
Banyan: Coordination-free Distributed
Transactions over Mergeable Types

Shashank Shekhar Dubey1, KC Sivaramakrishnan1, Thomas Gazagnaire2, and
Anil Madhavapeddy3

1 Indian Institute of Technology, Madras, India
2 Tarides, France

3 University of Cambridge Computer Laboratory, UK

Abstract. Programming loosely connected distributed applications is a
challenging endeavour. Loosely connected distributed applications such
as geo-distributed stores and intermittently reachable IoT devices can-
not afford to coordinate among all of the replicas in order to ensure data
consistency due to prohibitive latency costs and the impossibility of co-
ordination if availability is to be ensured. Thus, the state of the replicas
evolves independently, making it difficult to develop correct applications.
Existing solutions to this problem limit the data types that can be used
in these applications, which neither offer the ability to compose them to
construct more complex data types nor offer transactions.
In this paper, we describe Banyan, a distributed programming model
for developing loosely connected distributed applications. Data types
in Banyan are equipped with a three-way merge function à la Git to
handle conflicts. Banyan provides isolated transactions for grouping to-
gether individual operations which do not require coordination among
different replicas. We instantiate Banyan over Cassandra, an off-the-shelf
industrial-strength distributed store. Several benchmarks, including a
distributed build-cache, illustrates the effectiveness of the approach.

1 Introduction

When applications replicate data across different sites, they need to make a
fundamental choice regarding the consistency of data. Strong consistency prop-
erties such as Linearizability [20] and Serializability [9] makes it easier to design
correct applications. However, strong consistency is often at odds with high
performance. Strong consistency necessitates that all the replicas coordinate to
agree on a global order in which any conflicting operations are resolved. The
CAP theorem [17] and PACELC theorem [1] state that strongly consistent ap-
plications exhibit higher latencies when all the replicas are reachable, and they
are unavailable when some of the replicas are unreachable. This limitation has
spurred the development of commercial weakly consistent distributed databases
for wide-area applications such as DynamoDB [2], Cassandra [3], CosmosDB [4]
and Riak [32]. However, developing correct applications under weak consistency
is challenging due to the fact that the operations may be reordered in complex

2 S. Dubey, KC. Sivaramakrishnan, T. Gazagnaire, A. Madhavapeddy

ways even if issued by the same session [11]. Moreover, these databases only offer
a limited set of sequential data types with a built-in conflict resolution strategies
such as last-write-wins and multi-valued objects. Such built-in conflict resolu-
tion leads to anomalies such as write-skew [8] which makes it difficult (and often
impossible) to develop complex applications with rich behaviours.

Rather than programming with sequential data types while reasoning about
their semantics in a weakly consistent setting, an alternative strategy is to equip
the data types with the ability to reconcile conflicts. Kaki et al. [23] recently
proposed Mergeable Replicated Data Types (MRDTs) as a way to automati-
cally derive correct distributed variants of ordinary data types. The inductively
defined data types are equipped with an invertible relational specification which
is used to derive a three-way merge function à la Git [18], a distributed version
control system.

What does it take to make MRDTs a practical alternative to implement-
ing high-throughput, low-latency distributed applications such as the ones that
would be implemented over industrial-strength distributed databases? There are
several key challenges to getting there.

Firstly, while MRDTs define merge semantics for operations on individual
objects, Kaki et al. do not describe the semantics of composition of operations on
multiple objects – i.e. transactions. Transactions are indispensable for building
complex applications. Strongly consistent distributed transactions suffer from
unavailability [1], whereas highly-available transactions [5] combined with weakly
consistent operations often lead to incomprehensible behaviours [36].

Secondly, MRDTs impose significant burden on the storage and network
layer to be able to support three-way merges to reconcile conflicts. Kaki et al.
implement MRDTs over Irmin [21], a Git-like store for arbitrary objects, not just
files. As with Git, in order to reconcile conflicts, three-way merges in MRDTs
require the storage layer to record enough history to be able to retrieve the lowest
common ancestor (LCA) state. For a distributed database, performance of the
network layer is quite important for throughput and latency. Industrial-strength
distributed databases use gossip protocols [24] to quickly disseminate updates in
order to ensure fast convergence between the replicas. Git comes equipped with
a remote protocol for transferring objects between remote sites using push and
pull mechanisms. Unfortunately, directly using the Git remote protocols would
mean that the client will have to name branches explicitly, complicating the
programming model. The onus is on the client to ensure that all the branches
that have updates are merged in order to ensure that there is convergence. This
is undesirable.

Contributions. In this paper, we present Banyan, a programming model for
building loosely connected distributed applications that provides coordination-
free transactions over MRDTs. Banyan provides per-object causal consistency,
and the transaction model is built on the principles of Git-like branches. Rather
than relying on Git remote protocol for dissemination across replicas, we instanti-
ate Banyan on top of Cassandra, an industrial-strength, off-the-shelf distributed
store [26]. Unlike Git, Banyan does not expose named branches explicitly, and

Banyan: Coordination-free Distributed Transactions over Mergeable Types 3

ensures eventual convergence. Importantly, Banyan only relies on eventual con-
sistency, and Banyan can be instantiated on any eventually consistent key-value
store. Extensive evaluation shows that Banyan makes it easy to build complex
high-performance distributed applications.

The rest of the paper is organised as follows. We motivate the Banyan model
by designing a distributed build cache in the next section. Section 3 describes
the Banyan programming model. Section 4 describes the instantiation of Banyan
on Cassandra. We evaluate the instantiation of Banyan on top of Cassandra in
section 5. Sections 6 and 8 present the related work and conclusions, respectively.

2 Motivation: A Distributed Build Cache

A distributed build cache enables a team of developers and/or a continuous
integration (CI) system to reuse the build artefacts between several builds. Such
a facility is provided by modern build tools such as Gradle [19] and Bazel [7],
which can store and retrieve build artefacts from cloud storage services such
as Amazon S3 or Google Cloud Storage. Consider the challenge of building a
distributed build cache for OCaml packages. Let us assume that the builds are
reproducible – that is, independent builds of the same source files yield the same
artefact. In addition to storing the artefacts, it would be useful to gather statistics
about the artefacts such as creation time, last accessed time and number of cache
hits. Such information may be used in the cache eviction policy or replicating
artefacts across several sites for increased availability. While an artefact itself
is reproducible, care must be taken to ensure that the statistics are consistent.
For the sake of exposition, we will assume that all the build hosts use the same
operating system and compiler version.

2.1 Mergeable types

Let us build this distributed cache using Banyan, implementing it in OCaml. At
its heart, Banyan is a distributed key-value store. The keys in Banyan are paths,
represented as list of strings. The values are algebraic data types equipped a
merge function that reconciles conflicting updates. In this example, we will use
the following schema: [<pkg_name>; <version>; <kind>; <filename>] for the keys,
where <kind> is either lib indicating binary artefact or stats indicating statistics
about the artefact. The value type is given below:

type timestamp = float
type value =

| B of bigarray (* binary artefact *)
| S of timestamp (* created *) * timestamp (*last accessed *)

* int (*hits*)

The value is either a binary artefact or a statistics triple. Figure 1 shows
the slice of the build cache key-value store. The cache stores the artefacts (cmx
and cmi files) produced as a result of compiling the source file lwt_mutex.ml

4 S. Dubey, KC. Sivaramakrishnan, T. Gazagnaire, A. Madhavapeddy

from the package lwt version 5.3.0. The build cache also stores the statistics
for every artefact. The example shows that the lwt_mutex.cmx was accessed 25
times. When several developers and/or CI pipelines are running concurrently
on different hosts, they may attempt to add the same artefact to the store,

Key Value
/lwt/5.3.0/lib/
lwt_mutex.cmx B(0x…)

/lwt/5.3.0/lib/
lwt_mutex.cmi B(0x…)

/lwt/5.3.0/stats/
lwt_mutex.cmx

S(1593518762.20,
 1593518822.36, 25)

Fig. 1: A slice of the build cache key-value
store.

or, if the artefact is already
present, retrieve it from the cache
and update the corresponding
artefact statistics. It would be un-
wise to synchronize across all of
the hosts for updating the store,
and suffer the latency hit and
potential unavailability. Hence,
Banyan only writes an update to
one of the replicas. The replicas
asynchronously share the updates
between each other, and resolve conflicting updates using user-defined three-way
merge function. The merge function for the build cache is given below.

1 let merge (lca: value option) (v1: value) (v2: value) : value =
2 match lca , v1, v2 with
3 | None , B a1, B a2 (* no lca *)
4 | Some (B _), B a1, B a2 -> assert (a1 = a2); B a1
5 | None , S(c1,la1 ,h1), S(c2,la2 ,h2) -> (* no lca *)
6 S(min c1 c2, max la1 la2 , h1 + h2)
7 | Some(S(_,_,h0)), S(c1,la1 ,h1), S(c2,la2 ,h2)->
8 S(min c1 c2, max la1 la2 , h1 + h2 - h0)
9 | _ -> failwith "impossible"

S(15.3,16.5,3)

S(15.3,16.5,3)

Replica r1 Replica r2

clone

S(15.3,20.1,7)

merge

v1

v2

S(15.3,20.1,9)v5

merge (Some v1) v3 v4

local updates

S(15.3,17.5,5)

local updates
v3

v4

S(15.3,20.1,9)
merge

v6
merge (Some v4) v4 v5

Fig. 2: Merging conflicting statistics updates.

The key idea here is that
Banyan tracks the causal his-
tory of the state updates such
that it is always known what
the lowest common ancestor
(LCA) state is, if one ex-
ists. This idea is analogous to
how Git tracks history with
the notion of branches. The
merge function is applied to
the LCA and the two conflict-
ing versions to determine the
new state. In the case of build
cache, since the builds are re-
producible, the binary arte-
facts will be the same (line
4). The only interesting con-
flicts are in the statistics. The
merge function picks the ear-
liest creation timestamp, latest last accessed timestamp, and the sum of the new

Banyan: Coordination-free Distributed Transactions over Mergeable Types 5

cache hits since the LCA in the two branches and the original value at the LCA,
if present (lines 5–8).

Figure 2 shows how the merge function helps reconcile conflicts. The arrows
capture the happens-before relationship between the states. Assume that replica
r2 starts off by cloning the branch corresponding to replica r1. Subsequently both
r1 and r2 performed local updates. The remote updates are reconciled by calling
the merge function on each of the conflicting values. The value v5 is obtained
with merging the values v3 and v4 with v1 as LCA. Importantly, observe that
the cache hit count is 9 in v5 which corresponds to the sum of 3 hits in the initial
state, 4 additional hits in r1 and 2 additional hits in r2. At this point, r1 has
all the changes from r2, but the vice-versa is not true. Subsequently, when r1 is
merged into r2, both the replicas have converged.

let compile s (* session *) =
let ts = Unix.gettimeofday () in
let lib = ["lwt";"5.3.0";"lib"] in
let stats = ["lwt";"5.3.0";"stats"] in
refresh s >>= fun () ->
read s (lib @ ["lwt_mutex.cmx"]) >>= fun v ->
match v with
| None ->

let (cmx , cmi , o) = ocamlopt "lwt_mutex.ml" in
write s (lib @ ["lwt_mtex.cmx"]) (B cmx) >>= fun _ ->
write s (stats @ ["lwt_mutex.cmx"]) (S (ts,ts ,0))

>>= fun _ ->
... (* similarly for cmi and o files *)
publish s >>= fun _ ->
return (cmx , cmi , o)

| Some cmx ->
read s (stats @ ["lwt_mutex.cmx"])

>>= fun (Some M(c,la,h)) ->
write s (stats @ ["lwt_mutex.cmx"]) (S (c,ts,h+1))

>>= fun _ ->
read s (lib @ ["lwt_mutex.cmi"]) >>= fun (Some cmi) ->
read s (lib @ ["lwt_mutex.o"]) >>= fun (Some o) ->
... (* update stats for cmi and o file *)
publish s >>= fun _ ->
return (cmx , cmi , o)

Fig. 3: Compiling lwt mutex.ml.

2.2 Transactions

Now that we the mergeable value type for the build cache, let us see how we
can compile lwt_mutex.ml using Banyan. Figure 3 shows the code for compiling
lwt_mutex.ml. In Banyan, the clients interact with the store in isolated sessions.
A session can fetch recent updates using the refresh primitive and make all
the local updates visible to other sessions using the publish primitive. During

6 S. Dubey, KC. Sivaramakrishnan, T. Gazagnaire, A. Madhavapeddy

refresh, any conflicting updates are resolved using the three-way merge function
associated with the value type.

In order to compile lwt_mutex.ml, we first refresh the session to get any recent
updates. Then, we check whether the lwt_mutex.cmx file is in the build cache. If
not, the source file is compiled, and the resultant artefacts (cmx, cmi, o files) and
the corresponding entries for updated statistics are written to the store. Finally,
the all the local updates are published.

The all or nothing property of refresh and publish is critical for the cor-
rectness of this code. Observe that when the artefact is locally compiled, all
the artefacts and their statistics are published atomically. This ensures that if a
session sees the cmx file, then other artefacts and their statistics will also be vis-
ible. Thus, Banyan makes it easy to write highly-available, complex distributed
applications in an idiomatic fashion.

3 Programming Model

p0-c0

p0-c1

p0-c2

p0-c3

p0-c4

p1-c0

p1-c1

p1-c2

p1-c3

s1-c0

s0-c0

connect

publish
connect

s1-c0 publish

remote
refresh

s0-c1

remote
refresh

refresh

s1-c2 publish

pub p0session s1session s0 pub p1

publish

publish

Replica r0 Replica r1

Fig. 4: Banyan system and programming model.

In this section, we shall de-
scribe the system and pro-
gramming model of Banyan
from the developers point-
of-view. The Banyan store
consists of several replicas,
which are fully or partially
replicated [13]. The replicas
asynchronously distribute
updates amongst themselves
until they converge. The
key property that enables
Banyan to support merge-
able types and isolated
transactions is that Banyan
tracks the history of the
store in the same way that Git tracks the history of a repository.

Figure 4 presents the schematic diagram of the system and programming
model. Each replica has a distinguished public branch pub, which records the
history of the changing state at that replica. Each node in this connected history
graph represents a commit. Whenever a new client connection is established, a
new branch is forked off the latest commit in the public branch. Any reads
or writes in this session are only committed to this branch unless explicitly
published. This ensures the isolation property of each session. The figure shows
the creation of two sessions in the replica r0.

The simplified Banyan API is given below:

type config (* Store configuration *)
type session
type key = string list

Banyan: Coordination-free Distributed Transactions over Mergeable Types 7

type value (* Type of mergeable values in the store *)

val connect : config -> session Lwt.t
val close : session -> unit Lwt.t
val read : session -> key -> value option Lwt.t
val write : session -> key -> value -> unit Lwt.t
val publish : session -> unit Lwt.t
val refresh : session -> unit Lwt.t

When a client connects to a Banyan store, a new session is created, which is
rooted to one of the replicas in the store. Every write creates a commit in the
session performing the write. As previously explained, Banyan permits the ses-
sions to atomically publish their updates and refresh to obtain latest updates.
The publish operation squashes all the local commits since the previous refresh

or publish to a single commit, and then pushes the changes to the public branch
on the replica to which the session is rooted. The refresh operation pulls up-
dates from the public branch into the current sessions branch. Both publish and
refresh may invoke the merge function on the value type if there are conflicts.
The objects that written to each replica are asynchronously replicated to other
replicas. Banyan offers causal consistency for operations on each key.

Periodically, the changes from other public branches are pulled into a replica’s
public branch (remote refresh). This operation happens implicitly and asyn-
chronously, and does not block the client on that replica. When a session is
closed, the outstanding writes are implicitly published. Similarly, when a session
is connected, there is an implicit refresh operation.

Observe that both the local and the remote refresh operations are non-
blocking – it is always safe for refresh to return with updates only from a subset
of public branches. The only push operation is due to publish. When pushing to
a branch, it is necessary to atomically update the target branch to avoid con-
currency errors. The key observation is that only the session that belongs to a
replica can push to the public branch on that replica. This can be achieved with
replica-local concurrency control and does not require coordination among the
replicas. Hence, Banyan transactions do not need inter-replica coordination, and
hence, are available.

When a particular replica goes down, the sessions that are rooted to that
replica may not have enough history to be able to refresh and publish to other
replicas. In particular, refresh and publish will need to discover the LCA in
the case of conflicting updates. Since the objects are asynchronously replicated
across the replicas, the recent writes to the replica that went down may not have
been replicated to other replicas. Hence, Banyan requires sticky availability [5]
– the sessions need to reach the logical replica to which it originally connected.
In practice, with partial replication, a logical replica may be represented by a
set of physical servers. As long as one of these physical servers is reachable, the
system remains available for that session.

Compared to traditional transactions usually executed at a particular iso-
lation level, refresh and publish permits more fine-grained, explicit control of
visibility. In Banyan, transactions are delimited by publish operations, begin and

8 S. Dubey, KC. Sivaramakrishnan, T. Gazagnaire, A. Madhavapeddy

end of sessions. For example, the set of writes performed between consecutive
publish operations are made visible atomically outside the session. The transac-
tion may abort if the three-way merge function throws an exception. However,
in practice, the useful MRDTs are designed in such a way that a merge is always
possible, and the failure of the merge function represents a bug. This idea of
merge always being possible ensures strong eventual consistency, espoused by
convergent replicated data types [33]. Banyan adds transactional support over
strong eventual consistency.

The publish and refresh can be used to achieve well-known isolation levels.
For example, consider parallel snapshot isolation (PSI) [35], which is an extension
of snapshot isolation (SI) [8] for geo-replicated systems. Like SI, the transactions
in PSI operate on a snapshot of the state at a replica. While SI precludes write-
write conflicts, PSI admits them on mergeable types. Since all the data types in
Banyan are mergeable types, every write-write conflict can be resolved. We can
achieve PSI by refreshing at that beginning of the transaction and publishing
at the end of the transaction with no intervening refreshes.

Similarly, we get monotonic atomic view (MAV) [5] isolation level if two con-
secutive publish operations are interspersed with refreshes. Since the refreshes
may bring in new updates from committed transactions, the state of the trans-
action grows monotonically.

4 Implementation

In this section, we describe the instantiation of Banyan on Cassandra [3], a popu-
lar, industrial-strength, column-oriented, distributed database. Cassandra offers
eventual consistency with a last-write-wins conflict resolution policy. Cassandra
also offers complex data types such as list, set and map with baked-in conflict
resolution policies. Given the richness of replicated data types, the available com-
plex data types are quite limiting. Cassandra also offers lightweight transactions
(distributed compare-and-update) implemented using the Paxos consensus pro-
tocol [27]. Lightweight transactions are limited to operate on only one object.
Banyan does not use lightweight transactions since their cost is prohibitively
high due to consensus. As mentioned previously Banyan only requires sticky
availability, and so uses a replica-local lock for ensuring mutual exclusion when
multiple sessions try to update the public branch on a replica concurrently.

By instantiating Banyan on Cassandra, we offload the concerns of replica-
tion, fault tolerance, availability and convergence to the backing store. On top
of Cassandra, Banyan uses Irmin [21], an OCaml library for persistent stores
with built-in branching, merging and reverting facilities. Irmin can be config-
ured to use different storage backends, and in our case, the storage is Cassandra.
Importantly, Cassandra being a distributed database serves the purpose of the
networking layer in addition to persistent storage. While Irmin permits arbi-
trary branching and merging, Banyan is a specific workflow on top of Irmin
which retains high availability.

Banyan: Coordination-free Distributed Transactions over Mergeable Types 9

4.1 Irmin data model

pub p0

session s1

session s0

c2

c0

c1

/

/ bar

foo v0

v1

Tag Store Block Store

Fig. 5: A sample Irmin store. The rectangles
are tags, diamonds are commit objects, oc-
tagons are tree object, and circles are blob
objects.

The expressivity of Irmin im-
poses significant burden on the
underlying storage. For effi-
ciently storing different ver-
sions of the state as the store
evolves, Irmin uses the Git ob-
ject model. Figure 5 shows a
snapshot of the state of the
Irmin store. There are two kinds
of stores: a mutable tag store
and an immutable, content-
addressed block store. The tag
store records the branches and
the commit that corresponds to
this branch. In this example, we
have three branches, session s0, session s1 and pub p0.

The block store is content-addressed and has three different kinds of objects:
commits, tree and blobs. A commit object represents a commit, and it may have
several parent commits and a single reference to a tree node. For example, the
commit c2’s parent is c1, and c0 and c1 do not have any parent commits. The
tree object corresponds to directory entries in a filesystem, and recursively refer
to other tree objects or a blob object. Unlike Git, Irmin allows blob objects to be
arbitrary values, not just files. The blob objects may refer to other blob objects.
In the session s1, reading the keys ["foo"] and ["bar"] would yield Some v0 and
Some v1, respectively.

Observe that all the commits share the tree object foo and its descendents,
thanks to the block store being content addressed. Content addressibility of the
block store means that as the store evolves, the contents of the store are shared
between multiple commits, if possible. On the other hand, updating a value in a
deep hierarchy of tree objects would necessitate allocating a new spine in order
to maintain both the old and the new versions. Thus, each write in Banyan will
turn into several writes to the underlying storage.

4.2 Cassandra instantiation

For instantiating Banyan on Cassandra, we use two tables, one for the tag store
and another for the block store. For the tag store, the key is a string (tag) and
the value is a blob (hash of the commit node). For the block store, the key is a
blob (hash of the content), and the value is a blob (content). Irmin handles the
logic necessary to serialize and deserialize the various Git objects into binary
blobs and back.

Cassandra replicates the writes to the tag and block tables asynchronously
amongst the replicas. Each replica periodically merges the public branches of
other replicas into its public branch to fetch remote updates. Due to eventual

10 S. Dubey, KC. Sivaramakrishnan, T. Gazagnaire, A. Madhavapeddy

consistency of Cassandra, it may be the case that not all the objects from a
remote replica are available locally. For example, the merge function may find a
new commit from a remote replica, but the tree object referenced by a commit
object may not available locally. In this situation, Banyan simply skips merging
this branch in this round. Cassandra ensures that eventually the remote tree
object will arrive at this replica and will be merged in a subsequent remote
refresh operation. Thus, fetching remote updates is a non-blocking operation.

In Irmin, the tag store is updated with a compare-and-swap to ensure that
concurrent updates to the same tag should be disallowed. Naively implementing
this in Cassandra would necessitate the use of lightweight transactions and suffer
prohibitive costs. By restricting the Banyan programming model (Section 3) such
that entries in the tag store (in particular, the tag corresponding to the public
branch of the replica) is only updated on that replica, we remove the necessity
for lightweight transactions. Thus, we do not depend on any special features of
Cassandra to realise the Banyan model, and Banyan can be instantiated on any
eventually consistent key-value store.

4.3 Recursive merges

A particular challenge in making Banyan scalable is the problem of recursive
merges. Consider a simple mergeable counter MRDT, whose implementation is:

let merge lca v1 v2 =
let old = match lca with None -> 0 | Some v -> v in
v1 + v2 - old

Consider the execution history presented in Figure 6 which shows the evo-
lution of a single counter. The history only shows the interaction between two
replicas, and does not show any sessions. Each node in the history is a commit.
Since we want to focus on a single counter, for simplicity, we ignore the tree
nodes and the node labels show the counter value.

Initially the counters are 0, and each replica concurrently increments the
counter by 4 and 5. When the replicas perform remote refreshes, they invoke
merge None 4 5 to resolve the conflict updates yielding 9. The LCA is None since
there is no common ancestor.

Subsequently, the replicas increment the counters by 3 and 5. Now, consider
that the replicas merge each other’s branches. When merging 12 and 14, there
are two equally valid LCAs 4 and 5. Picking either one of them leads to incorrect
result. At this point, Irmin merges the two LCAs using merge None 4 5 to yield 9,
which is used as the LCA for merging 12 and 14. This yields the value 17. The re-
sult of merging the LCAs is represented as a rounded rectangle. Importantly, the
result of the recursive merge 9 is not a parent commit of 12 and 14 (distinguished
by the use of dotted arrows). This is because the commit nodes are stored in
the content-addressed store, and adding a new parent to the commit node would
create a distinct node, whose hash is different from the original node. Any other
nodes that referenced the original commit node will continue to reference the

Banyan: Coordination-free Distributed Transactions over Mergeable Types 11

old node. As a result, the recursive merges will need to be performed again for
subsequent requests!

0 0

Replica r1 Replica r2

4 5

9 9

+4 +5

merge None 4 5

12 14
+3 +5

17 17

9

merge (Some (merge
 None 4 5)) 12 14

18 19
+1 +2

20 20

17

merge (Some (merge
 (Some (merge None 4 5))
 12 14) 18 19

Fig. 6: Recursive merge. Rounded rectangles
are the results of recursive merges.

Consider that the replicas fur-
ther evolve by incrementing 1 and
2, yielding 18 and 19. When these
commits are merged on remote re-
fresh, there are two LCAs 12 and
14, which need to be merged. This
in turn has two LCAs 4 and 5,
which need to be merged. Thus,
every subsequent recursive merge,
which is very likely since the repli-
cas merge each other’s branches,
requires repeating all the previous
recursive merges. This does not
scale.

We solve this problem by hav-
ing a separate table in Cassan-
dra that acts as a cache, record-
ing the result of LCA merges.
Whenever Banyan encounters a
recursive merge, the cache is first
consulted before performing the
merge. In this example, when 18

and 19 are being merged, Banyan
first checks whether the two LCAs
12 and 14 are in the cache. They would not be. This triggers a recursive merge
of LCAs 4 and 5, whose result is in the cache, and is reused. The cache is also
updated with an entry that records that the merge of the LCAs 12 and 14 is the
commit corresponding to 17.

4.4 Garbage collection

While traditional database systems only store the most recent version of the
data, Banyan necessitates that previous versions of the data must also be kept
around for three-way merges. While persistence of prior versions [15,16] is a
useful property for audit and tamper evidence, the Banyan API presented here
does not provide a way to access earlier versions. The question then is: when can
those prior versions be garbage collected?

We have not yet implemented the garbage collector for Banyan on Cassan-
dra, but we sketch the design here. Git is equipped with a garbage collector that
considers that any object in the block store that is reachable from the tag store is
alive. Unreachable objects are deleted. Our aim is to assist the Git-like garbage
collector by pruning the history graph of nodes which will no longer be used.
The key idea is that if a commit node will not be used for LCA computation,

12 S. Dubey, KC. Sivaramakrishnan, T. Gazagnaire, A. Madhavapeddy

then that commit node may be deleted. Deleting commit nodes will leave dan-
gling references from its referees, but Irmin can be extended to ignore dangling
references to commit nodes.

p0-c0

p0-c1
s0-c0

connect

close

pub p0session s0

p0-c2

s1-c0

session s1

connect

s1-c1
refresh

s1-c2

p1-c0

pub p1

remote
refresh

Fig. 7: Garbage collection. Here, the commits
p0-c0 and s0-c0 may be deleted.

For individual sessions, once
the session is closed, the corre-
sponding entry in the tag store,
and all the commits by that
session may be deleted. In the
execution history in Figure 7,
the commit node s0-c0 may be
deleted. The next question is
when can commits on public
branch be deleted. For each on-
going session in a replica, we
maintain the latest commit in
the public branch against which
refresh was performed. The ear-
liest of such commits in the pub-
lic branch and its descendants
must be retained, since they
are necessary for the three-way
merge. For example, in Figure 7, session s1 refreshed against p0-c2, and s1 is
the only ongoing session. If s1 publishes, then p0-c2 will be the LCA commit.

A similar reasoning is used for remote refreshes. When a commit in the public
branch of a replica has been merged into the public branches of all the other
replicas, then the ancestors of such commits will not be accessed and can be
deleted. In Figure 7, assume that we only have two replicas. Since p0-c1 was
merged by the public branch p1, p0-c1 will be the LCA commit for subsequent
remote refreshes by p1. Given that p0-c0 is neither necessary for remote refreshes
nor for ongoing sessions, p0-c0 can be deleted.

5 Evaluation

In this section, we evaluate the performance of Banyan’s instantiation on Cas-
sandra. Our goal is to assess the suitability of Banyan for programming loosely
connected distributed applications. To this end, we first quantify the overheads of
implementing Banyan over Cassandra. Subsequently, we assess the performance
of MRDTs implemented using Banyan. And finally, we study the performance
of distributed build cache (Section 2).

5.1 Experimental setup

For the experiments, we use a Cassandra cluster with 4 nodes within the same
data center. Each Cassandra node runs on a baremetal Intel®Xeon®E3-1240
CPU, with 4 physical cores, and 2 hardware threads per core. Each core runs at

Banyan: Coordination-free Distributed Transactions over Mergeable Types 13

3.70GHz and has 128KB of L1 data cache, 128KB of L1 instruction cache, 1MB
L2 cache and 8MB of L3 cache. Each machine has 32GB of main memory. The
machines are unloaded except for the Cassandra node. The ping latency between
the machines is 0.5ms on average. The clients are run on a machine with the
same configuration in the same data center.

For the experiments, Cassandra cluster is configured with a replication factor
of 1, read and write consistency levels of ONE. Hence, the cluster maintains a
single copy of each data item, and only waits for one of the servers to respond to
return the result of read and write to the client. These choices lead to eventual
consistency where the reads may not return the latest write. The cluster may
be configured with larger replication factor for better fault tolerance. However,
stronger consistency levels are not useful since Banyan enforces per-key causal
consistency over the underlying eventual consistency offered by Cassandra. In
fact, choosing strong consistency for reads and writes in Cassandra does not
offer strong consistency in Banyan since the visibility of updates in Banyan is
explicitly controlled with the use of refresh and publish.

5.2 Baseline overheads

Number of Clients

Th
ro

ug
hp

ut
 (O

ps
./s

ec
)

10

100

1000

10000

100000

1 2 4 8 16 32 64 128

Banyan Cassandra

Fig. 8: Performance comparison between
Banyan and Cassandra on LWW string value.

Given that Banyan has to per-
sist every version of the store,
what is the impact of Banyan
when compared to using Cas-
sandra in a scenario where Cas-
sandra would be sufficient? We
measure the throughput of per-
forming 32k operations, with
80% reads and 20% writes with
different numbers of clients.
The keys and values are 8 and
128 byte strings, respectively.
For Banyan, we use last-writer-wins resolution policy, which is the policy used
by Cassandra. The results are presented in Figure 8.

With 1 client, Banyan performs 16 operations per second, while Cassandra
performs 795 operations per second. Cassandra offers 50× more throughput than
Banyan with 1 client. This is due to the fact that every read (write) performs 4
reads (3 reads and 4 writes) to the underlying store to create and access the tag,
commit and tree nodes. Banyan additionally includes marshalling and hashing
overheads for accessing the content-addressed block store. Cassandra does not
include any of these overheads. Luckily, Banyan overheads are local to a client,
and hence, can be easily parallelized. With 1 client, the cluster is severely under
utilized, and the client overheads dominate. With increasing number of clients,
the cluster is better utilized. At 128 clients, Cassandra performs 31274 operations
per second where as Banyan performs 5131 operations per second, which is a
slowdown of 6.2×. We believe that these are reasonable overheads given the

14 S. Dubey, KC. Sivaramakrishnan, T. Gazagnaire, A. Madhavapeddy

stronger consistency and isolation guarantees, and better programming model
offered by Banyan.

At the end of 32k operations, Cassandra uses 4.9MB of disk space, while
Banyan uses 1.8GB of disk space. As mentioned earlier (§4.4), we have yet to
implement garbage collection for Banyan– once implemented, we expect this
space usage will come down significantly.

5.3 Mergeable Types

Counter We begin with the counter data type discussed in Section 4.3. How
does a Banyan counter perform on when concurrently updated by multiple
clients? For the experiment, the value type is a counter that supports incre-
ment, decrement and read operations. The clients perform 32k increment or
decrement operations on a key randomly selected from a small key space. Each
client refreshes and publishes after every 100 operations. By choosing a small
key space, we aim to study the scalability of the system with large number of
conflicts.

Number of Clients

Th
ro

ug
hp

ut
 (O

ps
./s

ec
)

N
um

be
r o

f C
on

fli
ct

s

0

500

1000

1500

2000

2500

0

5000

10000

15000

1 2 4 8 16 32 64

Throughput (1024 keys) Conflicts (1024 keys)
Throughput (4096 keys) Conflicts (4096 keys)

Fig. 9: Performance of counter MRDT.

Figure 9 shows the perfor-
mance result for two key spaces
of size 1024 and 4096 keys. With
1 client, there are no conflicts.
The conflicts increases with in-
creasing number of clients. We
get a peak throughput of 1814
(2027) operations per second
with a key space of 1024 (4096)
keys. Observe that the number
of conflicts is considerably lower
with 4096 keys when compared
to 1024 keys. As a result, the
throughput is higher with 4096
keys. The result shows that the
throughput of the system is pro-
portional to the number of conflicting operations.

Blob log Another useful class of MRDTs are mergeable logs, where each log
message is a string. Such a distributed log is useful for collecting logs in a dis-
tributed system, and examining the logs in their global time order. To this end,
each log entry is a pair of timestamp and message, and the log itself is a list of
such entries in reverse chronological order. The merge function for the mergeable
log extracts the newer log entries from both the versions, sorts the newer entries
in reverse chronological order and returns the list obtained by appending the
sorted newer entries to the front of the log at the LCA.

While this implementation is simple, it does not scale well. In particular,
each commit stores the entire log as a single serialized blob. This does not take
advantage of the fact that every commit can share the tail of the log with its

Banyan: Coordination-free Distributed Transactions over Mergeable Types 15

predecessor. Moreover, every append to the log needs to deserialize the entire
log, append the new entry and serialize the log again. Hence, append is an O(n)
operation, where n is the size of the log. Merges are also worst case O(n). This
is undesirable. We call this implementation a blob log.

Linked log We can implement an efficient log by taking advantage of the fact
that every commit shares the tail of the log with its predecessor. The value type
in this log is:

type value =
| L of float (* timestamp *) * string (* message *)

* blob (* hash of prev value *)
| M of blob list (* hashes of the values being merged *)

pub
p0

Tag Store Block Store

c2 c1 c1

x x x

“c" "b" “a"

c2Sess
s0 x “d”

Fig. 10: A snapshot of linked log storage.

The value is either a log entry
L(t,m,h) with timestamp t, message
m and a hash of the previous value h,
or M hs where hs is the list of hashes
of the values being merged. Append-
ing to the log only needs to add a
new object that refers to the previ-
ous log value. Hence, append is O(1).
Figure 10 shows a snapshot of the
log assuming a single key x. The log
at x in the public branch p0 (session
s0) is [a;b;c] ([a;b;d]). The merge
operation simply adds a new value
M [h1;h2], which refers to the hashes
of the two log values being merged.
This operation is also O(1). The read function for the log does the heavy-lifting
of reading the log in reverse chronological order.

Number of messages (x 100)

Ti
m

e
(s

ec
)

0

2

4

6

1 3 5 7 9 11 13 15 17 19 21 23 25

Linked Log Blob Log

Fig. 11: Performance of mergeable logs.

Observe that unlike the
examples seen so far where
the values do not refer to
other values, this linked log
implementation refers to other
values as heap data structures
would do. Figure 11 shows the
time taken to add 100 ad-
ditional messages to the log
with 4 clients. Observe that
the time stays constant with
linked log but increases lin-
early with blob log. By being
able to share objects across

different commits (versions), Banyan leads to efficient implementations of useful
data structures.

16 S. Dubey, KC. Sivaramakrishnan, T. Gazagnaire, A. Madhavapeddy

5.4 Distributed build cache

In this section, we evaluate the performance of distributed build cache described
in Section 2. We have chosen three OCaml packages: git, irmin and httpaf with
common dependent packages. In the first experiment, we measure the benefit of
building a package that has already been built in another workspace. Hence, the
package artefacts will already be in the build cache.

For each library, we measure the baseline build time (1) without using the
build cache, (2) using an empty build cache, and (3) building the same package
on a machine with the same package having built earlier on a different machine.

Libraries

Ti
m

e
(s

ec
)

0

25

50

75

100

git irmin httpaf

No build cache Empty cache
Filled Cache (100% hit rate)

(a) Performance of complete reuse
of build artefacts.

libraries

Ti
m

e
(s

ec
)

0

25

50

75

100

git irmin httpaf

No cache With cache

(b) Performance of partial reuse
of build artefacts.

Fig. 12: Performance of complete and partial reuse of build artefacts.

Figure 12a shows the results. We see that case using an empty build cache is
slower than not using the cache since the artefacts are stored in the cache. We
also see that building the same package on a different machine is faster due to
the build cache when compared to the baseline.

A more realistic scenario is partial sharing of artefacts, where some of the
dependencies are in the cache and other need to be build locally, and added to
the cache. In this experiment, git package is first built on a machine with an
empty cache. Subsequently, irmin package is built on a second machine (which
will now benefit from the common artefacts in the cache). And finally, building
httpaf on a third machine, which benefits from both of the builds. Figure 12b
shows the results. As expected, the git package build is slower with a cache
than without since the cache is empty and the artefacts need to be written to
the cache additionally. Subsequent package builds benefit from partial sharing
of build artefacts. The results illustrate that Banyan not only makes it easy to
build complex applications like distributed build caches, but the implementation
also performs well under realistic workloads.

Banyan: Coordination-free Distributed Transactions over Mergeable Types 17

6 Related Work

Several prior works have addressed the challenge of balancing the programma-
bility and performance under eventual consistency. RedBlue consistency [28]
offers causal consistency by default (blue), but operations that require strong
consistency (red) are executed in single total order. Quelea [34] and MixT [31]
offer automated analysis for classifying and executing operations at different
consistency levels embedded in weakly isolated transactions, paying the cost of
proportional to the consistency level. Indeed, mixing weaker consistency and
transactions has been well-studied [10,25,4].

Banyan only supports causal consistency, but it is known to be the strongest
consistency level that remains available [29]. While prior works attempt to recon-
cile traditional isolation levels with weak consistency, Banyan leaves the choice
of reading and writing updates to and from other transactions to the client
through the use of publish and refresh. We believe that traditional database
isolation levels are already quite difficult to get right [22], and attempting to
provide a fixed set of poorly understood isolation levels under weak consistency
will lead to proliferation of bugs.

Banyan is distinguished by the equipping data types with the ability to han-
dle conflicts (three-way merge functions). Banyan builds on top of Irmin [21].
Irmin allows arbitrary branching and merging between different branches at the
cost of having to expose the branch name. Banyan refreshes and publishes im-
plicitly to the public branch at a repository, which obviates the need for naming
branches explicitly. Irmin does not include a distribution and convergence layer;
Banyan uses Cassandra for this purpose. Banyan provides causal consistency and
coordination free transactions over weakly consistent Cassandra. Several prior
work have similarly obtained stronger guarantees on top of weaker stores [34,6].

TARDiS [14] supports user-defined data types, and a transaction model sim-
ilar to Banyan. TARDiS is however a machine model that exposes the details
of explicit branches and merges to the developer, whereas Banyan is a program-
ming model that can be instantiated on any eventually consistent key-value
store. For instance, in TARDiS programmers need to invoke a separate merge
transaction that does an n-way merge. Banyan transaction model is more flexible
than TARDiS. For example, Banyan can support monotonic atomic view, which
TARDiS cannot – TARDiS transactions do not have a way of allowing more
recent updates since the transaction began. TARDiS does not discuss merges
without LCAs or the issue with recursive merges. We found recursive merges to
be a very common occurrence in practice.

Concurrent revisions [12] describe a programming model with branch and
merge workflow with explicit branches and restrictions on the shape of history
graphs. Banyan makes the choice of branches to publish and refresh implicit
leading to a simpler model. Concurrent revisions does not include an implemen-
tation. Antidote SQL [30] is a database system for geo-distributed applications
that provides the user the ability to relax SQL consistency when possible, but
remain strict when necessary. Similar to Banyan, Antidote SQL transactions are
executed over replicated data types. While Antidote SQL only permits parallel

18 S. Dubey, KC. Sivaramakrishnan, T. Gazagnaire, A. Madhavapeddy

snapshot isolation level [35], by making refresh and publish explicit, Banyan
permits weaker isolation levels such as monotonic atomic view [5].

7 Limitations and Future Work

Many eventually consistent databases such as CosmosDB [4], DynamoDB [2] and
Cassandra provide tunable consistency levels for operations ranging from even-
tual consistency to strong consistency. Banyan only provides causal consistency,
which is known to be the strongest available consistency level, but does not
provide weaker or strong consistency levels. As such applications that require
strong consistency, such as bank accounts with a minimum balance require-
ment, cannot be expressed in Banyan. We believe that we can extend Banyan
with strongly consistent operations. However, operations with weaker consis-
tency (and presumably better performance) cannot be incorporated in Banyan
due to the underlying expectation about the causal history for each operation.

We have yet to implement the garbage collector for Banyan based on the
design sketched in Section 4.4. In the absence of a garbage collector, the storage
requirements are quite significant compared to traditional databases which only
store the most recent version of the data (Section 5.2). We leave the implemen-
tation of the garbage collector for future work.

8 Conclusions

We present Banyan, a novel programming model for developing loosely con-
nected distributed applications based on the principles of Git. We illustrate the
practicality of this approach by instantiating Banyan on Cassandra, an off-the-
shelf eventually consistent distributed store. Our experimental results suggests
that Banyan makes it easy to build complex distributed applications without
compromising performance.

Acknowledgements

Parts of this research were funded by grants from the Tezos Foundation.

References

1. Abadi, D.: Consistency Tradeoffs in Modern Distributed Database System De-
sign: CAP is Only Part of the Story. Computer 45(2), 37–42 (Feb 2012).
https://doi.org/10.1109/MC.2012.33

2. Amazon DynamoDB: Fast and flexible NoSQL database service for any scale
(2020), https://aws.amazon.com/dynamodb/

3. Apache Cassandra: The right choice when you need scalability and high availability
without compromising performance (2020), https://cassandra.apache.org/

https://doi.org/10.1109/MC.2012.33
https://aws.amazon.com/dynamodb/
https://cassandra.apache.org/

Banyan: Coordination-free Distributed Transactions over Mergeable Types 19

4. Azure CosmosDB: Build or modernise scalable, high-performance apps (2020),
https://azure.microsoft.com/en-in/services/cosmos-db/

5. Bailis, P., Davidson, A., Fekete, A., Ghodsi, A., Hellerstein, J.M., Stoica, I.: Highly
Available Transactions: Virtues and Limitations. Proc. VLDB Endow. 7(3), 181–
192 (Nov 2013). https://doi.org/10.14778/2732232.2732237

6. Bailis, P., Ghodsi, A., Hellerstein, J.M., Stoica, I.: Bolt-on Causal Con-
sistency. In: Proceedings of the 2013 ACM SIGMOD International Con-
ference on Management of Data. pp. 761–772. SIGMOD ’13 (2013).
https://doi.org/10.1145/2463676.2465279

7. Bazel: A fast, scalable, multi-language build system (2020), https://bazel.build/
8. Berenson, H., Bernstein, P., Gray, J., Melton, J., O’Neil, E., O’Neil, P.: A Cri-

tique of ANSI SQL Isolation Levels. SIGMOD Rec. 24(2), 1–10 (May 1995).
https://doi.org/10.1145/568271.223785

9. Bernstein, P.A., Shipman, D.W., Wong, W.S.: Formal Aspects of Serializability
in Database Concurrency Control. IEEE Trans. Softw. Eng. 5(3), 203–216 (May
1979). https://doi.org/10.1109/TSE.1979.234182

10. Brutschy, L., Dimitrov, D., Müller, P., Vechev, M.: Serializability for Even-
tual Consistency: Criterion, Analysis, and Applications. In: Proceedings of the
44th ACM SIGPLAN Symposium on POPL. pp. 458–472. POPL 2017 (2017).
https://doi.org/10.1145/3009837.3009895

11. Burckhardt, S., Gotsman, A., Yang, H., Zawirski, M.: Replicated Data Types:
Specification, Verification, Optimality. SIGPLAN Not. 49(1), 271–284 (Jan 2014).
https://doi.org/10.1145/2578855.2535848

12. Burckhardt, S., Leijen, D., Fähndrich, M., Sagiv, M.: Eventually Consistent Trans-
actions. In: ESOP 2012. pp. 67–86. ESOP’12 (2012). https://doi.org/10.1007/978-
3-642-28869-2

13. Crain, T., Shapiro, M.: Designing a Causally Consistent Protocol for Geo-
Distributed Partial Replication. In: Proceedings of the First Workshop on Prin-
ciples and Practice of Consistency for Distributed Data. PaPoC ’15 (2015).
https://doi.org/10.1145/2745947.2745953

14. Crooks, N., Pu, Y., Estrada, N., Gupta, T., Alvisi, L., Clement, A.: TARDiS: A
Branch-and-Merge Approach To Weak Consistency. In: Proceedings of the 2016
International Conference on Management of Data. pp. 1615–1628. SIGMOD ’16
(2016). https://doi.org/10.1145/2882903.2882951

15. Driscoll, J.R., Sarnak, N., Sleator, D.D., Tarjan, R.E.: Making Data Structures Per-
sistent. In: Proceedings of the Eighteenth Annual ACM Symposium on Theory of
Computing. pp. 109–121. STOC ’86 (1986). https://doi.org/10.1145/12130.12142

16. Farinier, B., Gazagnaire, T., Madhavapeddy, A.: Mergeable Persistent Data Struc-
tures. In: Vingt-sixièmes Journées Francophones des Langages Applicatifs (JFLA
2015) (2015)

17. Gilbert, S., Lynch, N.: Brewer’s Conjecture and the Feasibility of Consistent, Avail-
able, Partition-Tolerant Web Services. SIGACT News 33(2), 51–59 (Jun 2002).
https://doi.org/10.1145/564585.564601

18. Git: A distributed version control system (2020), https://git-scm.com/
19. Gradle: An open-source build automation tool (2020), https://gradle.org/
20. Herlihy, M.P., Wing, J.M.: Linearizability: A Correctness Condition for Con-

current Objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (Jul 1990).
https://doi.org/10.1145/78969.78972

21. Irmin: A distributed database built on the principles of Git (2020), https://irmin.
org/

https://azure.microsoft.com/en-in/services/cosmos-db/
https://doi.org/10.14778/2732232.2732237
https://doi.org/10.1145/2463676.2465279
https://bazel.build/
https://doi.org/10.1145/568271.223785
https://doi.org/10.1109/TSE.1979.234182
https://doi.org/10.1145/3009837.3009895
https://doi.org/10.1145/2578855.2535848
https://doi.org/10.1007/978-3-642-28869-2
https://doi.org/10.1007/978-3-642-28869-2
https://doi.org/10.1145/2745947.2745953
https://doi.org/10.1145/2882903.2882951
https://doi.org/10.1145/12130.12142
https://doi.org/10.1145/564585.564601
https://git-scm.com/
https://gradle.org/
https://doi.org/10.1145/78969.78972
https://irmin.org/
https://irmin.org/

20 S. Dubey, KC. Sivaramakrishnan, T. Gazagnaire, A. Madhavapeddy

22. Kaki, G., Nagar, K., Najafzadeh, M., Jagannathan, S.: Alone Together: Compo-
sitional Reasoning and Inference for Weak Isolation. Proc. ACM Program. Lang.
2(POPL) (Dec 2017). https://doi.org/10.1145/3158115

23. Kaki, G., Priya, S., Sivaramakrishnan, K., Jagannathan, S.: Mergeable Repli-
cated Data Types. Proc. ACM Program. Lang. 3(OOPSLA) (Oct 2019).
https://doi.org/10.1145/3360580

24. Kermarrec, A.M., van Steen, M.: Gossiping in Distributed Systems. SIGOPS Oper.
Syst. Rev. 41(5), 2–7 (Oct 2007). https://doi.org/10.1145/1317379.1317381

25. Kraska, T., Pang, G., Franklin, M.J., Madden, S., Fekete, A.: MDCC:
Multi-Data Center Consistency. In: Proceedings of the 8th ACM Euro-
pean Conference on Computer Systems. pp. 113–126. EuroSys ’13 (2013).
https://doi.org/10.1145/2465351.2465363

26. Lakshman, A., Malik, P.: Cassandra: A Decentralized Structured Stor-
age System. SIGOPS Oper. Syst. Rev. 44(2), 35–40 (Apr 2010).
https://doi.org/10.1145/1773912.1773922

27. Lamport, L.: Paxos Made Simple. ACM SIGACT News (Distributed Computing
Column) 32, 4 (Whole Number 121, December 2001) pp. 51–58 (December 2001),
https://www.microsoft.com/en-us/research/publication/paxos-made-simple/

28. Li, C., Porto, D., Clement, A., Gehrke, J., Preguiça, N., Rodrigues, R.: Making
Geo-Replicated Systems Fast as Possible, Consistent When Necessary. In: Proceed-
ings of the 10th USENIX Conference on Operating Systems Design and Implemen-
tation. pp. 265–278. OSDI’12 (2012)

29. Lloyd, W., Freedman, M.J., Kaminsky, M., Andersen, D.G.: Don’t Settle for Even-
tual: Scalable Causal Consistency for Wide-Area Storage with COPS. In: Proceed-
ings of the Twenty-Third ACM Symposium on Operating Systems Principles. pp.
401–416. SOSP ’11 (2011). https://doi.org/10.1145/2043556.2043593

30. Lopes, P., a o Sousa, J., Balegas, V., Ferreira, C., ’e rgio Duarte, S., Bieniusa, A.,
Rodrigues, R., c c a, N.M.P.: Antidote SQL: Relaxed When Possible, Strict When
Necessary. CoRR abs / 1902.03576 (2019), http://arxiv.org/abs/1902.03576

31. Milano, M., Myers, A.C.: MixT: A Language for Mixing Consistency in Geodis-
tributed Transactions. In: Proceedings of the 39th ACM SIGPLAN Conference on
PLDI. pp. 226–241 (2018). https://doi.org/10.1145/3192366.3192375

32. Riak: Enterprise NoSQL Database (2020), https://riak.com/
33. Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: Conflict-free Replicated Data

Types. In: Symposium on Self-Stabilizing Systems. pp. 386–400. Springer (2011)
34. Sivaramakrishnan, K., Kaki, G., Jagannathan, S.: Declarative Pro-

gramming over Eventually Consistent Data Stores. In: Proceedings of
the 36th ACM SIGPLAN Conference on PLDI. pp. 413–424 (2015).
https://doi.org/10.1145/2737924.2737981

35. Sovran, Y., Power, R., Aguilera, M.K., Li, J.: Transactional Storage for
Geo-Replicated Systems. In: Proceedings of the Twenty-Third ACM Sym-
posium on Operating Systems Principles. p. 385400. SOSP ’11 (2011).
https://doi.org/10.1145/2043556.2043592

36. Viotti, P., Vukolić, M.: Consistency in Non-Transactional Distributed Storage Sys-
tems. ACM Comput. Surv. 49(1) (Jun 2016). https://doi.org/10.1145/2926965

https://doi.org/10.1145/3158115
https://doi.org/10.1145/3360580
https://doi.org/10.1145/1317379.1317381
https://doi.org/10.1145/2465351.2465363
https://doi.org/10.1145/1773912.1773922
https://www.microsoft.com/en-us/research/publication/paxos-made-simple/
https://doi.org/10.1145/2043556.2043593
http://arxiv.org/abs/1902.03576
https://doi.org/10.1145/3192366.3192375
https://riak.com/
https://doi.org/10.1145/2737924.2737981
https://doi.org/10.1145/2043556.2043592
https://doi.org/10.1145/2926965

	Banyan: Coordination-free Distributed Transactions over Mergeable Types

