

Course Details

Grading: 60% assignments, 20% mid term, 20% final exam

Office hours

+ You will need significant assistance with Coq / F*

+ My calendar is at http://kcsrk.info/calendar

+ Please drop by my office / fix up a time by sending email to kcsrk@iitm.ac.in

Exams will also be lab based

4+ Details to be worked out later.

See the course website http://kcsrk.info/cs6225 s20_iitm for topics and
announcements

Finally, offering this course for the first time
+ Would like to get continual and honest feedback

+ This is not an easy course, but hopefully should be quite fun!

http://kcsrk.info/calendar
mailto:kcsrk@iitm.ac.in
http://kcsrk.info/cs6225_s20_iitm

Textbooks

® For Coq, we will be following
+ Adam Chlipala, Formal Reasoning about Programs

+ Freely available here: http://adam.chlipala.net/frap/

e For F* there is no recommended text

+ We will be basing our lectures on the F* talks and tutorials available
on the F* website: https://www.fstar-lang.org/

http://adam.chlipala.net/frap/
https://www.fstar-lang.org/

Fin!

