
Kenichi Asai and Mark Shinwell (Eds.)
ML/OCaml 2016
EPTCS ??, 2018, pp. 1–36, doi:10.4204/EPTCS.??.??

This work is licensed under the
Creative Commons Attribution License.

Eff Directly in OCaml

Oleg Kiselyov
Tohoku University, Japan

oleg@okmij.org

KC Sivaramakrishnan
University of Cambridge, UK

sk826@cam.ac.uk

The language Eff is an OCaml-like language serving as a prototype implementation of the theory of
algebraic effects, intended for experimentation with algebraic effects on a large scale.

We present the embedding of Eff into OCaml, using the library of delimited continuations or
the multicore OCaml branch. We demonstrate the correctness of the embedding denotationally, re-
lying on the tagless-final–style interpreter-based denotational semantics, including the novel, direct
denotational semantics of multi-prompt delimited control. The embedding is systematic, lightweight,
performant and supports even higher-order, ‘dynamic’ effects with their polymorphism. OCaml thus
may be regarded as another implementation of Eff, broadening the scope and appeal of that language.

1 Introduction

Algebraic effects [33, 32] are becoming a more and more popular approach for expressing and com-
posing computational effects. There are implementations of algebraic effects in Haskell [18, 22], Idris
[4], OCaml [10, 18], Koka [27], Scala1, Javascript2, PureScript3, and other languages. The most direct
embodiment of algebraic effect theory is the language Eff4 “built to test the mathematical ideas of alge-
braic effects in practice”. It is an OCaml-like language with the native facilities (syntax, type system) to
declare effects and their handlers [2]. It is currently implemented as an interpreter, with an optimizing
compiler to OCaml in the works.

Rather than compile Eff to OCaml, we embed it. After all, save for algebraic effects, Eff truly is a
subset of OCaml and can be interpreted or compiled as a regular OCaml code. Only effect declaration,
invocation and handling need translation, which is local and straightforward. It relies on the library of
delimited control delimcc [20] or else the Multicore OCaml branch [10]. The embedding, in effect,
becomes a set of OCaml idioms for effectful programming with the almost exact look-and-feel of Eff5.

Our second contribution is the realization that so-called ‘dynamic effects’, or handled ‘resources’, of
Eff 3.1 (epitomized by familiar reference cells, which can be created in any number and hold values of
any type) is not a separate language feature. Rather, the dynamic creation of effects is but another effect,
and hence is already supported by our implementation of ordinary effects and requires no special syntax
or semantics.

As a side contribution, we show the correctness of our embedding of Eff in OCaml denotationally,
relying on the “tagless-final” style [5, 21] of interpreter-based denotational semantics (discussed in more

1https://github.com/atnos-org/eff, https://github.com/m50d/paperdoll, among others
2https://www.humblespark.com/blog/extensible-effects-in-node-part-1
3http://purescript.org
4http://www.eff-lang.org/
5While writing this paper we have implemented delimited control in yet another way, in pure OCaml: see Core delimcc in

§3.2. Although developed for the formalization of the Eff translation, it may be used in real programs – provided the code is
written in a particular stylized way as shown in §3.2. In contrast, the original delimcc and Multicore OCaml can be used with
the existing OCaml code as it is. Hence they let Eff be embedded rather than compiled into OCaml.

http://dx.doi.org/10.4204/EPTCS.??.??
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/
https://github.com/atnos-org/eff
https://github.com/m50d/paperdoll
https://www.humblespark.com/blog/extensible-effects-in-node-part-1
http://purescript.org
http://www.eff-lang.org/

2 Eff Directly in OCaml

detail in §3.1.4). We also demonstrate the novel denotational semantics of multi-prompt delimited control
that does not rely on continuation-passing-style (and is, hence, direct).

The structure of the paper is as follows. First we informally introduce Eff on a simple example. §2.2
then demonstrates our translation to OCaml using the delimcc library, putting Eff and the corresponding
OCaml code side-by-side. §2.3 shows how the embedding works in multicore OCaml with its ‘native
effects’. §3 gives the formal, denotational treatment, reminding the denotational semantics of Eff; de-
scribing the novel direct denotational semantics of multi-prompt delimited control; then presenting the
translation precisely; and arguing that it is meaning-preserving. We describe the translation of the dy-
namic effects into OCaml in §4. The empirical §5 evaluates the performance of our implementation of
Eff comparing it with the Eff’s own optimizing compiler. Related work is reviewed in §6. We then
conclude and summarize the research program inspired by our Eff embedding.

The source code of all our examples and benchmarks is available at http://okmij.org/ftp/
continuations/Eff/.

2 Eff in Itself and OCaml

We illustrate the Eff embedding on the running example, juxtaposing the Eff code with the corresponding
OCaml. We thus demonstrate both the simplicity of the translation and the way to do Eff-like effects in
idiomatic OCaml.

2.1 A taste of Eff

An effect in Eff has to be declared first6:

type α nondet = effect
operation fail : unit → empty
operation choose : (α ∗ α) → α

end

Our running effect is thus familiar non-determinism. The declaration introduces only the names of effect
operations – the failure and the non-deterministic choice between two alternatives – and their types. The
semantics is to be defined by a handler later on. All effect invocations uniformly take an argument (even
if it is dummy ()) and promise to produce a value (even if of the type empty, of which no values exists;
the program hence cannot continue after a failure). The declaration is parameterized by the type α of
the values to non-deterministically choose from. (The parameterization can be avoided, if we rather gave
choose the type unit→bool or the (first-class) polymorphic type ∀ α. α ∗ α → α .)

Next we “instantiate the effect signature”, as Eff puts it:

let r = new nondet

One may think of an instance r as part of the name for effect operations: the signature nondet defines the
common interface. Different parts of a program may independently use non-determinism if each creates
an instance for its own use. Unlike the effect declaration, which is static, one may create arbitrarily many
instances at run-time.

We can now write the sample non-deterministic Eff code:

let f () =
let x = r#choose (”a”, ”b”) in

6Eff code is marked with double vertical lines to distinguish it from OCaml.

http://okmij.org/ftp/continuations/Eff/
http://okmij.org/ftp/continuations/Eff/

Oleg Kiselyov, KC Sivaramakrishnan 3

print string x ;
let y = r#choose (”c”, ”d”) in
print string y

The computation (using the Eff terminology [2]) r#choose (”a”, ”b”) invokes the effect choose on in-
stance r, passing the pair of strings ”a” and ”b” as parameters. Indeed the instance feels like a part of
the name for an effect operation. The name of the effect hints that we wish to choose a string from the
pair. Strictly speaking however, choose does not have any meaning beyond signaling the intention of
performing the ‘choose’ effect, whatever it may mean, on the pair of strings.

To run the sample code, we have to tell how to interpret the effect actions choose and fail: so far, we
have only defined their names and types: the algebraic signature. It is the interpreter of the actions, the
handler, that infuses the action operations with their meanings. For example, Eff may execute the sample
code by interpreting choose to follow up on both choices, depth-first:

let test1 = handle f () with
| val x → x
| r#choose (x, y) k → k x ; k y
| r#fail () → ()

The handle. . . with form is deliberately made to look like the try. . . with form of OCaml – following
the principle that algebraic effects are a generalization of ordinary exceptions. The fail action is treated
as a genuine exception: if the computation f () invokes fail (), test1 immediately returns with (). When
the computation f () terminates with a value, the val x branch of the handle form is evaluated, with
x bound to that value; test1 hence returns the result of f () as it is7. The choose action is the proper
effect: when the evaluation of f () comes across r#choose (”a”,”b”), the evaluation is suspended and
the r#choose clause of the handle form above is executed, with x bound to ”a”, y bound to ”b” and k
bound to the continuation of f () evaluation, up to the handle. Since k is the delimited continuation, it
acts as a function, returning what the entire handle form would return (again unit, in our case). Thus
the semantics given to r#choose in test1 is first to choose the first component of the pair; and after the
computation with the choice is completed, choose the second component. The choose effect hence acts
as a resumable exception, familiar from Lisp. In our case, it is in fact resumed twice. Executing test1
prints acdbcd.

Just like the try forms, the handlers may nest: and here things become more interesting. First of all,
distinct effects – or distinct instances of the same effect – act independently, unaware of each other. For
example, it is rather straightforward to see that the following code (where the i1 and i2 handlers make
the choice slightly differently)8

let test2 =
let i1 = new nondet in
let i2 = new nondet in
handle

handle
let x = i1#choose (”a”, ”b”) in
print string x ;
let y = i2#choose (”c”, ”d”) in
print string y

with
| val () → print string ”;”

7An astute reader must have noticed that this result must again be unit.
8 The effects i1#choose and i2#choose can also be handled by the same handler: we touch on so-called multiple-effect

handlers in §3.1.1.

4 Eff Directly in OCaml

| i2#choose (x,y) k → k x; k y
with
| val x → x
| i1#choose (x,y) k → k y; k x

prints bc;d;ac;d; The reader may try to work out the result when the inner handler handles the i1 instance
and the outer one i2.

One may nest handle forms even for the same effect instance. To confidently predict the behavior in
that case one really needs the formal semantics, overviewed in §3.1. First, the effect handling code may
itself invoke effects, including the very same effect:

let testn1 =
handle
handle
let x = r#choose (”a”, ”b”) in
print string x

with
| val () → print string ”;”
| r#choose (x,y) k → k (r#choose(x,y))

with
| val x → x
| r#choose (x,y) k → k y; k x

The effect “re-raised” by the inner handler is then dealt with by an outer handler. In testn1 hence the
inner handler simply relays the choose action to the outer one. The code prints b;a;

A handler does not have to handle all actions of a signature. The unhandled ones are quietly “re-
raised” (again, similar to ordinary exceptions):

let testn2 =
handle
handle
let x = r#choose (”a”, ”b”) in
print string x;
(match r#fail () with)

with
| val () → print string ”;”
| r#fail () → print string ”!”

with
| val x → x
| r#choose (x,y) k → k y; k x

The code prints b!a!. The main computation does both fail and choose effects; the inner handler deals
only with fail, letting choose propagate to the outer one. An unhandled effect action is a run-time error.
The suspicious (match r#fail () with) expression does a case analysis on the empty type. There are no
values of that type and hence no cases are needed.

Eff has another syntax for handling effects in an expression e: with eh handle e, where eh should
evaluate to a value of the handler type. Such values are created by the handler form: whereas handle. . . with
is meant to evoke try. . . with, the handler form is reminiscent of OCaml’s function. Just as function
creates a function value from a collection of clauses pattern-matching on the argument, handler creates a
handler value from a collection of clauses pattern-matching on the effect operation. An example should
make it clear: the following code re-writes the earlier testn2 in with eh handle e notation:

let testn2’ =
let hinner = handler
| val () → print string ”;”

Oleg Kiselyov, KC Sivaramakrishnan 5

| r#fail () → print string ”!”
in
let houter = handler
| val x → x
| r#choose (x,y) k → k y; k x

in
with houter handle
with hinner handle
let x = r#choose (”a”, ”b”) in
print string x;
(match r#fail () with)

The with eh handle e and handler notation emphasizes that handlers are first-class values in Eff, and
may hence be assigned a denotation. For this reason, the paper [2] uses the notation exclusively – and so
does Core Eff in §3.1.1.

2.2 Eff in OCaml

We now demonstrate how the Eff examples from the previous section can be represented in OCaml, using
the library of delimited control delimcc [20]. We intentionally write the OCaml code to look very similar
to Eff, hence showing off the Eff idioms and introducing the translation from Eff to OCaml intuitively.
We make the translation formal in §3.

Before we begin, we declare two OCaml types:

type empty
type ε result = Val | Eff of ε

The abstract type empty is meant to represent the empty type of Eff, the type with no values9. The
result type represents results of handled computations, or the domain of results R from [2, §4], to be
described in more detail in §3. It is indexed only by the type of effects but not by the type of the normal
computational result, as we shall discuss in detail later in this section.

We now begin with our translation, juxtaposing Eff code with the corresponding OCaml. Recall, an
effect has to be declared first10:

type α nondet = effect
operation fail : unit → empty
operation choose : (α ∗ α) → α

end

In OCaml, an Eff declaration is rendered as a data type declaration:

type α nondet =
| Fail of unit ∗ (empty → α nondet result)
| Choose of (α ∗ α) ∗ (α → α nondet result)

that likewise defines the names of effect operations, the types of their arguments and the type of the result
after invoking the effect. The translation pattern should be easy to see: each data type variant has exactly
two arguments, the latter is the continuation. The attentive reader quickly recognizes the freer monad
[22].

9The fact that empty has no constructors does not mean it cannot have any: after all, the type is abstract. Defining truly an
empty type in OCaml is quite a challenge, which will take us too much into the OCaml specifics.

10Again, the Eff code is marked with double vertical lines to distinguish it from OCaml.

6 Eff Directly in OCaml

To make the translation correspond even closer to Eff, we define two functions choose and fail, using
the delimited control operator shift0 provided by the delimcc library11

let choose p arg = shift0 p (fun k → Eff (Choose (arg,k)))
(∗ val choose : α nondet result Delimcc.prompt → α ∗ α → α = <fun> ∗)
let fail p arg = shift0 p (fun k → Eff (Fail (arg,k)))
(∗ val fail : α nondet result Delimcc.prompt → unit → empty = <fun> ∗)

The inferred types of these functions are shown in the comments. The first argument p is a so-called
prompt [20], the control delimiter. The delimcc operation

val push prompt : α prompt → (unit → α) → α

runs the computation (given as a thunk in the second argument) having established the control delimiter.
The operator shift0 p (fun k → body) captures and removes the continuation up to the dynamically
closest occurrence of a push prompt p operation, for the same value of p. It then evaluates body. The
captured continuation is packed into a closure bound to k. We formally describe the semantics of shift0
in §3.2; for now one may think of the above choose and fail functions as throwing an ‘exception’ Eff –
the exception that may be ‘recovered from’, or resumed, when the closure k is invoked. We observe
that the fail and choose definitions look entirely regular and could have been mechanically generated.
The inferred types look almost like the types of the corresponding Eff operations. For example, our
choose is quite like Eff’s r#choose: it takes the effect instance (prompt) and a pair of values and (non-
deterministically) returns one of them. Strictly speaking, however, choose (just like r#choose in Eff)
does hardly anything: it merely captures the continuation and packs it, along with the argument, in the
data structure, to be passed to the effect handler. The handler does the choosing.

The “instantiation of the effect signature”

let r = new nondet

looks into OCaml as creating a new prompt

let r = new prompt ()

whose type, inferred from the use in the code below, is string nondet result prompt. The type does look
like the type of an ‘instance’ of the nondet effect. The created prompt can be passed as the first argument
to the choose and fail functions introduced earlier.

We can now translate the sample Eff code that uses non-determinism

let f () =
let x = r#choose (”a”, ”b”) in
print string x ;
let y = r#choose (”c”, ”d”) in
print string y

into OCaml as

let f () =
let x = choose r (”a”,”b”) in
print string x ;
let y = choose r (”c”,”d”) in
print string y

The translation is almost literally copy-and-paste, with small stylistic adjustments. The effect instance r
is passed to choose as the regular argument, without any special r# syntax.

11 Our shift0 operator is the multi-prompt version of shift0 that was introduced as a variation of the more familiar shift in
[9]. The ‘body’ of shift0 in the present paper is always a value, in which case shift0 is equivalent to shift, only slightly faster.

Oleg Kiselyov, KC Sivaramakrishnan 7

To run our sample Eff code or its OCaml translation we have to define how to interpret the choose
effects. In Eff, it was the job of the handler. Recall:

let test1 = handle f () with
| val x → x
| r#choose (x, y) k → k x ; k y
| r#fail () → ()

The handler has two distinct parts: one defining the interpretation of the result of f () execution (the val
x clause); the rest deals with interpreting effect operations and resuming the computation interrupted by
these effects. (Or not resuming, if the resumption, i.e., continuation bound to k, is not invoked: see the
r#fail clause). The form of the handler expression almost makes it look as if a computation such as f ()
may end in two distinct ways: normally, yielding a value, or by performing an effect operation. In the
latter case, the result collects the arguments passed to the effect operation plus the continuation to resume
the computation after the effect is handled. The denotational semantics of Eff presented in [2, §4] and
reminded in §3.1 gives computations exactly such a denotation: a terminating computation is either a
value or an effect operation with its arguments and the continuation. Our translation of Eff to OCaml
takes such denotation to heart, representing it by the ε result type.

At first glance, the result type should have been defined as

type (ω,ε) result putative = Val of ω | Eff of ε

with two parameters: ε being the type of the effect and ω being the type of the normal result. The two
type parameters look independent, as expected. This type is the type of a handled computation – and,
hence, the result type of a resumption (continuation) of this computation. The nondet effect, whose
operation carries such continuation, should, therefore, have been defined as

type (ω,α) nondet putative =
| Fail of unit ∗ (empty → (ω,(ω,α) nondet putative) result putative)
| Choose of (α ∗ α) ∗ (α → (ω,(ω,α) nondet putative) result putative)

We have no choice but to make ω also a parameter of the nondet putative lest the type variable ω be
left unbound. The effect type and the normal result type are not independent after all. The surprising
occurrence of ω in the effect type is not just aesthetically disappointing. The effect instance (prompt)
type also becomes parameterized by ω . Therefore, if we use a nondet effect instance in a computation
that eventually produces int, we cannot use the instance in a computation that eventually produces bool.
(Recall that prompt types cannot be polymorphic: after all, delimited control can easily emulate mutable
state, with prompt playing the role of the reference cell [24].)

Strictly speaking, we need so-called answer-type polymorphism [1] – which, however, cannot be
added to OCaml without extensive changes to its type system. Fortunately, it can be cheaply, albeit
underhandedly, emulated. For example, we can ‘cast away’ the normal result type with the help of the
universal type:

type ε result v1 = Val of univ | Eff of ε

The type of the handled computation is now parameterized solely by the effect type; the troublesome
answer-type dependence on ω is now gone. The universal type can be emulated in OCaml in several
ways; for example, as Obj.t12. A safer way (in the sense that mistakes in the emulation code lead to a
run-time OCaml exception rather than a segmentation fault) is to carry the normal computation result
‘out of band’. In which case, the handled computation gets the simpler type

12See also http://mlton.org/UniversalType

http://mlton.org/UniversalType

8 Eff Directly in OCaml

type ε result = Val | Eff of ε

which was defined at the beginning of this section. Such an out-of-band trick was earlier used in [24,
§5.2], which also explains the need for the polymorphism in more detail.

To carry the normal computation result out-of-band, we use a reference cell:

type α result value = α option ref
let get result : α result value → α = fun r →

match !r with
Some x → r := None; (∗ GC ∗) x

One is reminded of a similar trick of extracting the result of a computation in continuation-passing
style13 which is often used in implementations of delimited control (for example, [20])14. The reference
cell α result value is allocated and stored into in the following code15:

let handle it:
α result prompt → (∗ effect instance ∗)
(unit → ω) → (∗ expression ∗)
(ω → γ) → (∗ val clause ∗)
((α result → γ) → α → γ) → (∗ oper clause ∗)
γ =

fun effectp exp valh oph →
let res = ref None in
let rec loop : α result → γ = function
| Val → valh (get result res)
| Eff eff → oph loop eff

in loop @@ push prompt effectp @@ fun () → (res := Some (exp ()); Val)

The expression to handle (given as a thunk exp) is run after setting the prompt to delimit continuations
captured by effect operations (more precisely, by shift0 underlying choose and other effect operations).
If the computation finishes, the value is stored, for a brief moment, in the reference cell res, and then
extracted and passed to the normal termination handler valh. Seeing how handle it is actually used may
answer the remaining questions about it:

let test1 = handle it r f
(fun x → x) @@ fun loop → function
| Choose ((x,y),k) → loop (k x); loop (k y)
| Fail ((),) → ()

The OCaml version of test1 ends up very close to the Eff version. We can see that handle it receives
the ‘effect instance’ (the prompt r), the thunk f of the computation to perform, and two handlers, for the
normal termination result (which is the identity in our case, corresponding to the clause val x → x in
the Eff code) and for handling the α nondet operations, Choose and Fail. The only notable distinction
from Eff is how we resume the continuation: we now write loop (k x) as compared to the simple k x in
Eff. As we shall see in §3.1, even in Eff the resumption has the form of invoking the captured expression
continuation, whose result is then fed into an auxiliary recursive function, called loop here (and called h
in Fig. 4). For convenience, Eff offers the user the already composed resumption; the handlers receiving
such composed resumption are called deep.

The just outlined translation applies to the nested handlers as is. For example, the test2 code from
§2.1 is translated into OCaml as follows:

13If the continuation is given the type α → empty then the often heard ‘pass the identity continuation’ is type-incorrect.
14We could also have used a related trick: exceptions.
15The right-associative infix operator @@ of low precedence is application: f @@ x + 1 is the same as f (x + 1) but avoids

the parentheses. The operator is the analogue of $ in Haskell.

Oleg Kiselyov, KC Sivaramakrishnan 9

let test2 =
let i1 = new prompt () in
let i2 = new prompt () in
handle it i1 (fun () →

handle it i2 (fun () →
let x = choose i1 (”a”, ”b”) in
print string x ;
let y = choose i2 (”c”, ”d”) in
print string y)

(fun () → print string ”;”) @@ fun loop → function
| Choose ((x,y),k) → loop (k x); loop (k y)

)
(fun x → x) @@ fun loop → function
| Choose ((x,y),k) → loop (k y); loop (k x)

Here, the inner normal termination handler is not the identity: it performs the printing, just like the
corresponding Eff value handler val () → print string ”;”. The translation was done by copying-and-
pasting of the Eff code and doing a few slight modifications. The code runs and prints the same result
as the original Eff code. The other nested handling examples, testn1 and testn2 of §2.1 are translated in
the manner just outlined, and just as straightforwardly. We refer to the source code for details.

2.3 Eff in multicore OCaml

In this section, we describe the embedding of Eff in multicore OCaml. But first we briefly describe the
implementation of algebraic effects and handlers in multicore OCaml.

2.3.1 Algebraic effects in multicore OCaml

Multicore OCaml [30] is an extension of OCaml with native support for concurrency and parallelism.
Concurrency in multicore OCaml is expressed through algebraic effects and their handlers. We might
declare the non-determinism operations as:

effect Fail : empty
effect Choose : (α ∗ α) → α

Unlike Eff, multicore OCaml does not provide the facility to define new effect types. Indeed, the above
declarations are simply syntactic sugar for extending the built-in effect type with new operations:

type eff += Fail : empty eff
type eff += Choose : α ∗ α → α eff

The test1-like example (see §2.1) takes the following form:
let f () =

let x = perform (Choose (”a”,”b”)) in
print string x;
let y = perform (Choose (”c”;”d”)) in
print string y

in
match f () with
| x → x (∗ value clause ∗)
| effect Choose(x,) k → continue k x
| effect Fail → ()

Effects are performed with the perform keyword. Multicore OCaml extends OCaml’s pattern matching
syntax to double up as handlers when effect patterns (patterns that begin with the keyword effect) are

10 Eff Directly in OCaml

present. Unlike the real test1 however, this multicore OCaml example always chooses the first compo-
nent of the pair, for the reasons detailed below. The continuation k is not a closure and is resumed with
the continue keyword. Just like ambient effects in OCaml, user-defined effects in multicore OCaml have
no type-level marker that decorates function types with effects performed. An effect that is not handled
by any handler in the current stack raises a runtime exception.

Algebraic effects were developed in multicore OCaml primarily to support concurrency; therefore, by
default, the continuations are one-shot and can be resumed at most once. This restriction is enforced with
dynamic checks, which raise an exception when a continuation is resumed more than once. Pleasantly,
this restriction allows multicore OCaml to implement the continuations in direct-style, by creating a
new heap-managed stack object for effect handlers. Continuation capture is also cheap; capturing a
continuation only involves obtaining a reference to the underlying stack object. Since the continuations
are one-shot, there is no need for copying the continuation object when resuming the continuation. For
OCaml, these direct-style continuations are faster than CPS translating the entire code base ([20, §7]
and references therein). This is because CPS translating the entire program allocates a great amount of
intermediate closures, which OCaml does not aggressively optimize. The direct-style implementation
thereby offers backwards compatible performance; only the code that uses continuations pays the cost of
creating and managing continuations. The rest of the code behaves similar to vanilla OCaml.

Multicore OCaml does include support for multi-shot continuations, by allowing the programmer to
clone the continuation on-demand. Thus, the real example test1 is implemented in multicore OCaml as,

match f () with
| x → x (∗ value clause ∗)
| effect Choose(x,y) k →

continue (Obj.clone continuation k) x;
continue k y

| effect Fail → ()

In the above, we clone the continuation k using Obj.clone continuation, resume the continuation with x
before resuming with y.

In Multicore OCaml, the program stack is linked list of stack segments, where each segment is an
object on the heap. Each segment corresponds to a computation delimited by effect handlers. Thus, the
length of the linked list of stack segments is equal to the number of effect handlers dynamically enclosing
the current computation. Each stack segment includes a slop space for the stack to grow. If the stack
overflows, we reallocate the stack segment in an object with twice as much space as the original segment.
The original stack segment will eventually be garbage collected.

Since continuations are one-shot, capturing a continuation involves no copying. We need only to
create a small object that points to a list of stack segments that correspond to the continuation. Cloning
a continuation deep-copies the list of stack segments, and thereby allows the same continuation to be
resumed more than once. Multicore OCaml’s stack management is similar to the Thread module im-
plementation in the MLton Standard ML compiler in that both runtimes manage stacks as dynamically
resized heap objects. But they also differ from each other since the continuations in MLton are unde-
limited while they are delimited in Multicore OCaml. Clinger et al. [8] describe various strategies for
implementing first-class undelimited continuations, which could be adapted for delimited continuations.
Multicore OCaml differs from all these strategies in that the continuation is only copied if it is explicitly
demanded to be cloned. This decision makes the default case of a continuation resumed exactly once
fast.

Oleg Kiselyov, KC Sivaramakrishnan 11

2.3.2 Delimcc in multicore OCaml

We now discuss the Eff embedding in multicore OCaml. We achieve the embedding by embedding the
delimcc operators new prompt, push prompt, and shift0 in multicore OCaml. The embedding is given
in Fig. 1. The prompt type is a record with two operations, one to take a sub-continuation and the
other to push a new prompt. We instantiate a new prompt by declaring a new effect called Prompt in
a local module. Thus, we get a new Prompt effect instance for every invocation of new prompt. (The
signature is written in a strange way as let new prompt (type a) : unit → a prompt rather than the
expected let new prompt : α. unit → α prompt. The two notations are equivalent, as far as the user of
new prompt is concerned and describe the same polymorphic type. However, the former, by introducing
a so-called “locally abstract type”, lets us use the type within new prompt’s body, in the type annotation
to effect Prompt.) The take operation wraps the given function f in the effect constructor and performs
it. The push operation evaluates f in a handler which handles the Prompt effect. This handler applies the
continuation to the given function f.

module type Delimcc = sig
type α prompt

val new prompt : unit → α prompt
val push prompt : α prompt → (unit → α) → α

val shift0 : α prompt → ((β → α) → α) → β

end

module Delimcc : Delimcc = struct
type α prompt = {

take : β . ((β , α) continuation → α) → β ;
push : (unit → α) → α;

}

let new prompt (type a) : unit → a prompt = fun () →
let module M = struct effect Prompt : ((β ,a) continuation → a) → β end in
let take f = perform (M.Prompt f) in
let push th = match th () with
| v → v
| effect (M.Prompt f) k → f k
in
{ take; push }

let push prompt {push} = push

let take subcont {take} = take

let push subcont k v =
let k’ = Obj.clone continuation k in
continue k’ v

let shift0 p f =
take subcont p (fun sk → f (fun c → push subcont sk c))

end

Figure 1: Embedding Delimcc in multicore OCaml

12 Eff Directly in OCaml

Now, the push prompt and take subcont operations are simply the definitions of push and take,
respectively. push subcont unconditionally clones the continuation and resumes it. Cloning is necessary
here since delimcc continuations are multi-shot. Finally, shift0 is implemented in terms of the operations
to take and push continuations, following its standard definition [11, 20] (see also §3.2 for a reminder).
Since the handlers in Multicore OCaml are deep, the handler installed at the corresponding push prompt
wraps the continuation sk. If the continuations were shallow, where the handler does not wrap the
continuation, the shift0 encoding would be:

let shift0 p f =
take subcont p (fun sk →

f (fun c → push prompt p (fun () → push subcont sk c)))

Thus, we have embedded in multicore OCaml a subset of Delimcc operators used for our Eff embedding –
and gained an embedding of Eff in multicore OCaml.

3 Eff in OCaml, Formally

In this section we formally state our translation from Eff to OCaml and argue that it is meaning-
preserving. First we recall the denotational semantics of Eff. It is given in terms of OCaml values
rather than common denotational domains; §3.1.4 discusses such style of denotations in more detail.
§3.2 outlines the (novel) denotational semantics of multi-prompt delimited control, in the style used pre-
viously in §3.1 for Eff. Finally, §3.3 defines the translation, and argues that it preserves the denotation of
expressions.

3.1 The Semantics of Eff

The Eff paper [2] also introduced the language formally, by specifying its denotational semantics. We
recall it in this section for ease of reference, making small notational adjustments for consistency with
the formalization of delimited control in the later section.

3.1.1 Core Eff

For ease of formalization and understanding, we simplify the language to its bare minimum, Core Eff,
presented in Fig. 2.

Variables x,y,z,u,f,k,r. . .
Constants c ::= unit, integers, integer operations
Types t ::= unit | int | t → t | t ↪→ t | t ⇒ t

Values v ::= x | c | λx:t. e | op v | h

Handler h ::= handler v (r → e) ((x,k) → e)

Expressions (Computations) e ::= val v | let x = e in e | v v | newp | with h handle e

Figure 2: The Core Eff

Whereas Eff, as a practical language, has a number of syntactic forms, we limit Core Eff to the basic
abstractions, applications and let-expressions and use only the with h handle e notation for effect han-
dling. As in [2], both components of an application expression must be values. Effects in Core Eff have
only one operation (discussed in detail below) so it does not have to be named and declared. Therefore,

Oleg Kiselyov, KC Sivaramakrishnan 13

the simple newp expression suffices to create effect instances, or values of effect types t ↪→ t. If v’ is an
instance of an effect with, say, an integer argument, its invocation is expressed as op v’ 1, to be under-
stood as the application of the functional value op v’ to the argument value 1. Besides the effect t ↪→ t
and handler t ⇒ t types, Core Eff has only unit, integer and function types. Other basic types, as well as
products and sums present in the full Eff are straightforward to add and their treatment is standard. There-
fore, we elide them. Values of handler types are created by the form handler v (r → e1) ((x,k) → e2),
where v must be an effect instance. When the handled expression finishes normally, e1 is evaluated with
the variable r bound to the expression’s result. If the handled expression invokes an effect, e2 is evalu-
ated with the variable x bound to the effect argument and k bound to the continuation; see §3.1.2 for the
concrete example. The handler construct in Eff has a finally clause similar to the try . . . finally form
found in many programming languages, to post-process the result of the handler expression. This clause
is syntactic sugar and omitted in Core Eff.

Declaring several operations for an effect is certainly natural and convenient. It turns out however
that one can do without: no expressiveness is lost if an effect has only one operation. Although obvious in
hindsight, this assertion seems surprising, even wrong. Let’s consider an Eff effect with three operations
o1, o2 and o3 and let r be its instance. In the following code (suggested by an anonymous reviewer)

handle e with
val x → x
r#o1 x k → e1
r#o2 x k → e2

if e invokes o3, it is not handled by the shown handler and is passed over (re-raised) to some outer
handler. Whenever expressions e1 or e2 invoke any of the three operations, they, too, are to be dealt
with by that outer handler. Finally, when e1 or e2 invoke the continuation k and, as the consequence,
an operation o1 or o2 is invoked, it will be dealt with again by e1 (resp. e2). It seems very difficult to
locally, without global program rewriting, emulate all that behavior using only a single-operation effect.

Yet such local emulation is possible – and, in hindsight, obvious. An effect with multiple operations,
for example,

type exeff =
effect

operation flip: unit → bool
operation cow: string → string
operation choose: (int ∗ int) → int

end
let r = new exeff

is equivalent to the effect with the single, ‘union’ operation

type uin = InOp1 of unit | InOp2 of string | InOp3 of int ∗ int
type uout = OutOp1 of bool | OutOp2 of string | OutOp3 of int
type eff1 = effect operation op: uin → uout end

let r1 = new eff1
let r1flip x = match r1#op (InOp1 x) with OutOp1 y → y
let r1cow x = match r1#op (InOp2 x) with OutOp2 y → y
let r1choose x = match r1#op (InOp3 x) with OutOp3 y → y

That is, r#flip is equivalent to r1flip, r#choose to r1choose, etc., provided that the handlers are appropri-
ately adjusted. For example,

handle e with
| val x → ev

14 Eff Directly in OCaml

| r#flip x k → eflip
| r#cow x k → ecow

is to be re-written as

handle e with
| val x → ev
| r1#op x k →

(match x with
InOp1 x → let k y = k (OutOp1 y) in eflip
| InOp2 x → let k y = k (OutOp2 y) in ecow
| → k (r1#op x)) (∗ default clause: re−raising ∗)

The accompanying code many one.eff gives two complete examples, including nested handlers. The
shown re-writing of a multi-operation effect into a single-operation one is local. The union data types
can be emulated with functions in Core Eff. The re-writing is also cumbersome: one should take care to
properly match the InOp1 tag with the OutOp1 tag, etc. We should keep in mind however that Core Eff
is designed as an intermediate language and to simplify reasoning; it is not meant for end-users.

The reliance on ordinary variant data types in our emulation gives the impression of ‘lax typing’
(excusable in an intermediate language). It should be stressed however that any algebraic signature can
be properly represented as a data type without any sloppiness, by means of generalized algebraic data
types (GADTs), created for that purpose [38]. (We did not use GADTs here for the sake of simplicity.)

The single-operation encoding of multi-operation effects should now become obvious. One sees
the close analogy with ordinary exceptions: multiple exceptions are usually implemented as a single
exception whose payload is an (extensible) union data type. We also notice that extensible-effects in
Haskell [22] are based on the very same idea, implemented with no typing compromises.

We may also ‘split’ a multiple-operation effect into multiple single-operation effects. Taking the
earlier exeff with flip, cow and choose operations as an example, we define three new single-operation
effects:

type eff flip = effect operation op1: unit → bool end
type eff cow = effect operation op2: string → string end
type eff choose = effect operation op3: (int ∗ int) → int end

let rflip = new eff flip
let rcow = new eff cow
let rchoose = new eff choose

and replace r#flip with rflip#op1, r#choose with rchoose#op3, etc. We still need the union data types uin
and uout and the unified effect eff1. In addition we define

let flip handler = handler
| val x → x
| rflip#op1 x k → match r1#op (InOp1 x) with OutOp1 y → k y

and similarly cow handler and choose handler. The old handlers are re-written as in the previous
method; in addition, we precompose the eff1 handlers with flip handler ◦ cow handler ◦ choose handler.
The latter effectively converts three distinct effects into one single eff1. This reification procedure also
lets us emulate multiple-effect Eff handlers such as

handle e with
| rflip#op1 x k → . . .
| rcow#op2 x k → . . .

with only single-effect single-operation handlers.

Oleg Kiselyov, KC Sivaramakrishnan 15

All in all, in Core Eff an effect has only one operation, which hence does not have to be named.
There is no need for effect declarations either. We do retain the facility to create, at run time, arbitrarily
many instances of the effect. In Core Eff, an effect instance alone acts as the effect name.

Thus, Core Eff has unit, integer and arrow types, the type t1 ↪→ t2 of an effect operation that takes a
t1 value as an argument and produces the result of the type t2, and the type t1 ⇒ t2 of a handler acting
on computations of the type t1 and producing computations of the type t2.

3.1.2 Core Eff in the Tagless-Final Form

The conventional presentation of syntax in Fig. 2 can be also given in a ‘machine-readable’ form, as
an OCaml module signature, Fig. 3. The (abstract) OCaml type α repr represents Core Eff type α of

module type Eff = sig
type α repr (∗ type of values ∗)
type α res (∗ type of computations ∗)

type (α,β) eff (∗ effect instance type ∗)
type (α,β) effh (∗ effect handler type ∗)

(∗ values ∗)
val int: int → int repr
val add: (int→int→int) repr
val unit: unit repr

val abs: (α repr → β res) → (α→β) repr
val op: (α,β) eff repr → (α →β) repr (∗ effect invocation ∗)
val handler: (α,β) eff repr → (∗ effect instance ∗)

(γ repr → ω res) → (∗ val handler ∗)
(α repr ∗ (β → ω) repr → ω res) → (∗ operation handler ∗)
(γ,ω) effh repr

(∗ computations ∗)
val vl: α repr → α res (∗ all values are computations∗)
val let : α res → (α repr → β res) → β res
val ($$): (α → β) repr → α repr → β res
val newp: unit → (α,β) eff res (∗ new effect instance ∗)
val handle: (γ,ω) effh repr → γ res → ω res

end

Figure 3: The syntax and the static semantics of Core Eff, in the OCaml notation

its values. In the same vein, α res represents the type α of Eff computations. The paper [2] likewise
distinguishes the typing of values and computations, but in the form of two different judgments16. A
few concessions had to be made to OCaml syntax: We write (t1,t2) eff for the effect type t1 ↪→ t2 and
(t1,t2) effh for the type t1 ⇒ t2 of handlers. We use vl in OCaml rather than val since the latter is a
reserved identifier in OCaml. Likewise we spell Eff’s let as let , the Eff application as the infix $$, and
give newp a dummy argument. We mark integer literals explicitly: whereas 1:int is an OCaml integer,
(int 1):int repr is Core Eff integer literal, which is the Eff value of the Eff type int. We rely on higher-

16Since the signature Eff also represents the type system of Eff, in the natural deduction style, one may say that α repr and
α res represent a type judgment rather than a mere type.

16 Eff Directly in OCaml

order abstract syntax (HOAS) [15, 28, 7], using OCaml functions to represent Eff functions (hence using
OCaml variables for Eff variables).

The signature Eff encodes not just the syntax of Core Eff but also its type system, in the natural-
deduction style. For example, the val op and val handle declarations in the Eff signature straightfor-
wardly represent the following typing rules from [2, §3], adjusted for Core Eff and the natural deduction
presentation:

`v v : t1 ↪→ t2

`v op v : t1→ t2

`v h : t1⇒ t2 `e e : t1

`e with h handle e : t2

The type system has two sorts of judgments, for values `v v : t and for computations `e e : t –
which we distinguish by giving the type t repr to the encoding of Eff values and t res to the encoding of
computations. The rules express the intent that effect operation invocations act as functions and that a
handler acts as an expression transformer.

The benefit of expressing the syntax and the type system of a language in the form of an Eff-like
signature – in the so-called tagless-final style [5, 21] – and the reason to tolerate concessions to OCaml
syntax is the ability to write core Eff code and have it automatically typed-checked (and even getting the
types inferred) by the OCaml type checker.

As an illustration, we define a Reader-like int ↪→ int effect that increments its argument by the value
passed in the environment. The ans expression invokes the operation twice on the integer 1, eventually
supplying 10 as the environment; the expected result is 21. In Core Eff (or, to be precise, the subset of
Eff equivalent to Core Eff), the example looks as follows. The responses of the Eff interpreter are shown
in the comments.

type reader =
effect

operation op : int → int
end

let readerh p = handler
| val v → (fun s → v)
| p#op x k → (fun s → let z = s + x in k z s)

(∗ val readerh : reader → (α ⇒ (int → α)) = <fun> ∗)

let ans =
let p = new reader in
(with readerh p handle

let x = p#op 1 in
let y = p#op x in
y

) 10 (∗ the value passed in the environment ∗)
(∗ val ans : int = 21 ∗)

The tagless-final encoding of the same example is:

module Ex1(E:Eff) = struct
open E
(∗ A macro to apply a computation: mere ($$) applies a value ∗)
let ($$$) e x = let e (fun z → z $$ x)

let readerh p = handler p
(fun v → vl @@ abs (fun s → vl v))
(fun (x,k) → vl @@ abs (fun s →

let ((add $$ s) $$$ x) (fun z → (k $$ z) $$$ s)))

Oleg Kiselyov, KC Sivaramakrishnan 17

let ans =
let (newp ()) @@ fun p →
let (handle (readerh p) @@

let (op p $$ (int 1)) (fun x →
let (op p $$ x) (fun y →
vl y))) (fun hr →

hr $$ int 10)
end

The OCaml type-checker verifies the code is type-correct and infers for ans the type int E.res, meaning
ans is a computation returning an int. For readerh, the type (int, int) eff repr→ (α, int → α) effh repr
is inferred, which corresponds exactly to the inferred type of Eff’s readerh.

3.1.3 ‘Interpreter-based’ Denotational Semantics of Core Eff

There is another significant benefit of the tagless-final style. The signature Eff looks like a specification
of a denotational semantics for the language. Indeed, repr and res look like semantic domains – corre-
sponding to the domains V and R from [2, §4], but indexed by types. Then int, abs, op, handler and the
other members of the Eff signature are the semantic functions, which tell the meaning of the correspond-
ing Eff value or expression from the meaning of its components. The compositionality is built into the
tagless-final approach.

The signature Eff is only the specification of semantic functions. To define the denotational semantics
of Core Eff we need to give the implementation. It is shown in Fig. 4. The module R implementing Eff is
essentially the denotational semantics of Eff given in [2, §4], but written in a different language: OCaml
rather than the standard mathematical notation. It is undeniable that the conventional mathematical nota-
tion is concise – although the conciseness comes in part from massive overloading and even sloppiness,
omitting details like various inclusions and retractions. The OCaml notation is precise. Moreover, the
OCaml type-checker will guard against typos and silly mistakes. Since we index the domains by type,
there are quite a few simple correctness properties that can be ensured effectively and simply. For ex-
ample, forgetting to compose the continuation with the handler h in handler leads to a type error. We
discuss this style of denotation in more detail in §3.1.4.

The denotations of Core Eff are expressed in terms of two semantic domains, of values and results.
In [2], the domains are called V and R respectively. We call them α repr and α res, and index by types.
The type-indexing lets us avoid many of the explicit inclusions and retractions defined in [2, §4]. In our
R implementation, domains are defined concretely, as OCaml values, viz. mutually recursive data types
repr and res. Of all the retracts of [2] we only need two non-trivial ones. The first is ρ→ in [2] (with the
corresponding inclusion ι→), which embeds the functions α repr → β res into (α→β) repr. This em-
bedding is notated as F (the inclusion is applying the F constructor and the retraction is pattern-matching
on it). The second retract deals with the embedding of α res → β res: such functions are isomorphic
to (unit→α) repr → β res, which are then embedded into ((unit→α)→β) repr as described earlier.
The domain repr does not need the bottom element since values are vacuously terminating, and our
denotational semantics is typed, Church-style: we give meaning only to well-formed and well-typed
expressions.

We define the domain α res to be nothing bigger than its required retract, the sum expressing the
idea that a terminating computation is either a value, V, or an effect operation. The latter is a tuple that
collects all data about the operation: the instance, the argument, and the continuation. The lifting of
f:α repr → β res to the α res domain, written as f † in [2], is notated as lift f in our presentation. The

18 Eff Directly in OCaml

module REff = struct
type α repr =
| B : α → α repr (∗ OCaml values ∗)
| F : (α repr→β res) → (α→β) repr (∗ Functions V→R,

i arr in the Eff paper ∗)
and res = (∗ Results ∗)
| V: ω repr → ω res (∗ Normal termination result ∗)
| E: {inst: int; arg:α repr; k:β repr→ω res} → ω res

let rec lift : (α repr → β res) → α res → β res = fun f → function
| V v → f v
| E ({k; } as oper) → E {oper with k = fun x → lift f (k x)}

type (α,β) eff = int
type (α,β) effh = (unit → α) → β

(∗ values ∗)
let int (x:int) = B x
let add : (int→int→int) repr =

F (function B x → V (F (function B y → V (B (x+y)))))
let unit = B ()

let abs f = F f
let ($$): (α → β) repr → α repr → β res =

function F f → fun x → f x

let op: (α,β) eff repr → (α → β) repr = function B p →
abs (fun v → E {inst=p; arg=v; k = fun x → V x})

let handler: (α,β) eff repr → (∗ effect instance ∗)
(γ repr → ω res) → (∗ val handler ∗)
(α repr ∗ (β → ω) repr → ω res) → (∗ operation handler ∗)
(γ,ω) effh repr =

fun (B p) valh oph →
let rec h = function
| V v → valh v
| E {inst;arg;k} when inst = p →

(∗ if inst = p then arg and k have specific types recovered below ∗)
let (arg:α repr) = Obj.magic arg in
let (k:β repr → γ res) = Obj.magic k in
(∗ Since the handlers are deep, we compose k with h ∗)
oph (arg, abs (fun b → h (k b)))

(∗ Relay to an outer handler ∗)
| E ({k: } as oper) → E {oper with k = fun b → h (k b)}

in abs (fun th → h (th $$ unit))

let vl v = V v (∗ all values are computations ∗)
let let : α res → (α repr → β res) → β res = fun e f → lift f e

let newp: unit → (α,β) eff res =
let c = ref 0 in
fun () → incr c; V (B !c)

let handle: (γ,ω) effh repr → γ res → ω res =
fun h e → h $$ abs (fun (:unit repr) → e)

end

Figure 4: The denotational semantics of Core Eff

Oleg Kiselyov, KC Sivaramakrishnan 19

implementation of int, abs, op and the rest of the members of Eff is the straightforward transcription
of the definitions from [2]. (We use the higher-order abstract syntax and hence do not need the explicit
‘environment’ η .) The appearance of Obj.magic comes from the fact that Core Eff (just like the full Eff)
does not carry the effect type in the type of a computation. Therefore, the argument and result types of an
effect are existentialized. One may hence view Obj.magic as an implicit retraction into the appropriate
α repr domain. The use of Obj.magic is safe, thanks to the property that each effect instance (denoted
by an integer) is unique; that is, the instances of differently-typed effects have distinct values.

Having recalled the semantics of Eff, we now turn to the delimited control, and then, in §3.3, to the
translation from Core Eff to Core OCaml with delimited control.

3.1.4 Digression: What is Denotational Semantics?

The semantics just presented in §3.1.3 may raise eyebrows: one commonly thinks of denotational seman-
tics as giving interpretations through mathematical objects rather than OCaml code. It is worth therefore,
to take a moment to reflect on what exactly denotational semantics is.

One of the first definitions of denotational semantics (along with many other firsts) is given by
Landin: [25, §8]

“The commonplace expressions of arithmetic and algebra have a certain simplicity that
most communications to computers lack. In particular, (a) each expression has a nesting
subexpression structure, (b) each subexpression denotes something (usually a number, truth
value or numerical function), (c) the thing an expression denotes, i.e., its ‘value’, depends
only on the values of its subexpressions, not on other properties of them.”

As an illustration, Landin then describes the denotations of string expressions in terms of (natural lan-
guage) strings such as ‘wine’ or even equivalence classes of ISWIM-like expressions.

In the reference text [29, §3.1], Mosses essentially repeats Landin’s definition, adding: “It should be
noted that the semantic analyst is free to choose the denotations of phrases – subject to compositionality”.
He notes that letting phrases denote themselves is technically compositional and hence may be accepted
as a denotational semantics – which however has “(extremely) poor abstractness”. Still, he continues,
there are two cases where it is desirable to use phrases as denotations, e.g., for identifiers.

Thus from the very beginning there has been precedent of using something other than abstract math-
ematical sets or domains as denotations. Even syntactic objects may be used for semantics, provided the
compositionality principle is satisfied. In this paper, we take as semantic objects OCaml values, equipped
with extensional equality. In case of functions, checking the equality involves reasoning if two OCaml
functions, when applied to the same arguments, return the extensionally equal results. To be more pre-
cise, we check how the OCaml (byte-code) interpreter evaluates the applications of these functions to
the same arguments. The behavior of the byte-code interpreter is well-defined; the compilation of the
fragment of OCaml we are using is also well-understood (including Obj.magic, which operationally is
the identity). We give an example of such reasoning in §3.2.1.

Using an interpreter to define a language has long precedent, starting from Reynolds’ [34]. Such an
approach was also mentioned by Schmidt in the survey [37]:

“A pragmatist might view an operational or denotational semantics as merely an ‘inter-
preter’ for a programming language. Thus, to define a semantics for a general-purpose pro-
gramming language, one writes an interpreter that manipulates data structures like symbol
tables (environments) and storage vectors (stores). For example, a denotational semantics for

20 Eff Directly in OCaml

an imperative language might use an environment, e, and a store, s, along with an environ-
ment lookup operation, find, and a storage update operation, update. Since data structures
like symbol tables and storage vectors are explicit, a language’s subtleties are stated clearly
and its flaws are exposed as awkward codings in the semantics.”

3.2 Denotation of Delimited Control

This section describes the target language of the Eff embedding, which is OCaml with the delimcc library.
As we did with Eff, we reduce the language to the bare minimum, to be called Core delimcc. The syntax
and the static semantics (that is, the type system) is presented in Fig. 5. From now on, we will be using
the OCaml rather than the mathematical notation – as was first presented in §3.1.

The Core delimcc is, in many parts, just like Core Eff, Fig. 3, and is likewise described by the OCaml
signature. The Core delimcc is a bigger language: we need enough features to be able to write handle it
from §2.2. Therefore, besides ordinary function definitions, Core delimcc has recursive functions absrec.
Recursive functions can also be defined in the full Eff; we did not need them for the Core Eff subset.
The (user-defined) ε result data type of §2.2 is built into Core delimcc as free, which is a sum whose
second summand is a tuple. The data type is represented by the constructors ret and act for the sum-
mands, and the deconstructor (eliminator) with free17. For simplicity we chose the ε result v1 version
of the result data type, with the universal type (rather than the more complicated out-of-band carrying of
normal computational results). Therefore, Core delimcc has the universal type with the corresponding
injection i univ and projection p univ. The delimcc-specific part [20] is the type of control delimiters,
so-called prompts, the operations to create a fresh prompt newpr, set the prompt pushpr and to cap-
ture the continuation up to the dynamically closest pushpr, the operation “shift-0” sh0. (Other than this
delimcc-specific part, the rest of the Delimcc signature is, strictly speaking, mere for the sake of the Eff
embedding. However, as we saw already in §2.2, the universal type and something like the free data type
often come up when using delimcc.)

Like Core Eff §3.1, Core delimcc distinguishes the type of values from the type of computations.
In this we squarely follow the lead of Bauer and Pretnar [2]: whereas the user-visible Eff, like the real
OCaml, does not distinguish effectful computations from values in its types, the formal presentation of
Eff in [2] does, in syntax, in type system, and dynamic semantics. One may think of Core delimcc as
the A-normal form of OCaml delimcc. To better see the correspondence, we take one, rather advanced
example of the delimcc OCaml code (from the delimcc test suite), featuring several prompts and the
repeated invocations of captured continuations

let p1 = new prompt () in
let p2 = new prompt () in
let p3 = new prompt () in
let pushtwice sk =

sk (fun () →
sk (fun () →

shift0 p2 (fun sk2 → sk2 (fun () → sk2 (fun () → 3))) ())) in
push prompt p1 (fun () →

push prompt p2 (fun () →
push prompt p3 (fun () → shift0 p1 pushtwice ()) + 10) + 1) + 100

We re-write the example in Core delimcc as follows

17Therefore, free could have been left in the signature as an abstract type. We gave the full data type declaration instead
because it seems instructive, making it easier to understand the types of the constructors and the deconstructor.

Oleg Kiselyov, KC Sivaramakrishnan 21

module type Delimcc = sig
type α repr
type α res

(∗ values ∗)
val int: int → int repr
val add: (int→int→int) repr
val unit: unit repr

type univ (∗ the universal type ∗)
val i univ: α repr → univ repr
val p univ: univ repr → α res

val abs: (α repr → β res) → (α→β) repr
val absrec: ((α→β) repr → α repr → β res) → (α→β) repr

type (α,β) free =
| Ret of univ repr
| Act of α repr ∗ (β → (α,β) free) repr

val ret: univ repr → (α,β) free repr
val act: α repr → (β → (α,β) free) repr → (α,β) free repr
val with free: (α,β) free repr →

(univ repr → ω res) →
(α repr → (β → (α,β) free) repr → ω res) →
ω res

(∗ computations ∗)
val vl: α repr → α res (∗ all values are computations∗)
val let : α res → (α repr → β res) → β res
val ($$): (α → β) repr → α repr → β res

(∗ The delimcc part: prompt and shift ∗)
type α prompt
val newpr: unit → α prompt res
val pushpr: α prompt repr → α res → α res
val sh0: α prompt repr → ((β → α) repr → α res) → β res

end

Figure 5: The syntax and the type system of Core delimcc

module ExD(D:Delimcc) = struct
open D

(∗ A macro to apply to computation: ($$) applies to value ∗)
let ($$$) e x = let e (fun z → z $$ x)

let (++) e v = let e (fun ev → let (add $$ ev) (fun fv → fv $$ v))

let ans =
let (newpr ()) @@ fun p1 →
let (newpr ()) @@ fun p2 →
let (newpr ()) @@ fun p3 →
let pushtwice sk = (∗ OCaml let: macro ∗)

sk $$ abs (fun (:unit repr) →

22 Eff Directly in OCaml

sk $$ abs (fun (:unit repr) →
sh0 p2 (fun sk2 → sk2 $$ abs (fun (:unit repr) →

sk2 $$ abs (fun (:unit repr) → vl (int 3)))) $$$ unit)) in
pushpr p1 (

pushpr p2 (
pushpr p3 (sh0 p1 pushtwice $$$ unit) ++ int 10) ++ int 1) ++ int 100

end

After defining several ‘macros’, the rewriting is systematic and straightforward. The real OCaml delimcc
relates to Core delimcc quite like Eff relates to Core Eff as was illustrated in §3.1.2.

The semantics of delimited control is typically presented in the small-step reduction style (see [11,
20]):

pushpr p (vl x) vl x
pushpr p (Cp[sh0 p (fun k → e)]) let k = abs (fun x → pushpr p Cp[x]) in e

where Cp[] is the evaluation context with no sub-context pushpr p []. In contrast, we treat Core delimcc
denotationally, giving it semantics inspired by the “bubble-up” approach of [13, 31]. We establish the
correspondence in §3.2.1.

Our (interpreter-based) denotational semantics of Core delimcc, Fig. 6, is (intentionally) quite similar
to that for Core Eff, in Fig. 4. It is given in terms of domains α repr of value denotations and α res of
expression denotations. The value denotations are the same as in Core Eff. A terminating expression
is either a value V, or a “bubble” E created by sh0. The bubble merely packs the data from the sh0
that created it (the prompt value plus the body of the sh0 operator), along with the continuation k that
represents the context of that sh0. All in all, the bubble represents the decomposition of an expression as
the sh0 operation embedded into an evaluation context.

The only non-standard parts of the semantics are the denotations of sh0 and pushpr. As was already
said, sh0 creates the bubble, by packing its arguments along with the identity continuation representing
the empty context. The function lift (essentially let) – which represents a let-bound expression in the
context of the let-body – grows the bubble by adding to it the let-body context. The operation pushpr p
“pricks” the bubble (but only if the prompt value p matches the prompt value packed inside the bubble,
that is, the prompt value of the sh0 that created the bubble). When the bubble is pricked, the sh0 body
hidden inside is released and is applied to the continuation accumulated within the bubble – enclosed in
pushpr p as behooves the shift operation. Again, Obj.magic comes from the fact that we do not carry
the answer type in the type of a computation. Therefore, the answer type ω is existentialized in the
bubble. When the bubble is pricked however, we are sure that the answer-type is actually the type of
the pushpr computation. The coercion operation is hence safe. The RDelimcc implementation of the
Delimcc signature lets us run the example ExD, which gives 135 (the same result as the real OCaml
delimcc).

3.2.1 Adequacy of the Core delimcc Semantics

As an illustration of the just defined interpreter-based denotational semantics, and a quick check of its
adequacy, we demonstrate that the semantics models the key feature of the shift0 control operator.

The behavior of shift0 and its companion push prompt is commonly defined by the following re-
writing ([11], among others)

pushpr p (vl x) vl x
pushpr p (Cp[sh0 p (fun k → e)]) let k = abs (fun x → pushpr p Cp[x]) in e

Oleg Kiselyov, KC Sivaramakrishnan 23

module RDelimcc = struct
type α repr =
| B : α → α repr
| F : (α repr→β res) → (α→β) repr

and res =
| V: α repr → α res
| E: {prompt: int; body:(γ →ω) repr→ω res; k: γ repr → α res} → α res

let rec lift : (α repr → β res) → α res → β res = fun f → function
| V v → f v
| E ({k; } as oper) → E {oper with k = fun c → lift f (k c)}

(∗ values ∗)
let int (x:int) = B x
let add : (int→int→int) repr = F (function B x → V (F (function B y → V (B (x+y)))))
let unit = B ()

type univ = Obj.t (∗ the universal type ∗)
let i univ: α repr → univ repr = fun x → B (Obj.repr x)
let p univ: univ repr → α res = function B x → V (Obj.obj x)

let abs f = F f
let absrec: ((α→β) repr → α repr → β res) → (α→β) repr = fun f →

abs (fun x → let rec h y = f (abs h) y in h x)

let vl v = V v (∗ all values are computations ∗)
let let : α res → (α repr → β res) → β res = fun e f → lift f e
let ($$): (α → β) repr → α repr → β res = function F f → fun x → f x

type (α,β) free =
| Ret of univ repr
| Act of α repr ∗ (β → (α,β) free) repr

let ret: univ repr → (α,β) free repr = fun x → B (Ret x)
let act: α repr → (β → (α,β) free) repr → (α,β) free repr = fun v k → B (Act (v,k))
let with free: (α,β) free repr → (univ repr → ω res) →

(α repr → (β → (α,β) free) repr → ω res) → ω res =
fun (B free) reth acth → match free with
| Ret x → reth x
| Act (a,k) → acth a k

type α prompt = int
let newpr: unit → α prompt res =

let c = ref 0 in
fun () → incr c; V (B !c)

let sh0: α prompt repr → ((β → α) repr → α res) → β res =
fun (B prompt) body → E {prompt;body;k=vl}

let rec pushpr: α prompt repr → α res → α res = fun (B p) → function
| V x → V x
| E{prompt; body;k} when prompt = p →

let (body: →) = Obj.magic body in
body (abs (fun c → pushpr (B p) (k c)))
(∗ Relay to an outer handler ∗)

| E ({k; } as oper) → E {oper with k = fun c → pushpr (B p) (k c)}
end

Figure 6: The denotational semantics of Core delimcc

24 Eff Directly in OCaml

mentioned earlier. Here Cp[] is the evaluation context with no sub-context pushpr p []. We now show
that these re-writing rules preserve the denotation of expressions. In other words, the left-hand-side and
the right-hand-side of these (oriented) equations have the same denotations. This is clearly the case for
the first re-writing rule. As far as the second rule is concerned, we take one characteristic case, for one
particular context Cp[], namely, let opv = [] in let argv = arg in opv argv, where arg is an expression.
The other cases are similar.

We shall thus show that the following two expressions have the same denotations

let el = pushpr p (let (sh0 p (fun k → e)) (fun opv →
let arg (fun argv →
opv $$ argv)))

let er =
let k = abs (fun x →

pushpr p (
let (vl x) (fun opv →
let arg (fun argv →
opv $$ argv))))

in e

We will write E [e] for the denotation of the Core delimcc expression e, and, abusing the notation, E [v]
for the denotation of the value v. (Recall, for an expression e of the type t, E [e] is an OCaml value of
the type t res). Thus we demonstrate that E [el] = E [er] for all expressions e and arg and the value p of
appropriate types.

Using the RDelimcc semantics, we build up the following denotations:

E [p] = B p’ where p’ is an integer
E [sh0 p (fun k → e)]
= E{prompt=p’; body=fun k→E [e]; k=fun v → V v}

E [let (sh0 p (fun k → e)) (fun opv → let arg (fun argv → opv $$ argv))]
{definition of let }
= lift ctxf E [(sh0 p (fun k → e))]
{definition of lift}
= E{prompt=p’; body=fun k→E [e]; k=fun c → lift ctxf (V c)}
where
ctxf = fun opv → E [let arg (fun argv → opv $$ argv)]

E [el]
{definition of pushpr; case of the matching prompt}
= (fun k→E [e])

(abs (fun c → E [pushpr] (B p’) (lift ctxf (V c))))
{definition of let }
= (fun k→E [e])

(abs (fun c → E [pushpr] (B p’) (E [let] (V c) ctxf)))
= (fun k→E [e])

(abs (fun c → E [pushpr] (B p’)
E [let (vl c) (fun opv → let arg (fun argv → opv $$ argv))]))

= E [er]

We used the facts that, for example, lift f e can be substituted with E [let] e f in all contexts: the left-
hand-side of a non-effectful let-definition is inter-substitutable with the right-hand-side, preserving ex-
tensional equality.

One may also want to check the satisfaction of the axioms [17]; we leave it for future work.

Oleg Kiselyov, KC Sivaramakrishnan 25

3.3 Translation from Eff to Delimited Control, and its Correctness

Having formalized the semantics of Core Eff and Core delimcc, we are now in a position to formally
state the translation and argue about its correctness.

The tagless-final style used for the denotational semantics makes it straightforward to express a com-
positional translation. Indeed, a language is specified as an OCaml signature that collects the declarations
of syntactic forms of the language. The interpretation – semantics – is an implementation of the signa-
ture. A given signature may have several implementations. For example, the signature Eff (Fig. 3) of
Core Eff had the REff implementation (Fig. 4). Fig. 7 shows another implementation, in terms of Core
delimcc: it maps the types and each of the primitive expression forms of Core Eff to the types resp.
expressions of Core delimcc. The mapping homomorphically extends to composite Core Eff expres-
sions; such an extension is inherent in the tagless-final approach. The mapping should not depend on
any concrete implementation of delimcc: therefore, it is formulated only in terms of the abstract types
and methods defined in the Delimcc signature, Fig. 5. In OCaml terms, the translation is represented as
a functor, Delimcc → Eff.

The translation is rather straightforward: α repr and α res domains of Eff map to the corresponding
domains of delimcc. An Eff effect instance maps to a delimcc prompt. Most of Core Eff expression
forms (int, add, abs, let , etc) map to the corresponding Core delimcc forms. Only op and handler of
Core Eff have non-trivial implementation in terms of delimcc: op is just sh0 that creates a bubble with
the data about the effect operation. The effect handler interprets those data. Since effect handlers in Eff
are deep (that is, after an effect is handled and the expression is resumed, the handler is implicitly re-
applied), they correspond to recursive functions in Core delimcc. Again, the appearance of the universal
type in handler comes from the fact that we do not carry the effect type in the type of a computation. In
§2.2 we emulated the universal type in terms of reference cells.

The Translation functor defines, in OCaml notation, the translation of Core Eff types and expressions,
which we can notate d t e and d e e. The facts that the translation deals with typed expressions and the
Translation functor is accepted by the OCaml type-checker immediately lead to:

Proposition 1 (Type Preservation) If e is a Core Eff expression of the type t (whose free variables,
if any, have the types x1:t1,. . .), then d e e has the type d t e (assuming free variables of the types
x1:d t1 e,. . .).

The proof immediately follows from the typing of the Translation functor.
We thus have two implementations of Core Eff: the original REff (Fig. 4) and the result of the

translation Translation(RDelimcc). Before we can state the main theorem that these two implementa-
tions are “the same” and hence the translation is meaning-preserving, we have to verify that the seman-
tic domains of the two denotational semantics are comparable. The REff implementation has α repr
and α res domains defined in Fig. 4 whereas the translated one uses α repr and α res from Fig. 6.
While the two α repr have the same structure, α res differ slightly. Both are sums, with the iden-
tical V component, and the E component being a triple: {inst: int; arg:γ repr; k:β repr→α res} vs.
{prompt: int; body:(β →γ) repr→γ res; k: β repr → α res}. Although the first and the third compo-
nents of the triple are compatible, the middle is not. A moment of thought shows that the only delimcc
bubbles in the Translation(RDelimcc) implementation are those that come from op, in which case the
body of the bubble is fun k → vl @@ act v k, or, unfolding the definitions, fun k → V (Act (v,k)),
with v being the argument arg of the effect operation. Hence the triple {inst;arg;k} can be turned to
{prompt=inst;body = (fun k → V (Act(arg,k)));k} (and easily retracted back). In the end, although
α RDelimcc.res domain is ‘bigger’, to the extent it is used in the Translation(RDelimcc), it is isomorphic
to α REff.res. This isomorphism is implicitly used in the main theorem:

26 Eff Directly in OCaml

module Translation(D:Delimcc) = struct
type α repr = α D.repr
type α res = α D.res

type (α,β) eff = (α,β) D.free D.prompt
type (α,β) effh = ((unit → α) → β)

(∗ values ∗)
let int = D.int
let add = D.add
let unit = D.unit

let abs = D.abs

let op: (α,β) eff repr → (α → β) repr = fun p →
D.(abs (fun v → sh0 p (fun k → vl @@ act v k)))

let compose: (β→γ) repr → (α→β) repr → (α→γ) repr = fun fbc fab →
D.(abs (fun a → let (fab $$ a) (fun b → fbc $$ b)))

let handler: (α,β) eff repr → (∗ effect instance ∗)
(γ repr → ω res) → (∗ val handler ∗)
(α repr ∗ (β → ω) repr → ω res) → (∗ operation handler ∗)
(γ,ω) effh repr =

fun p valh oph →
let h = D.(absrec @@ fun h freer →

with free freer
(fun r → let (p univ r) (fun r → valh r))

(∗ Since the handlers are deep, we compose k with h ∗)
(fun v k → oph (v,compose h k)))

in
D.(abs (fun th →

let (pushpr p (let (th $$ unit) (fun r → vl (ret (i univ r)))))
(fun freer → h $$ freer)))

let vl = D.vl
let let = D.let
let ($$) = D.($$)

let newp: unit → (α,β) eff res = D.newpr

let handle: (γ,ω) effh repr → γ res → ω res =
fun h e → h $$ abs (fun (:unit repr) → e)

end

Figure 7: Translation from Core Eff to Core delimcc

Oleg Kiselyov, KC Sivaramakrishnan 27

Proposition 2 (Meaning Preservation) A Core Eff value or expression has the same meaning (that is,
interpreted as extensionally the same OCaml value) under REff and Translation(RDelimcc) semantics.

The proof has to verify that types correspond to the same domains in both interpretations and that
primitive forms of Core Eff have the same interpretations. We have already discussed the α repr and
α res domains in both semantics. Clearly (α,β) eff type has the same interpretation (integer in both
semantics), and so does (α,β) effh. Most of Core Eff forms have obviously the same interpretation
in both semantics. The only non-trivial argument concerns op and handler. The expression op p de-
notes the function fun v → E{inst=p;arg=v;k=fun x→V x} under the REff semantics and the func-
tion fun v → E{prompt=p;body=(fun k → V (Act(v,k)));k=fun x→V x} under the translation se-
mantics. As we argued earlier, the denotations are the same (keeping our isomorhism in mind).

The handler p valh oph in both interpretations is a function from γ res to ω res. To see that it is
the same function, we consider three cases. First, if the argument is of the form V x, both interpre-
tations converge on valh x. If the argument is of the form E {inst;arg;k} (in the REff interpretation)
with inst=p, the first interpretation gives oph (arg, handler p valh oph ◦ k). In the translation interpre-
tation, the corresponding handled expression has the denotation E {prompt;body;k}, with prompt being
equal to p and body being fun k → V (Act (arg,k)). Then pushpr p (E {prompt;body;k}) amounts to
body (pushpr p ◦ k), which is V (Act (arg,pushpr p ◦ k)). It is then handed over to the recursive func-
tion h in Fig. 7, which returns oph (arg, h ◦ pushpr p ◦ k). The latter matches the REff denotation. The
remaining case is of the handled expression being E {inst;arg;k} (in the REff interpretation) with inst
different from the handler’s p. The REff interpretation gives E {inst;arg;handler p valh oph ◦ k}. It is
easy to see that the translation interpretation gives the same.

4 Higher-Order Effects

The running example from §2.1 used the single instance r of the nondet effect, created at the top level –
essentially, ‘statically’. Eff also supports creating effect instances as the program runs. These, ‘dynamic’
(i.e., ‘dynamically-created’) effects let us, for example, implement reference cells as instances of the
state effect. The realization of this elegant idea required extending Eff with default handlers, with their
special syntax and semantics. The complexity was the reason dynamic effects were removed from Eff
4.0 (but may be coming back).

The OCaml embedding of Eff gave us the vantage point of view to realize that dynamic effects may
be treated themselves as an effect. This New effect may create arbitrarily many instances of arbitrary
effects of arbitrary types. Below we briefly describe the challenge of dynamic effects and its resolution
in OCaml.

We take the state effect as the new running example:

type α state =
| Get of unit ∗ (α → α state result)
| Put of α ∗ (unit → α state result)

Having defined get and put effect-sending functions like choose before:

let get p arg = shift0 p (fun k → Eff (Get (arg,k)))
let put p arg = shift0 p (fun k → Eff (Put (arg,k)))

we can use state as we did nondet. First, however, we abstract the state handling code into

let handle ref s p thunk =
handle it p thunk

28 Eff Directly in OCaml

(fun v → fun → v)
(fun loop → function
| Get (,k) → fun s → loop (k s) s
| Put (s,k) → fun → loop (k ()) s)

s

that takes the state effect instance p, the initial state s and the thunk and handles its Get and Put requests
until it is done. The handler implements the familiar state-passing technique [26]. Here is a simple
example of using it:

let a = new prompt () in (∗ instantiate ∗)
handle ref 10 a
(fun () →

let u = get a () in
let v = get a () in
put a (v + 30);
let w = get a () in
(u,v,w))

whose result is (10,10,40).
To really treat an instance of state as a reference cell, we need a way to create many state effects of

many types. Whenever we need a new reference cell, we should be able to create a new instance of the
state signature and to wrap the program with the handler for the just created instance. The first part is
easy, especially in the OCaml embedding: the effect-instance–creating new prompt is the ordinary func-
tion, and hence can be called anywhere and many times. To just as dynamically put handle ref p s0 . . .
around the whole program is complicated. Eff had to introduce ‘default handlers’ for a signature in-
stance, with special syntax and semantics. An effect not handled by an ordinary (local) handler is given
to the default handler, if any.

Our OCaml embedding demonstrates that dynamic effects require nothing special: Creating a new
instance and handling it may be treated as an ordinary effect:

type ε handler t = {h: ∀ω. ε result prompt → (unit → ω) → ω}
type dyn instance =

New : ε handler t ∗ (ε result prompt → dyn instance result) → dyn instance
let new instance p arg = shift0 p (fun k → Eff (New (arg,k)))

The New effect receives as the argument the handling function h. The New handler creates a new instance
p and passes it as the reply to the continuation – at the same time wrapping the handler h around the
continuation:

let new handler p thunk =
handle it p thunk

(fun v → v)
(fun loop → function New ({h=h},k) →

let new instance p = new prompt () in
h new instance p (fun () → loop @@ k new instance p))

Both steps of the dynamic effect creation are hence accomplished by the ordinary handler. The allocation
of a reference cell is hence

let pnew = new prompt ()
let newref s0 = new instance pnew {h = handle ref s0}
 val newref : α → α state result prompt = <fun>

Being polymorphic, newref may allocate cells of arbitrary types. The following is a simple example of
reference cells as state instances, with two reference cells a and b of two different types:

Oleg Kiselyov, KC Sivaramakrishnan 29

let pnew = new prompt () in
new handler pnew
(fun () →

let newref s0 = new instance pnew ({h = fun p th → handle ref s0 p th}) in
let a = newref 10 in
let u = get a () in
let v = get a () in
put a (v + 30);
let b = newref ”a” in
let w = get a () in
(u,v,w,get b ())

The example yields (10,10,40,”a”).
The New effect, albeit ‘higher-order’, is not special. Programmers may write their own handlers for

it, e.g., to implement transactional state.
It goes without saying that if a computation uses the New effect, it has to be performed within the

scope of the corresponding handler. That is why the code of the previous example had new handler
wrapped around it. In Eff, the default handlers associated with resources such as reference cells have
global scope and require no ‘wrapping around’. To get the similar behavior in OCaml, we have to
assume that the whole program is implicitly wrapped into the New effect handler. One may disagree
about infelicity or importance of this assumption. We only remark that such implicit wrapping is not
without precedent: in OCaml, a program is always wrapped into the default exception handler, which
handles any exception by printing it and terminating the program.

5 Evaluation

In this section, we evaluate the performance for Eff 3.1 embedded in OCaml (described in §2.2) and
compare it against the performance of Eff 3.1, compiled with the optimizing backend. For the embedded
versions, we consider both the delimcc and the multicore OCaml backends. For the sake of comparison,
we also evaluate the performance of the equivalent program written in pure OCaml, that is, without the
use of effects and handlers.

5.1 N-queens benchmark

The benchmark we consider is the N-queens benchmark. The aim of the benchmark is to place N queens
on a board of size N such that no two queens threaten each other. The algorithm involves a backtracking
depth-first search for the desired configuration. For this benchmark, we consider the following 6 versions
of the N-queens program:

• Exception: A pure version with backtracking implemented using native OCaml exceptions.

• Option: A pure version with backtracking implemented using an option type.

• Eff: An impure version of the benchmark compiled using Eff’s optimizing compiler backend and
with backtracking via effect handlers.

• Multicore: An impure version where backtracking is implemented with native effects in multicore
OCaml.

• Eff of multicore: An impure version of the benchmark implemented in Eff embedded in OCaml
using multicore OCaml handlers.

30 Eff Directly in OCaml

• Eff of delimcc: An impure version of the benchmark implemented in Eff embedded in OCaml
using the delimcc backend.

exception Failure

let main n =
let l = ref [] in
for i = n downto 1 do

l := i::!l;
done;
let rec place x qs =

if x = n+1 then qs else
let yl = available x qs !l in
let rec loop = function
| [] →

raise Failure
| y::ys →

try place (x+1) ((x,y) :: qs) with
| Failure → loop ys

in loop yl
in
match place 1 [] with
| res → print endline ”Success!”
| exception Failure → print endline ”Fail: no valid assignment”

Figure 8: Backtracking N-queens benchmark implemented using exceptions.

The code for the Exception version is presented in Fig. 8, using the auxiliary functions
let no attack (x,y) (x’,y’) = x 6= x’ && y 6= y’ && abs (x−x’) 6= abs (y−y’)
let available x qs l = List.filter (fun y → List.for all (no attack (x,y)) qs) l

Here, no attack returns true if two queens on the board do not threaten each other. The available function,
given qs, a safe assignment of queens in the first x−1 rows, returns the list of possible safe positions for
a queen on the xth row. The function place in Fig. 8 attempts to safely place n queens, one on each
row in a non-threatening configuration on the board of size n. This is done by exploring the possible
assignments in a depth-first fashion. If the search along a path is not successful, the control backtracks
by raising Failure, and the next path is attempted. If successful, the function returns the configuration.
The main function prints a success message if some safe configuration is possible. Otherwise, it prints
an error message.

Fig. 9 shows the Multicore version of the N-queens benchmark. We declare an effect ‘Select’ which
is parameterized with a list of elements of some type, which when performed returns an element of that
type. For placing each queen, in the place function, we perform the effect ‘Select’ with the list of avail-
able positions for the next queen. The effect handler performs backtracking search and explores each
of the possibilities by invoking the continuation with different assignments for the position of the next
queen. Since continuations in multicore OCaml are one-shot by default, we need to clone the continua-
tion before we resume the continuation. The cost of cloning is linear in the size of the continuation.

5.2 Results

Fig. 10 shows the performance of different versions of the N-queens benchmark. The experiments were
performed on an 2016 MacBook Pro with 3 GHz Intel Core i7 processor and 16 GB of DDR3 main

Oleg Kiselyov, KC Sivaramakrishnan 31

effect Select : α list → α

let queens multicore n =
try

let l = ref [] in
for i = n downto 1 do

l := i::!l;
done;
let rec place x qs =

if x = n+1 then Some qs else
let y = perform @@ Select (available x qs !l) in
place (x+1) ((x, y) :: qs)

in place 1 []
with
| effect (Select lst) k →

let rec loop = function
| [] → None
| x::xs →

match continue (Obj.clone continuation k) x with
| None → loop xs
| Some x → Some x

in loop lst

Figure 9: Backtracking N-queens benchmark implemented using multicore OCaml effect handlers.

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Number of Queens

0

2

4

6

8

10

12

Slo
wd

ow
n w

.r.
t e

xc
ep

tio
na

l q
ue

en
s (

X
tim

es
)

option
eff
multicore
eff_of_multicore
eff_of_delimcc

Figure 10: Performance comparison on N-queens benchmark.

32 Eff Directly in OCaml

Configuration Allocation (GB)
Exception 0.62
Option 0.62
Multicore 0.82
Eff of multicore 1.11
Eff of delimcc 0.88
Eff 44.71

Table 1: Total memory allocated for the different N-queens program configurations for a board size of 24,
over multiple GC cycles during the lifetime of the program. The maximum resident set size as reported
by GNU time command is around 5MB for all configurations.

memory. The machine had 2 cores and 4 hardware threads and was unloaded at the time of experiments.
The results show the running times of each version normalized to the Exception version, as we

increase the size of the board. The results show that the pure OCaml versions perform best and on par
with each other. This is unsurprising since these versions do not incur the cost of effect handlers and
reifying the continuations. The Multicore version performs best among the effectful versions. Multicore
OCaml implements effect handlers natively with the help of first-class runtime support for delimited
continuations that is fully integrated into OCaml’s runtime system. As a result, installing effect handlers
and continuation capture are cheap operations. We observed that Eff embedding in Multicore OCaml was
only 1.2× slower than the exception version on average. Eff of multicore performs marginally slower
than Multicore due to boxing overheads.

The Eff version and Eff of delimcc are comparatively slower than the other versions. This is because
delimcc is designed to be an independent library that requires no change to the OCaml compiler and
the runtime. The cost of this generality is that delimcc continuation capture and management are more
expensive than continuations in multicore OCaml. On average, the Eff of delimcc version is 8.5× slower
than the exception version. However, both the embeddings, Eff of delimcc and Eff of multicore are
faster than native, optimized Eff versions. The Eff implementation of handlers is through Free monadic
interpretation, incurring the cost of intermediate closures even for pure OCaml code. While the Eff
compiler optimizes primitive operations, there are large overheads from the use of the Free monad for
the rest of the program. This can clearly be seen in the results presented in Table 1. On average, the Eff
version is 9.9× slower than the exception version.

6 Related Work

The key insight underlying various implementations of effects is treating an effectful operation as ‘send-
ing a mail’ to the ‘authority’ (handler, or interpreter). The mail has the message (effect parameters) and
the return address, represented as a delimited continuation. An interpreter examines the mail message
and may send the reply, upon receiving which the original computation resumes. This insight appears
already in the very first paper on delimited control [12] and was fully developed in [6]. The handlers
for effect messages do not have to be all at the ‘top level’, they can be distributed throughout the pro-
gram. Such a refinement was first used in [19] to prove that all variations of the ‘shift’ operator (shift
itself, shift0, control, control0) are equally expressible, in the untyped setting. That approach has later
led to extensible effects [23, 22]. Embedding Eff in OCaml may be seen as porting of extensible-effects

Oleg Kiselyov, KC Sivaramakrishnan 33

to OCaml, with delimited control operators instead of continuation-passing style, and the ‘out-of-band’
emulation of answer-type polymorphism.

Algebraic effects in OCaml were also implemented in Kammar et al. [18], also in terms of the
delimited control operator shift0. However, Kammar’s encoding relies on the global mutable variable
holding the stack of handlers in the current dynamic scope. Global mutable cells preclude a ‘local’ (i.e.,
macro) translation from Eff to OCaml and complicate reasoning.

Recently Forster et al. [14] presented the encoding of a simple Eff calculus into a delimited control
calculus that is close to ours in spirit. The authors relied on a very different formalism of an extended
call-by-push-value. Their Eff calculus was also bigger, compared to our single-operation Core Eff. The
correctness proof was given operationally: the delimited control calculus simulates the Eff calculus up to
congruence. The main difference from our work (beside the operational vs. denotational distinction) is
that the encoding of Forster et al. does not preserve typeability: not surprisingly because of the answer-
type polymorphism (which the authors could neither represent nor emulate in their system).

Our denotational semantics of Core Eff and Core delimcc are expressed in the tagless-final style and
take the form of an interpreter. Definitional interpreters and their defunctionalized versions (abstract
machines) for delimited control are well-known: [3, Fig.1] for the ordinary shift, and [11, Fig.1] for the
multi-prompt delimited control. These machines and interpreters work with untyped source language.
They are written to evaluate programs that include delimited control; it is rather hard to see from them
what the meaning of shift by itself is. After some eyestrain one sees the continuation semantics of shift
and multi-prompt shift [3, 11], which does tell the meaning of the mere shift, compositionally – and
hence may be regarded as denotational. The difference of our denotational semantics is the formulation
without resorting to continuation-passing style and without continuation stacks, meta-continuations, etc.
The so-called direct-style of our semantics seems to make the reasoning simpler.

7 Conclusions and the Further Research Program

We have demonstrated the embedding of Eff 3.1 in OCaml by a simple, local translation, taking advan-
tage of the delimcc library of delimited control. We may almost copy-and-paste Eff code into OCaml,
with simple adjustments. The embedding not only lets us play with Eff and algebraic effects in ordi-
nary OCaml. (Recall, that multicore OCaml is still an unofficial dialect.) It also clarified the thorny
dynamic effects, demonstrating that there is nothing special about them. The delimited control turned
out very helpful in quickly prototyping dynamic effect handling and reaching that conclusion. Once it
is realized that dynamic effect creation can be treated as an ordinary effect, dynamic effects can now be
supported in multicore OCaml and other effect frameworks. The OCaml embedding has inspired other
Eff embeddings, such as the one into F# by Nick Palladinos18.

An unexpected conclusion is that the seemingly well-researched area of delimited control still harbors
hidden vistas. First is the direct denotational semantics of delimited control. We have just seen how
useful the denotational approach has been, in proving the correctness of the translation from Eff to
OCaml. It seems worthwhile to consider the denotational semantics for multicore OCaml, relating it
directly to Eff.

The occurrences of Obj.magic and of the universal type have surely caught the eye. Are such conces-
sions inevitable if one stays with relatively simple types? Or are they merely an artifact of an inadequate
interface of delimited control? Following the well-established analogy between control operators and
exceptions, one may see that push prompt (also called reset) corresponds to the following rather specific

18http://github.com/palladin/Eff

http://github.com/palladin/Eff

34 Eff Directly in OCaml

exception-catching form: try expr with exc → exc. Although there are indeed cases for which such a
limited form of exception-catching is appropriate, most of the time we wish to distinguish the normal
and the exceptional termination of the expression expr. Likewise we wish to distinguish the normal and
the shiftful termination of expr in push prompt p expr, and hence have to work around the restricted
interface of push prompt by defining the sum data type such as free. One wonders if a better interface
for delimited control can be designed, without unnecessary restrictions and with simpler typing rules.

Finally, it is interesting to see how higher-order (dynamic) effects can be expressed in a type-and-
effect system, where the type of an expression tells not only its result but also the effects it may execute.

Acknowledgments

We are very grateful to Andrej Bauer for introducing us to Eff, for patiently explaining Eff features and
design decisions, and for writing some of the sample Eff code in §2.1. We thank Kenichi Asai, Yukiyoshi
Kameyama and Achim Jung for helpful discussions. Extensive comments and suggestions by anonymous
reviewers are greatly appreciated. This work was partially supported by JSPS KAKENHI Grant Number
17K00091.

References

[1] Kenichi Asai & Yukiyoshi Kameyama (2007): Polymorphic Delimited Continuations. In: APLAS, Lecture
Notes in Ccomputer Science 4807, pp. 239–254, doi:10.1007/978-3-540-76637-7 16.

[2] Andrej Bauer & Matija Pretnar (2015): Programming with Algebraic Effects and Handlers. Journal of
Logical and Algebraic Methods in Programming 84(1), pp. 108–123, doi:10.1016/j.jlamp.2014.02.001.

[3] Małgorzata Biernacka, Dariusz Biernacki & Olivier Danvy (2004): An Operational Foundation for Delimited
Continuations. In Hayo Thielecke, editor: CW’04: Proceedings of the 4th ACM SIGPLAN Continuations
Workshop, Tech. Rep. CSR-04-1, School of Computer Science, University of Birmingham, pp. 25–33. Avail-
able at http://www.cs.bham.ac.uk/~hxt/cw04/bbd.pdf.

[4] Edwin Brady (2013): Programming and reasoning with algebraic effects and dependent types. In ICFP [16],
pp. 133–144, doi:10.1145/2500365.2500581.

[5] Jacques Carette, Oleg Kiselyov & Chung-chieh Shan (2009): Finally Tagless, Partially Evaluated:
Tagless Staged Interpreters for Simpler Typed Languages. J. Functional Progr. 19(5), pp. 509–543,
doi:10.1017/S0956796809007205.

[6] Robert Cartwright & Matthias Felleisen (1994): Extensible Denotational Language Specifications. In
Masami Hagiya & John C. Mitchell, editors: Theor. Aspects of Comp. Soft., LNCS 789, Springer, Berlin,
pp. 244–272, doi:10.1007/3-540-57887-0 99.

[7] Alonzo Church (1940): A Formulation of the Simple Theory of Types. Journal of Symbolic Logic 5(2), pp.
56–68, doi:10.2307/2266170.

[8] William D. Clinger, Anne H. Hartheimer & Eric M. Ost (1999): Implementation Strategies for First-Class
Continuations. Higher-Order and Symbolic Computation 12(1), pp. 7–45, doi:10.1023/A:1010016816429.

[9] Olivier Danvy & Andrzej Filinski (1989): A Functional Abstraction of Typed Contexts. Technical Report
89/12, DIKU, University of Copenhagen, Denmark. Available at http://www.daimi.au.dk/~danvy/
Papers/fatc.ps.gz.

[10] Stephen Dolan, Leo White, KC Sivaramakrishnan, Jeremy Yallop & Anil Madhavapeddy (2015): Effective
concurrency through algebraic effects. OCaml Users and Developers Workshop.

[11] R. Kent Dybvig, Simon L. Peyton Jones & Amr Sabry (2007): A Monadic Framework for Delimited Contin-
uations. J. Functional Progr. 17(6), pp. 687–730, doi:10.1017/S0956796807006259.

http://dx.doi.org/10.1007/978-3-540-76637-7_16
http://dx.doi.org/10.1016/j.jlamp.2014.02.001
http://www.cs.bham.ac.uk/~hxt/cw04/bbd.pdf
http://dx.doi.org/10.1145/2500365.2500581
http://dx.doi.org/10.1017/S0956796809007205
http://dx.doi.org/10.1007/3-540-57887-0_99
http://dx.doi.org/10.2307/2266170
http://dx.doi.org/10.1023/A:1010016816429
http://www.daimi.au.dk/~danvy/Papers/fatc.ps.gz
http://www.daimi.au.dk/~danvy/Papers/fatc.ps.gz
http://dx.doi.org/10.1017/S0956796807006259

Oleg Kiselyov, KC Sivaramakrishnan 35

[12] Matthias Felleisen (1988): The Theory and Practice of First-Class Prompts. In: POPL ’88: Conference
Record of the Annual ACM Symposium on Principles of Programming Languages, ACM Press, pp. 180–
190, doi:10.1145/73560.73576.

[13] Matthias Felleisen, Daniel P. Friedman, Eugene E. Kohlbecker & Bruce F. Duba (1986): Reasoning with
Continuations. In: Proceedings of the 1st Symposium on Logic in Computer Science, pp. 131–141.

[14] Yannick Forster, Ohad Kammar, Sam Lindley & Matija Pretnar (2016): On the Expressive Power of User-
Defined Effects: Effect Handlers, Monadic Reflection, Delimited Control. CoRR abs/1610.09161. Available
at http://arxiv.org/abs/1610.09161.

[15] Gérard Huet & Bernard Lang (1978): Proving and Applying Program Transformations Expressed with
Second-Order Patterns. Acta Informatica 11, pp. 31–55, doi:10.1007/BF00264598.

[16] (2013): ICFP ’13: Proceedings of the ACM International Conference on Functional Programming. ACM
Press.

[17] Yukiyoshi Kameyama & Masahito Hasegawa (2003): A sound and complete axiomatization of delimited
continuations. In: ICFP, ACM Press, pp. 177–188, doi:10.1145/944705.944722.

[18] Ohad Kammar, Sam Lindley & Nicolas Oury (2013): Handlers in action. In ICFP [16], pp. 145–158,
doi:10.1145/2544174.2500590.

[19] Oleg Kiselyov (2005): How to Remove a Dynamic Prompt: Static and Dynamic Delimited Continuation Op-
erators are Equally Expressible. Technical Report 611, Computer Science Department, Indiana University.

[20] Oleg Kiselyov (2012): Delimited control in OCaml, abstractly and concretely. Theoretical Computer Science
435, pp. 56–76, doi:10.1016/j.tcs.2012.02.025.

[21] Oleg Kiselyov (2012): Typed Tagless Final Interpreters. In: Proceedings of the 2010 International Spring
School Conference on Generic and Indexed Programming, SSGIP’10, Springer-Verlag, Berlin, Heidelberg,
pp. 130–174, doi:10.1007/978-3-642-32202-0 3.

[22] Oleg Kiselyov & Hiromi Ishii (2015): Freer monads, more extensible effects. In: Proceedings of the 8th
ACM SIGPLAN symposium on Haskell, Vancouver, BC, Canada, September 3-4, 2015, ACM, pp. 94–105,
doi:10.1145/2804302.2804319.

[23] Oleg Kiselyov, Amr Sabry & Cameron Swords (2013): Extensible effects: an alternative to monad trans-
formers. In: Haskell, ACM, pp. 59–70, doi:10.1145/2503778.2503791.

[24] Oleg Kiselyov, Chung-chieh Shan & Amr Sabry (2006): Delimited Dynamic Binding. In: ICFP, ACM Press,
pp. 26–37, doi:10.1145/1160074.1159808.

[25] Peter J. Landin (1966): The Next 700 Programming Languages. Communications of the ACM 9(3), pp.
157–166, doi:10.1145/365230.365257.

[26] John Launchbury & Simon L. Peyton Jones (1995): State in Haskell. Lisp and Symbolic Computation 8(4),
pp. 293–341, doi:10.1007/BF01018827.

[27] Daan Leijen (2017): Type Directed Compilation of Row-typed Algebraic Effects. In: Proceedings of the 44th
ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, ACM, New York, NY,
USA, pp. 486–499, doi:10.1145/3009837.3009872.

[28] Dale Miller & Gopalan Nadathur (1987): A Logic Programming Approach to Manipulating Formulas and
Programs. In Seif Haridi, editor: IEEE Symposium on Logic Programming, IEEE Computer Society Press,
Washington, DC, pp. 379–388.

[29] Peter D. Mosses (1990): Denotational Semantics. In J. van Leewen, editor: Handbook of Theoretical Com-
puter Science, chapter 11, B: Formal Models and Semantics, The MIT Press, New York, NY, pp. 577–631.

[30] (2017): Multicore OCaml: A shared memory parallel extension of OCaml. Available at https://github.
com/ocamllabs/ocaml-multicore. Accessed: 2017-03-31 15:17:00.

[31] Michel Parigot (1992): λ µ-Calculus: An Algorithmic Interpretation of Classical Natural Deduction. In:
LPAR, Lecture Notes in AI 624, pp. 190–201.

http://dx.doi.org/10.1145/73560.73576
http://arxiv.org/abs/1610.09161
http://dx.doi.org/10.1007/BF00264598
http://dx.doi.org/10.1145/944705.944722
http://dx.doi.org/10.1145/2544174.2500590
http://dx.doi.org/10.1016/j.tcs.2012.02.025
http://dx.doi.org/10.1007/978-3-642-32202-0_3
http://dx.doi.org/10.1145/2804302.2804319
http://dx.doi.org/10.1145/2503778.2503791
http://dx.doi.org/10.1145/1160074.1159808
http://dx.doi.org/10.1145/365230.365257
http://dx.doi.org/10.1007/BF01018827
http://dx.doi.org/10.1145/3009837.3009872
https://github.com/ocamllabs/ocaml-multicore
https://github.com/ocamllabs/ocaml-multicore

36 Eff Directly in OCaml

[32] Gordon Plotkin & Matija Pretnar (2009): Handlers of Algebraic Effects. In Giuseppe Castagna, editor:
Programming Languages and Systems, Lecture Notes in Ccomputer Science 5502, Springer, pp. 80–94,
doi:10.1007/978-3-642-00590-9 7.

[33] Gordon D. Plotkin & John Power (2003): Algebraic Operations and Generic Effects. Applied Categorical
Structures 11(1), pp. 69–94, doi:10.1023/A:1023064908962.

[34] John C. Reynolds (1972): Definitional Interpreters for Higher-Order Programming Languages. In: Proceed-
ings of the ACM National Conference, 2, ACM Press, pp. 717–740. Reprinted as [36, 35].

[35] John C. Reynolds (1998): Definitional Interpreters for Higher-Order Programming Languages. Higher-
Order and Symbolic Computation 11(4), pp. 363–397, doi:10.1023/A:1010027404223.

[36] John C. Reynolds (1998): Definitional Interpreters Revisited. Higher-Order and Symbolic Computation
11(4), pp. 355–361, doi:10.1023/A:1010075320153.

[37] David A. Schmidt (1996): Programming Language Semantics. ACM Computing Surveys 28(1), pp. 265–
267, doi:10.1145/234313.234419.

[38] Hongwei Xi, Chiyan Chen & Gang Chen (2003): Guarded Recursive Datatype Constructors. In: POPL,
ACM Press, pp. 224–235.

http://dx.doi.org/10.1007/978-3-642-00590-9_7
http://dx.doi.org/10.1023/A:1023064908962
http://dx.doi.org/10.1023/A:1010027404223
http://dx.doi.org/10.1023/A:1010075320153
http://dx.doi.org/10.1145/234313.234419

	1 Introduction
	2 Eff in Itself and OCaml
	2.1 A taste of Eff
	2.2 Eff in OCaml
	2.3 Eff in multicore OCaml
	2.3.1 Algebraic effects in multicore OCaml
	2.3.2 Delimcc in multicore OCaml

	3 Eff in OCaml, Formally
	3.1 The Semantics of Eff
	3.1.1 Core Eff
	3.1.2 Core Eff in the Tagless-Final Form
	3.1.3 `Interpreter-based' Denotational Semantics of Core Eff
	3.1.4 Digression: What is Denotational Semantics?

	3.2 Denotation of Delimited Control
	3.2.1 Adequacy of the Core delimcc Semantics

	3.3 Translation from Eff to Delimited Control, and its Correctness

	4 Higher-Order Effects
	5 Evaluation
	5.1 N-queens benchmark
	5.2 Results

	6 Related Work
	7 Conclusions and the Further Research Program

