
Effectively Composing Concurrency Libraries

DEEPALI ANDE, IIT Madras, India
SUDHA PARIMALA, Tarides, India
KC SIVARAMAKRISHNAN, Tarides and IIT Madras, India

Effect handlers have proved to be a versatile mechanism for modular programming with user-defined effects.
Effect handlers permit non-local control-flow mechanisms such as generators, async/await, coroutines and
lightweight threads to be composably expressed. There is increasing interest in supporting effect handlers in
industrial-strength languages. The recent major release of OCaml, version 5, supports effect handlers as the
primary mechanism for expressing user-level concurrency. Several concurrency libraries have already been
designed around effect handlers. However, these libraries are designed monolithically, with their own notion
of tasks and mechanisms for inter-task synchronisation. Under this monolithic approach, we face the risk that
different concurrency libraries will be incompatible preventing a program from taking advantage of several
libraries in the same application. Such is the case with OCaml today with the Lwt and Async libraries with
the library ecosystem incompatibly split between the libraries building over either Lwt or Async.

In this paper, we observe that the composability of effect handlers permits the composability of concurrency
libraries. The key idea is to define a uniform yet expressive interface for suspending and resuming tasks, which
is implemented by different schedulers. Against this interface, we implement scheduler-agnostic synchronisation
structures that permit tasks from different concurrency libraries to interact. We also show how to extend this
interface to support composition with monadic concurrency libraries such as Lwt and Async. We show how
to extend this interface to support various forms of thread cancellation. Finally, we show how this interface
helps in safely sharing lazy computations between different concurrency abstractions provided by OCaml
including user-level and OS threads.

ACM Reference Format:
Deepali Ande, Sudha Parimala, and KC Sivaramakrishnan. 2023. Effectively Composing Concurrency Libraries.
In . ACM, New York, NY, USA, 25 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Many modern programming languages provide language-level support for non-local control-flow
primitives such as async/await, generators, coroutines, lightweight threads, etc. While some concur-
rency primitives such as JavaScript generators [JSGenerators 2023], C# async/await [C# async/await
2023] and Kotlin coroutines [Kotlin coroutines 2023] are implemented with program transforma-
tions, there is an increasing trend towards supporting true concurrency native in the language.
This is because of the inherent cost associated with the program transformation in order to support
suspending and resuming tasks as well as the necessity to do something special for supporting
features that inspect the program stack such as backtraces and exceptions. These language-level
primitives introduce function colouring which splits the world between the asynchronous primitives
which may suspend execution and synchronous primitives which won’t [Function Colour 2023].

Alternatively, many languages provide concurrency primitives which are stackful, where the
runtime system provides support for managing and switching between multiple stacks. They can

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Ande et al.

be broadly split into two groups – one which bakes-in the thread scheduler into the runtime system
and the other which permits schedulers to be written as libraries. For example, the Go programming
language and GHC Haskell support lightweight language-level threads (called goroutines in Go and
threads in GHC Haskell) which are managed by the runtime system. On the other hand, languages
that provide support for schedulers to be written as libraries expose some form of continuations at
the language level. Java has recently introduced support for virtual threads [Java Virtual threads
2023], which is built on top of delimited continuations [Loom 2023]. The recent release of the
OCaml programming language supports effect handlers [Sivaramakrishnan et al. 2021], which
offers a structured primitive for programming with delimited continuations.

There are several downsides to having the scheduler baked into the runtime system as is the case
with Go and GHC Haskell. The runtime system not only supports the threads and its scheduler, but
also implementations of synchronisation primitives such as locks, condition variables, timers, IO
event loop, thread pools, etc. These primitives are often implemented in a low-level language (C in
the case of GHC Haskell), which makes it hard to maintain the thread subsystem. This also makes
it harder to evolve the language as the changes to the thread subsystem can only be released as
part of the language release [KC et al. 2016].

Moreover, there is no one-size-fits-all scheduling policy for all the programs written in a language.
For example, a nested parallel computation such as computing the nth Fibonacci number recursively
will benefit from a work-stealing scheduler whereas a scheduler for a web server will benefit from
a first-in-first-out (FIFO) scheduling of outstanding requests in order to minimise overall latency.
Additionally, each style of application may need their own notion of cancellation of outstanding
tasks. For example, a parallel depth first search procedure or a large graph may want to terminate
all the outstanding search threads once a result has been found. On the other hand, it is preferable
to have structured concurrency [JEP428 2023] for IO-bound tasks in order to properly clean up
resources.
It is with this goal that OCaml 5 introduces effect handlers in order for thread scheduling and

concurrency primitives to be implemented as libraries rather than baking it into the runtime.
The key idea with effect handlers is to permit effectful operations to be declared and used in a
computation without defining how the operations are handled. The meaning of the operations is
given by handlers of the effects, akin to how exception handlers define how exceptions thrown by
a computation are handled. Effect handlers permit handlers of different operations to be expressed
modularly and composed together similar to how functions handling different exceptions can be
composed together.

The primarymotivation to extend OCaml with effect handlers is to permit direct style concurrency,
as opposed to using monadic concurrency [Function Colour 2023] libraries such as Lwt [Vouillon
2008] and Async [Async 2023], where asynchronous functions are represented as monadic compu-
tations. Monadic concurrency libraries not only introduce function colours [Function Colour 2023]
that split the API between being synchronous and asynchronous but also often end up specialising
the asynchronous APIs to the specific monad, Lwt or Async, due to the lack of higher-kind of
polymorphism in OCaml which makes it cumbersome to write code that remains parametric over
the concurrency monad. As a result, in OCaml today, one either needs to choose the Lwt or the
Async ecosystem and can only use libraries from that ecosystem.

1.1 Challenge
The promise of effect handlers is that such an ecosystem split need not happen while also allowing
specialisation of schedulers. Indeed, several libraries have already been written utilising effect
handlers, which take advantage of the ability to specialise scheduling.

2

Effectively Composing Concurrency Libraries Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Eio [Eio 2022] is a library that provides a multicore-capable, direct-style IO stack for OCaml. Eio
adopts a work-sharing model where the lightweight user-level tasks, fibers in Eio parlance1, may
be pushed onto other cores, but the tasks remain pinned to the core that they were spawned on.
Eio provides structured concurrency [JEP428 2023] through a notion of switches such that the tasks
form a tree-structured hierarchy that ensures that resources are cleaned up deterministically. Eio
switches also serve as the notion of task cancellation. When a switch is cancelled, all the tasks
that are attached to this switch get cancelled and their resources such as open file descriptors
and sockets are close. Structured concurrency leads to cleaner code and avoids resource leaks.
Domainslib [Domainslib 2022] is a library for nested parallel computation. Unlike Eio, Domainslib
uses a work-stealing scheduler that automatically schedules tasks on idle cores. Given the target
application, Domainslib neither provides structured concurrency nor does it offer cancellation
mechanisms.
While effect handlers permit rich concurrency libraries to be implemented, the fundamental

problem is that each of these libraries end up implementing their own incompatible notion of tasks
and inter-task synchronisation. Eio provides streams which are bounded queues where taking from
an empty stream blocks the Eio task. Domainslib provides async/await mechanism to wait for task
completion. Neither of these mechanisms are aware of any other tasks other than the tasks from
their own libraries. It is conceivable that an application such as the Tezos blockchain node may
want to utilise both of these libraries at the same time, using Eio for the network operations while
offloading compute-intensive serialisation and cryptographic primitives to Domainslib. Alas, one
cannot build such an application today that utilises both Eio and Domainslib.
This problem of concurrency library composition is not unique to the OCaml ecosystem. Any

programming language that provides the ability to implement their own lightweight thread subsys-
tem will need to handle this issue. Rust programming language provides language-level support
for marking asynchronous computations using the async keyword. The compiler transforms the
async functions into a state machine that represents suspendable computations. Rust does not have
a default scheduler for asynchronous tasks and instead relies on libraries called async runtimes
execute asynchronous applications. As a result, not only does Rust suffer from the problem of
function colours, but also suffers incompatibility between asynchronous runtimes [Async Rust
Book 2023].

1.2 Solution
We observe that modularity of effect handlers helps us abstract away from the details of schedulers.
For example, in OCaml 5, we can declare the following effects for forking and yielding tasks:

1 type _ Effect.t += Fork : (unit -> unit) -> unit Effect.t
2 | Yield : unit Effect.t

The Fork effect takes a thunk which is spawned as a concurrent thread, and the Yield effect
yields control to another thread in the scheduler queue. We can define helper functions to perform

these effects:
1 let fork (f : unit -> unit) : unit = perform (Fork f)
2 let yield () : unit = perform Yield

The type annotations are not necessary and are only included for clarity. Observe that concurrent
programs may call the functions fork and yield without knowing how they are implemented. The

1In this paper, we use tasks as a common terminology to represent lightweight threads created and managed by different
concurrency libraries

3

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Ande et al.

implementation is described by each of the concurrency libraries which implement a handler for
the Fork and Yield effects.

In this work, we propose a solution for the concurrency library composition problem by describing
a single Suspend effect that captures the core details of the threading subsystem. The interface
captures the effect of suspending and resuming tasks without appealing to the details of the
scheduler implementation. The different concurrency libraries will have to implement a handler
only for this effect in order to make them composable with other concurrency libraries.

While our core proposal is astonishingly simple, we show that this one effect is able to capture
the complexity of full-fledged concurrent programming support in OCaml. On top of the Suspend

effect, we show how to implement thread-safe, scheduler-agnostic synchronisation structures such
as promises, MVars [Peyton Jones et al. 1996], mutexes, condition variables, channels, etc. These
synchronisation structures may be used to communicate between tasks that belong to different
libraries. We show how to extend the Suspend effect to capture different, concurrency library specific
implementation of task cancellation.
Apart from new libraries such as Eio and Domainslib that take advantage of effect handlers

available in OCaml 5, the OCaml ecosystem has millions of lines of legacy code written using
monadic concurrency libraries such as Lwt and Async. Hence, it is conceivable that these monadic
libraries will continue to be used into the future even when the users switch to OCaml 5. We show
how to compose newer effect-based libraries with monadic concurrency libraries using the Suspend
effect, and thereby enabling an incremental transition of code using monadic concurrency to
direct-style. Our solution also helps reconcile the conflict between concurrency and lazy evaluation
in OCaml. While OCaml has primitive support for lazy evaluation [OCaml Lazy 2023], it is not
concurrency-safe.We show how effect handlers enable a graceful solution for concurrency-safe
lazy without appealing to a particular concurrency library.

1.3 Contributions
Our contributions are as follows.

• The design of a single Suspend effect that succinctly captures the core details of threading
subsystem. Each concurrency library implementing a handler for this effect makes them
composable with other concurrency libraries.

• We show how to implement scheduler-agnostic thread-safe synchronisation structures such
as IVars, MVars, rendezvous channels, mutex and condition variables on top of this effect
without appealing to the details of individual schedulers. These synchronisation structures
can be concurrently utilised by tasks from different concurrency libraries.

• We show how to extend the Suspend effect in order to enable variety of task cancellation
strategies to co-exist.

• We show how the Suspend effect enables the composition of legacy monadic concurrency
libraries such as Lwt and Async with effect-based concurrency libraries.

• We illustrate that the Suspend effect enables a graceful, backwards-compatible solution for
making OCaml lazy values concurrency-safe.

• Extensive experimental evaluation shows that the composition of concurrency libraries using
our solution incurs negligible overheads compared to non-composable alternatives and offers
impressive performance improvements in applications where composition is necessary.

The rest of the paper is organised as follows. The next section 2 motivates the need for composi-
tion of concurrency libraries, followed by our solution in Section 3. We then extend our solution to
support task cancellation in Section 4. Section 5 shows how to compose legacymonadic-concurrency

4

Effectively Composing Concurrency Libraries Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1 module T = Domainslib.Task
2

3 (* set up a pool of [num_domains] domains for parallel computation *)
4 let pool = T.setup_pool ~num_domains ()
5

6 (* Parallel Fibonacci computation *)
7 let rec fib_par n =
8 let rec fib n =
9 if n < 2 then 1
10 else fib (n - 1) + fib (n - 2)
11 in
12 if n > 20 then begin
13 let a = T.async pool (fun _ -> fib_par (n-1)) in
14 let b = T.async pool (fun _ -> fib_par (n-2)) in
15 T.await pool a + T.await pool b
16 end else
17 fib n
18

19 let main () =
20 let sock = Eio.Net.listen ... in
21 (* Runs once per request in an Eio task *)
22 let request_handler n =
23 T.run pool (fun _ -> fib_par n)
24 in
25 while true do
26 (* spawn an Eio task to run [request_handler] per request *)
27 Eio.Net.accept_fork sock ... request_handler ...
28 done
29

30 let () = Eio_main.run main

Fig. 1. Failed composition of Eio and Domainslib to implement a Fibonacci server.

libraries with effect-based ones. Section 6 discusses the challenges with lazy evaluation and con-
currency and our solution. We evaluate the performance of our solution in Section 7. Finally, we
discuss the related work in Section 8 and offer concluding discussion in Section 9.

2 MOTIVATION
In this section, we will describe a simplified example that illustrates the need to combine multiple
concurrency libraries in the same application. Recall that OCaml 5 brings support for direct-style
concurrency using effect handlers and shared-memory parallelism. Suppose the developer wants
to implement a highly scalable web server that performs a compute-intensive but parallelisable
computation for each request. For edification purposes, let us consider that for each request server
gets a natural number input from the client and the server returns the nth Fibonacci number
computed recursively back to the client. While the example itself is artificial, it captures a pattern
OCaml users have encountered in practice.
The OCaml ecosystem provides appropriate libraries for implementing different parts of this

application. The highly-scalable web server can be implemented with Eio. The nested parallel

5

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Ande et al.

fib(39)R1
R2

R3

R4

Domainslib
pool

fib (45)

fib (42)
fib (30)

(a) Intended behaviour: pipelined processing

R1

R2

Domainslib
pool

fib (45)

fib (30)

(b) Observed behaviour: serialised processing

Fig. 2. Composition of Eio and Domainslib in the Fibonacci server

computation may be parallelised with Domainslib. One may attempt to build the application as
shown in Figure 1.

Let us walk through the code snippet. The unit of parallelism in OCaml is domains. Domains are
heavy weight entities. Each domain maps directly to an OS thread and it is recommended that only
as many domains as the number of available cores is created by the user. The library Domainslib
permits better management of domains by creating a pool of domains, and submitting tasks to
them. In our example, we create a pool of num_domains domains. This pool is shared between all of
the requests that arrive at the server.

The function fib_par computes nth Fibonacci number in parallel using the sequential implemen-
tation for small inputs. The main function initialises the web server which listens on the socket
sock. For each connection request, it creates an Eio task that runs the request_handler function.
All of these Eio tasks are multiplexed on the same domain, but their execution overlaps with the
execution of other concurrent requests. The request_handler uses T.run function (the same as
Domainslib.Task.run function) to offload the expensive computation to Domainslib pool to perform
the computation in parallel. The expected behaviour is shown in Figure 2a where the concurrent
requests are processed in a pipelined fashion.

Unfortunately, the observed behaviour is that the requests are processed in a serialised fashion,
one after the other as shown in Figure 2b. This is because the function T.run is a blocking function
that blocks the entire calling domain and not just the Eio task that is making the call. Hence, none of
the other tasks from the Eio scheduler can run until T.run returns. The fundamental problem is that
Domainslib does not have a conception of Eio tasks, and cannot block and unblock them since their
semantics is defined by the Eio scheduler. While we can define a point-wise synchronisation solution
that works for the composition of Domainslib and Eio, such a pair-wise solution is unsatisfactory
as it cannot accommodate other concurrency libraries. What we need is a generic way for tasks
from different concurrency libraries to be suspended and resumed without appealing to the specific
implementation details of a particular library.

3 EFFECTIVE COMPOSITION
In this section, we shall introduce our solution that enables applications such as the Fibonacci
server to combine several concurrency libraries developed independently and have them work in
the intended fashion. We shall first introduce a simple concurrency-safe scheduler that schedules
threads in a FIFO fashion. We shall also use this example as a way to explain the semantics of

6

Effectively Composing Concurrency Libraries Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

effect handlers in OCaml 5. We refer interested readers to the OCaml manual page on effect
handlers [OCaml Effects 2023] for a more detailed explanation of their semantics.

3.1 A concurrency-safe FIFO scheduler

1 type task = Task : ('a,unit) continuation * 'a -> task
2

3 let run main =
4 (* Lock -free queue *)
5 let run_q = Queue.create () in
6 (* Number of running tasks *)
7 let nt = ref 0 in
8 (* Mutex & Condition pair for parking the domain *)
9 let m,c = Mutex.create (), Condition.create () in
10

11 let enqueue k v = Queue.push (Task (k,v)) run_q in
12 let rec dequeue () =
13 match Queue.pop run_q with
14 | Some (Task (k,v))-> continue k v (* resume the next task *)
15 | None when !nt = 0 -> () (* No more threads. We 're done. *)
16 | _ -> (* Some task is blocked elsewhere *)
17 Mutex.lock m;
18 if Queue.is_empty run_q (* check again with lock *)
19 then (Condition.wait c m; Mutex.unlock m; dequeue ())
20 else (Mutex.unlock m; dequeue ())
21 in
22

23 let rec spawn f =
24 incr nt;
25 match_with f ()
26 { retc = (fun () -> decr nt; dequeue ());
27 exnc = begin fun exn ->
28 decr nt;
29 print_string (Printexc.to_string exn);
30 dequeue ()
31 end;
32 effc = fun (type a) (e : a t) ->
33 match e with
34 | Yield -> Some (fun (k: (a,_) continuation) ->
35 enqueue k (); dequeue ())
36 | Fork f -> Some (fun (k: (a,_) continuation) ->
37 enqueue k (); spawn f)
38 | _ -> None
39 }
40 in
41 spawn main

Fig. 3. Concurrency-safe FIFO scheduler using effect handlers

As mentioned in Section 1.2, the effects Fork and Yield have been declared but their implemen-
tation was not defined. The implementation of these effects are given by the effect handlers in each

7

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Ande et al.

of the concurrency libraries, which describe how to interpret Fork and Yield. A computation may
perform the Fork and Yield effects without knowing about their implementations.
Figure 3 describes the core primitives of the concurrency-safe FIFO scheduler. The scheduler

maintains a queue of tasks in a lock-free queue (line 5). A tasks is a pair of a delimited continuation
and the value to resume the continuation with (line 1). We also maintain the number of live tasks in
the integer counter nt (line 7). We use a mutex and condition variable pair to park the execution of
the domain (line 9). It should be noted that mutex and condition from the OCaml standard library
operate at the level of domains and not just on the tasks from a concurrency library. Hence, they
block and unblock the entire domain and not just the current task from the scheduler.
The enqueue function (line 11) takes a delimited continuation and the value to resume the

continuation with and pushes a task into the queue. The dequeue function is a bit more involved
than the enqueue function. If the queue is not empty, we resume the next task from the scheduler
(line 14). The continue primitive resumes a delimited continuation with the given value. Recall that
our goal is to build synchronisation structures such as channels and MVars that can be utilised by
tasks from different concurrency libraries. As a result, we may encounter the case where the tasks
from this scheduler are blocked elsewhere and the queue is empty. In the case when the queue is
empty and the nt counter is 0, we know that all the tasks created by this scheduler have run to
completion. And hence, we are done (line 15). Otherwise, the queue is empty and the nt counter is
not 0, which indicates that some task created by this scheduler is blocked elsewhere. Hence, we use
the mutex and condition variable to park this domain. Care has to be taken to read the queue again
with the lock to ensure proper synchronisation.

The spawn function (lines 23 to 41) implements the handler for the effects Fork and Yield. When a
task is spawned, we increment the atomic counter nt, and evaluate the computation f in the context
of the effect handler using the match_with function (line 25). The computation may return with a
unit value (case retc on line 26), in which case, we decrement the nt counter and run the next tasks
from the scheduler. If the task raises an exception (case exnc on line 27), then we decrement the nt

counter, print the exception to standard output and resume with the next task. The case effc on
line 32 describes how effects are handled. Observe that for each handled effect, we get a delimited
continuation k that represents the suspended computation from the point of corresponding perform,
delimited by the current handler. The handler for Yield enqueues the current task and resumes the
next one from the scheduler. The handler for Fork suspends the current task and recursively calls
spawn to run the given computation f as a new task.

3.2 The Suspend effect
How do we allow the tasks from the scheduler that we have defined to wait on tasks from other
schedulers? For this, we need a common way to describe how to suspend and resume tasks. The
solution is remarkably simple. We expect concurrency libraries implementing their own schedulers
to implement a handler for the following effect.

1 type 'a resumer = 'a -> unit
2 type _ Effect.t += Suspend:('a resumer -> 'a option) -> 'a Effect.t

In order to suspend the current task, the computation performs the effect Suspend block, where
the function block is applied to the resumer function that encapsulates the functionality to enqueue
the task to the scheduler that it belongs to. In particular, the resumer closure will have the delimited
continuation of the suspended task in its environment. The synchronisation structures such as
channels and MVars can define the function block to block the current task. The function block

is expected to return None when the task was successfully blocked. In the presence of multiple

8

Effectively Composing Concurrency Libraries Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

domains, it may be the case that the original condition for which the task was about to be blocked
already occurred. In which case, the task need not be blocked, and the function block should return
Some v, where v of type 'a is the value necessary to resume the task.

3.3 Promises
The use of Suspend effect is best understood by looking at how a synchronisation structure might
utilise it. To that end, let us implement a concurrency-safe promise synchronisation structure that
permits tasks from different schedulers to wait for a value. The promise interface is shown below:

1 module type Promise = sig
2 type 'a t
3 (** The type of promises *)
4 val create : unit -> 'a t
5 (** Create an unfilled promise *)
6 exception Already_filled
7 val fill : 'a t -> 'a -> unit
8 (** Fill the promise with a value. Raises [Already_filled] exception
9 if the promise is already filled. *)
10 val await : 'a t -> 'a
11 (** If the promise is filled , returns the value in the promise.
12 Otherwise , blocks the calling task until the promise is filled
13 and returns the filled value. *)
14 end

We can represent the state of the promise as:
1 type 'a state = Full of 'a | Empty of 'a resumer list
2 type 'a t = 'a state Atomic.t

A state of the promise is either full with a value or empty with a list of waiting tasks, represented
by a list of resumers. The promise itself is a atomic reference to the state. The promise is created
empty:

1 let create () = Atomic.make (Empty [])

The fill function:
1 exception Already_filled
2

3 let rec fill p v =
4 let old = Atomic.get p in
5 match old with
6 | Full _ -> raise Already_filled
7 | Empty l ->
8 if Atomic.compare_and_set p old (Full v)
9 then List.iter (fun r -> r v) l
10 else fill p v

raises the Already_filled exception if the promise is already filled. Otherwise, it tries to update
the atomic reference to the full state. If successful, then the blocked tasks are all resumed using
the resumer. It may be the case that the tasks belong to different schedulers. All of the necessary
information to resume the task in the right scheduler is encapsulated in the closure.

The await function is the most interesting one.

9

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Ande et al.

1 let await p =
2 let rec block r =
3 let old = Atomic.get p in
4 match old with
5 | Full v -> Some v
6 | Empty l ->
7 if Atomic.compare_and_set p old (Empty (r::l))
8 then None else block r
9 in
10 let old = Atomic.get p in
11 match old with
12 | Full v -> v
13 | _ -> perform (Suspend block)

If the promise is full, then the await function returns the filled value. Otherwise, the await function
performs the Suspend block effect. The scheduler for the current task handles the Suspend block

effect and applies block to the resumer r.
The block function reads the atomic location again. If the promise has since been filled, then

block returns Some v to the scheduler. The scheduler immediately resumes the same task with the
value v. Otherwise, block atomically tries to add the resumer r to the promise state. If successful,
the block function returns None to the scheduler. At this point the scheduler switches to the next
task from the scheduler queue or parks the domain if there are no other tasks. Otherwise, the block
function is retried.
Observe that the promise implementation does not appeal to the specifics of any particular

scheduler, but it allows tasks from different schedulers to interact using the promise, only blocking
calling task from the corresponding scheduler. We call such implementations scheduler agnostic.
We have implemented many common synchronisation structures such as channels, MVar, mutex,
condition variables, etc., using a similar strategy. These implementations are compatible with any
concurrency library that handles the Suspend effect.

3.4 Handling suspend effect
Let us now extend our scheduler from Section 3.1 in order to handle the Suspend effect.

1 | Suspend block -> Some (fun (k: (a,_) continuation) ->
2 let resumer v =
3 let wakeup = Queue.is_empty run_q in
4 enqueue k v;
5 if wakeup then begin
6 Mutex.lock m; Condition.signal c; Mutex.unlock m
7 end
8 in
9 match block resumer with
10 | None -> dequeue ()
11 | Some v -> continue k v)

The snippet above is added as one more case in our effect handler in Figure 3. The resumer

function first checks whether the scheduler queue is empty. In this case, domain running the
scheduler is parked. We must signal the condition c to wake up the domain. We then enqueue
the continuation k to be resumed with the value v to the scheduler queue. Finally, if the domain
running the scheduler needs to be woken up, then we signal the condition variable c. Note that if

10

Effectively Composing Concurrency Libraries Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

multiple domain race to enqueue into the empty queue, at least one of the domains will see the
queue to be empty and will wake up the parked domain.

The argument to the Suspend effect, block, is applied to this resumer. If block returns None, then
the continuation k (captured in the resumer) is successfully blocked on the synchronisation structure,
and the scheduler resumes the next thread from the scheduler. If Block returns Some v, then we
immediately resume the current task with the value v.

The takeaway is that, by handling this one effect Suspend in the concurrency library, the concur-
rency library becomes compatible with the synchronisation structures such as the promise that we
have defined earlier.

3.5 Fixing the Fibonacci server
We can use our promise implementation to fix the erroneous behaviour in our Fibonacci server
from Section 2. Recall that the problem in Figure 1 was that the call to T.run in the request_handler
function blocks the entire domain and not just the current task. In order to get the pipelined
behaviour as shown in Figure 2a, we replace the request_handler with the one that follows:

1 let request_handler n =
2 let p = Promise.create () in
3 ignore (T.async pool (fun _ -> Promise.fill p (fib_par n)));
4 Promise.await p

Here, we create a promise p per request. The function to compute the nth Fibonacci number is sent
to the Domainslib pool using the T.async function. Importantly, T.async does not block the caller.
The promise p is filled with the result of the execution of fib_par n function. The request_handler
awaits on the promise p, which only blocks the current Eio task. Hence, other Eio tasks are free to
run and we get the pipelined behaviour.

4 CANCELLATION
Languages that support user-level concurrency make it easy to create millions of tasks with
ease. Unlike concurrency through heavy-weight OS threads, lightweight tasks are also cancelled
frequently. For example, in a parallel depth-first search in a graph, a large number of search tasks
may be created. Once the element that we are looking for is found, all the other search threads
will need to be cancelled. Similarly, concurrency libraries such as Eio that allow high-performance
I/O prefer structured concurrency [JEP428 2023] where the tasks are arranged in a tree-structured
hierarchy and cancelling a task ensures that all the tasks as well as their resources are cleaned
up. The cancellation mechanisms in different concurrency libraries are bespoke, diverse and are
expected to be efficient.

4.1 Cancellation challenges
Given that tasks that are blocked on synchronisation structures may be cancelled, cancellation
needs coordination between the concurrency libraries and the synchronisation structures. Without
taking cancellation into account, we will have observe unintended behaviours. To illustrate this,
consider that we extend our scheduler from Section 3 with the ability to cancel tasks with the
following API:

1 type handle
2 val fork : (unit -> unit) -> handle
3 val cancel : handle -> unit

11

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Ande et al.

We introduce a type of task handlers handle. The fork function returns a handle rather than unit.
The function cancel marks the task represented by the handle to be cancelled. The task may either
be currently running, ready to run in the scheduler queue or be blocked on some synchronisation
structure. If the task is currently not running, then a cancelled task is guaranteed not to run.

We can implement the functionality be extending the scheduler from Figure 3 as follows. We only
highlight the important changes here and the full code for the scheduler that supports cancellation
is found in the supplementary material.

1 type handle = {mutable cancelled : bool}
2 let cancel task = task.cancelled <- true
3 type _ Effect.t += Fork : (unit -> unit) -> handle Effect.t
4 type task = Task: handle * ('a,unit) continuation * 'a -> task

The handle is represented with a boolean mutable field in a record. cancel just sets this field to
true. The Fork effect now returns the handle to the newly created task and the suspended task now
carries its handle. We use this handle to decide whether to resume a suspended task:

1 let rec dequeue () =
2 match Queue.pop run_q with
3 | Some (Task (handle , k, v)) -> (* resume the next task *)
4 if handle.cancelled then discontinue k Exit else continue k v
5 ...

Instead of unconditionally resuming the task, we now examine whether the handle has been
cancelled. If so, we resume the continuation by raising the Exit exception using the discontinue

primitive. Discontinuing the continuation on cancellation is essential to ensure that the task stack
is unwound freeing any resources such as open file descriptors. If the handle is not cancelled, then
we resume the continuation k with the value v as before.

Suppose we use this scheduler with a scheduler-agnostic task-level mutex library TaskMutex.
Similar to the standard library Mutex module, TaskMutex allows creation, lock and unlock of the
mutex, except that the latter blocks only the calling task and not the calling domain. Without
paying attention to cancellation, the combination of a scheduler that supports cancellation with
the TaskMutex breaks. For example, consider the following code:

1 module M = TaskMutex ;;
2

3 run (fun () -> (* main task *)
4 let m = M.create () in
5 let lu () = M.lock (); M.unlock () in
6 M.lock m;
7 let t1 = fork lu in (* control switches to t1 *)
8 cancel t1;
9 let t2 = fork lu in (* [t2] waiting behind [t1] to lock the mutex *)
10 M.unlock m; (* lock gets transferred to [t1] which was cancelled *)
11 (* [t2] does not get the mutex , and [run] gets stuck *)
12)

Here, we create a mutex m to synchronise access between concurrent tasks. The function lu

simply locks and unlocks the mutex m. The main task locks the mutex, and spawns a task t1 which
calls lu. By looking at the handler for Fork effect 3, one can see that the fork call suspends the
current task and switches control to t1, which tries to lock the mutex. Given that the mutex is
currently held by the main task, t1 blocks on the mutex and the control switches back to the main

12

Effectively Composing Concurrency Libraries Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

task. The main task now cancels t1 marking its handle as cancelled. Now, the main task creates t2,
which also runs lu. Given that the mutex is still held by the main task, t2 blocks behind t1 waiting
to lock the mutex.
Finally, the main task unlocks the mutex and runs to completion. The problem occurs here.

Without the knowledge that t1 has been cancelled, the unlock call transfers the lock over m over to
t1 and enqueues t1 to the scheduler queue. However, t1 is immediately terminated by discontinue

when the dequeue function examines it at the end of the execution of the main task. Since the
mutex is never unlocked by t1, t2 remains blocked forever. Recall that the run function will only
return when all the tasks run to completion. Hence, the call to run function never returns and the
execution deadlocks.

One may argue that the problem here is that the call to lock should be aware of cancellation and
should be protected by an exception handler that handles the Exit exception. But observe that the
Exit exception comes from the scheduler that was independently developed from the TaskMutex

module. It is not immediately apparent whether documenting that blocking functions may through
exceptions is the appropriate approach. Either way, the libraries should be built to avoid deadlocks
even in the presence of buggy code.

4.2 Cancellation awareness
We fix this issue by modifying the signature of the Suspend effect.

1 type 'a resumer = 'a -> bool (* instead of [unit] *)
2 type _ Effect.t += Suspend: ('a resumer -> 'a option) -> 'a Effect.t

The only change that we introduce is to make the resumer return bool instead of unit. The resumer
is expected to return true if the task was not cancelled and successfully resumed. Otherwise, it
returns false.

As before, the use of this interface is split between the concurrency library and the synchronisa-
tion structure. In the concurrency library, we modify the Suspend handler as follows:

1 | Suspend block -> Some (fun (k: (a,_) continuation) ->
2 let resumer v =
3 let wakeup = Queue.is_empty run_q in
4 enqueue k v;
5 if wakeup then begin
6 Mutex.lock m; Condition.signal c; Mutex.unlock m
7 end;
8 not handle.cancelled
9 in
10 match block resumer with
11 | None -> dequeue ()
12 | Some v -> if handle.cancelled then continue k v
13 else discontinue k Exit)

The handler for the Suspend effect here is the cancellation-aware version of the Suspend handler
in Section 3.4. There are two changes. First, the resume function returns true when the task is not
cancelled, and false otherwise. It might seem strange that we enqueue the continuation k to be
resumed with the value v. But recall that the dequeue function first checks whether the handle was
cancelled, and if so, discontinues the continuation k with the Exit exception. The second change is
that we also check whether the task has been cancelled in the case when block resumer returns

13

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Ande et al.

1 module Mutex : Mutex = struct
2 type state = Unlocked | Locked of unit resumer list
3 type t = state Atomic.t
4

5 let create () = Atomic.make Unlocked
6

7 let lock m =
8 let rec block r =
9 let old = Atomic.get m in
10 match old with
11 | Unlocked -> if Atomic.compare_and_set m old (Locked [])
12 then (Some ()) else block r (* failed CAS; retry *)
13

14 | Locked l -> if Atomic.compare_and_set m old (Locked (r::l))
15 then None else block r (* failed CAS; retry *)
16 in
17 perform (Suspend block)
18

19 let rec unlock m =
20 let old = Atomic.get m in
21 match old with
22 | Unlocked -> failwith "impossible"
23 | Locked [] -> if Atomic.compare_and_set m old Unlocked
24 then () else unlock m (* failed CAS; retry *)
25 | Locked (r::rs) -> if Atomic.compare_and_set m old (Locked rs)
26 then begin
27 if r () then () (* successfully transferred control *)
28 else unlock m (* cancelled; wake up next task *)
29 end else unlock m (* failed CAS; retry *)
30 end

Fig. 4. Task-level mutex implementation that is aware of cancellation.

Some v. Before resuming the continuation k with v, we confirm that the task has not been cancelled.
If cancelled, we immediately discontinue the continuation.
Figure 4 shows the TaskMutex implementation that has been made aware of cancellation. The

implementation follows ideas similar to the promise implementation from Section 3.3. The only
change necessary to make the implementation aware of cancellation is in the lines 26 and 27. When
we unlock the mutex, we check whether there are pending tasks waiting to lock the mutex. If so,
we try to resume them by invoking the resumer r. If the resumer r returns true, then the task
associated with this resumer is not cancelled and successfully resumed. Otherwise, if r returns
false, then the task was cancelled and we retry unlock to wake up other blocked tasks.

4.3 Eager and lazy cancellation
The cancellation semantics that we have prototyped here may be termed as lazy cancellation. When
a task is cancelled, we simply mark its handle as cancelled and we wait until it is the tasks turn to
run in the scheduler in order to terminate it with the discontinue primitive. In particular, if the
cancelled task was blocked on a synchronisation structure, we require that a matching operation
is done on the synchronisation structure that unblocks the task and pushes it into the scheduler

14

Effectively Composing Concurrency Libraries Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

queue. An alternative would be eager cancellation, where, at the point of cancellation, if the task
were blocked on a synchronisation structure, it is removed from the structure eagerly and pushed
into the scheduler queue. This is orthogonal to the concerns in this paper and is a concern of the
concurrency library and the synchronisation structure. The Suspend effect only expects the resumer
to return false irrespective of whether the task cancellation was eager or lazy.

5 COMPOSING MONADIC LIBRARIES
So far we have focussed on the composition of concurrency libraries written using effect handlers
such as Eio and Domainslib. However, given that effect handlers is a fairly recent addition to OCaml,
most of the concurrent code in OCaml today are written in monadic concurrency libraries such
as Lwt and Async. These library ecosystems are fairly mature and millions of lines of monadic
concurrency code are used everyday. It is likely that monadic concurrency will survive many years
into the future.
Given the impossibility of a whole-sale migration of the code written in monadic concurrency

to direct-style effect based concurrency, there is the need to ensure that the monadic code can be
incrementally migrate to effect-based concurrency. Even if the aim is not to migrate code, legacy
applications may want to take advantage of newer libraries. For example, an Lwt application may
way to offload compute-intensive computation to a Domainslib pool to take advantage of parallelism.
Similarly, an Async application may want to utilise Eio to take advantage of newer OS features for
efficient IO such as io_uring [io_uring 2023]. While solutions such as Lwt_domain [Lwt_domain
2023] and Eio bridges to Lwt and Async exist, such point-wise solutions are unsatisfactory. For
example, Eio-Lwt bridge cannot take advantage of parallelism since Lwt is not parallelism-safe.
Ideally, we would like to run Lwt on one domain and Eio on multiple domains to get the best
performance. In this section, we show that our solution enables monadic concurrency libraries
such as Lwt and Async to be composed with effect-based concurrency libraries.

5.1 Monadic API for synchronisation structures

f1

f2

f0

await
perform (Suspend block)

f >>= g1 >>= g2 >>= …

Effect handler
continuation

Monadic
continuation

Fig. 5. Two continuations in a monadic con-
currency library.

There are several challenges to enable such a composi-
tion. The notion of a continuation is different between
direct-style concurrency libraries based on effect handlers
and monadic concurrency libraries. With effect handlers,
the continuation is represented by a segment of the call
stack [Sivaramakrishnan et al. 2021] managed by the run-
time whereas Lwt and Async essentially utilise callback
functions as continuations. This leads to the situation
where we will have two orthogonal continuations in the
program. For example, consider that the Lwt program
uses the promise from Section 3.3. The program state in
this case is shown in the Figure 5. Since the promise API is
in direct-style, the call to the await function may include
several intermediate function calls f0, f1 and f2 from the
Lwt scheduler. The continuation captured by performing
the Suspend effect is the vertical one that includes the relevant segment of the stack segment of the
stack. On the other hand, the continuation in Lwt is the callback function g1 >>= g2 >>= It is
unclear how to capture and reconcile both of these continuations.

Instead, we obviate the need to capture the vertical stack by wrapping the API of the synchroni-
sation structures in a monadic interface as follows:

15

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Ande et al.

1 module Lwt_promise : sig
2 type 'a t
3 val create : unit -> 'a t
4 val fill : 'a t -> 'a -> unit
5 val await : 'a t -> 'a Lwt.t
6 end = struct
7 type 'a t = 'a Promise.t
8 let create = Promise.create
9 let fill = Promise.fill
10 let await p = Lwt.return (Promise.await p) (* WIP *)
11 end

The only way to use Lwt_promise.await is to bind it with the rest of the Lwt computation using
>>=. Hence, Lwt_promise.await cannot appear in the nested position as in Figure 5. Now, we only
need to capture the Lwt continuation. Note that fill does not block and hence does not need the
Lwt wrapper.

5.2 Integrating Suspend effect with Lwt
The Lwt_promise.await that we have defined still needs some work. Recall that await performs the
Suspend block effect which needs to be handled. Since we have introduced a monadic wrapper
around await, the delimited continuation k from the effect handler is no longer necessary. But
something has to be done to intercept the Suspend block effect and apply the block function to
a suitably prepared resumer for Lwt. For this, we exploit the fact that in OCaml, if there are no
handlers for an effect e, then the exception Unhandled e is raised at the point of perform. Our final
await function is as follows.

1 let suspend_monad block =
2 let promise , resolver = Lwt.wait () in
3 let resumer v = Lwt.wakeup resolver v; true in
4 match block resumer with
5 | Some v -> Lwt.return v
6 | None -> promise
7

8 let await p =
9 try Lwt.return (Promise.await p) with
10 | Unhandled (Suspend block) -> suspend_monad block

The Lwt_promise.await function handles the Unhandled (Suspend block) effect and applies the
suspend_monad function to the block function. The suspend_monad function performs the task similar
to the handler for the Suspend effect in effect handler based scheduler from Section 3.4. It uses
Lwt.wait to get a pair of an Lwt’s own internal promise and a resolver. The resolver is the other
end of the Lwt promise. When the resumer is invoked, the promise is filled using Lwt.wakeup on
the resolver with value v, which enables the Lwt task to continue. As in the effect handler based
scheduler, the block function is applied to the resumer with the results appropriately handled. For
simplicity, the resumer function shown here does not handle task cancellation.

Using this solution, we have implemented Lwt-based versions of synchronisation structures that
enables Lwt to seamlessly interact with effect handler based concurrency libraries such as Eio.

16

Effectively Composing Concurrency Libraries Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

6 CONCURRENCY-SAFE LAZY VALUES
So far we have discussed a number of scheduler-agnostic synchronisation structures such as
promises and task-level mutexes. These synchronisation structures were implemented as libraries.
It turns out that the OCaml language has a primitive feature that can take advantage of the Suspend
effect to be parametric over the concurrency library. This feature is lazy values.
OCaml has built-in support for deferred computations through lazy values. The special syntax

lazy (expr) returns a lazy value for computing expr. Forcing this lazy value computes expr and
returns its result. The compiler performs certain optimisations that keeps the cost of accessing the
result of the already forced lazy value to a minimum. Lazy values are especially useful to model the
case where there are many expensive computations but only a few of whose results will be needed,
potentially many times.

Header Field(0)

Lazy_tag

Forcing_tag

Forward_tag

Closure

Result

Fig. 6. Lazy object layout: current

In OCaml, forcing a lazy value is not concurrency-
safe. When a lazy value is concurrently forced, its
behaviour is unspecified but OCaml guarantees that
there will be no crashes and that the lazy computa-
tion is only every forced by one of the callers. The
recommendation is that any use of lazy should be
protected by a mutex. However, the downside of
this solution is that even when the lazy computation
has been computed, the program will still have to
pay for the cost of locking and unlocking the mutex
around the lazy value.

What we need is concurrency-safe lazy that can be accessed concurrently without having to resort
to the use of a mutex. The idea here is similar to blackholing of thunks in the GHC runtime [Harris
et al. 2005; Marlow et al. 2009]. Whenever multiple Haskell (lightweight) threads race to evaluate
a thunk, the threads that lose the race are blocked on the thunk. When the thunk evaluation
completes, the blocked threads are resumed with the result of the thunk evaluation. The difference
between GHC and OCaml is that, unlike GHC, OCaml does not have a built-in thread scheduler in
the runtime system. Instead, we use the Suspend effect to make the lazy implementation parametric
over the scheduler.

6.1 Lazy objects in OCaml today

Header

Lazy_tag

Field(0)

'a lazy_status

Fig. 7. Lazy object layout: concurrency-safe

In order to enable lazy values to take advantage of
Suspend effect, we need to modify the layout of lazy
values in OCaml. Let us first look at the implementa-
tion of lazy values in OCaml today. Figure 6 shows
the layout of lazy objects in OCaml 5. A lazy value
has an object header and one field, each one word in
size. Initially, the lazy value has take Lazy_tag and
the value of the first field is the closure represent-
ing the deferred computation. When the lazy value is forced, the tag is first atomically updated
to Forcing_tag. When the lazy computation either recursively forces itself or another domain
concurrency forces the lazy, it will find the tag to be Forcing_tag. In this case, OCaml raises the
Lazy.Undefined exception. When the computation successfully completes execution, the tag is
updated to Forward_tag and the first field of the object now points to the result. On the other hand,
if the lazy computation raises an exception exn, then the first field is updated to a thunk that raises

17

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Ande et al.

exn and the tag is reset from Forcing_tag to Lazy_tag. This causes subsequent forcing of this lazy
value to immediately raise the exception exn.

The OCaml garbage collector (GC) performs short-cutting optimisation on lazy value. If the GC
observes an object with the Forward_tag, it makes the reference to this object directly point to the
result. Short-cutting avoids one hop when the program access the result of the already evaluated
lazy value. When all the reference to the Forward_tag object have been short-circuited, the object
itself is GCed.

6.2 Suspending on lazy
We modify the layout of the lazy object as shown in Figure 7 in order to accommodate concurrency.
We only use the Lazy_tag now and not the other tags. The first field now stores a value of type
'a lazy_state defined below:

1 type 'a lazy_state =
2 | Unforced of (unit -> 'a)
3 | Forcing of int (* unique id *) * 'a resumer list
4 | Forwarded of 'a

The lazy value initially stores Unforced comp where the comp is the deferred computation. When
the lazy is forced, the state is atomically updated to Forcing (id,[]). The unique id is utilised to
distinguish between recursive forcing of the lazy value by comp and concurrent forcing of the same
lazy by a different task. Recursive forcing is an error and indicates non-termination. This case is
similar to GHC Haskell’s recursive evaluation of a thunk, where GHC raises the NonTermination

exception at runtime. In this case, we raise the Lazy.Undefined exception. Note that this unique id

should be unique not just among the tasks from the current scheduler, but also unique between
tasks from different schedulers. There are several solutions to this problem, but the problem itself
is orthogonal to the focus of this work. Hence, we do not elaborate on this further.
When the lazy is concurrently forced, we use the Suspend effect to capture the resumer and

atomically add it to the resumer list as in the case of promises. When the computation finishes
execution with the result v, the state is atomically updated to Forwarded v and any tasks that
were blocked on this lazy are resumed with the help of the resumer. If the computation throws an
exception exn, the state of the lazy is updated to Unforced (fun () -> raise exn). At this point, we
will need to resume the blocked tasks with the exn. However, observe that the type of the resumer
is a 'a -> bool function (Section 4.2) and can only be resumed with a value.

6.3 Resuming with an exception
We modify the signature of the Suspend effect to be

1 type 'a resumer = ('a,exn) Result.t (* instead of ['a] *) -> bool
2 type _ Effect.t += Suspend: ('a resumer -> 'a option) -> 'a Effect.t

where the Result.t type defined in the OCaml standard library is:
1 (* module Result *)
2 type ('a,'e) t = Ok of 'a | Error of 'e

This is our final type of Suspend effect that we use in our development. The expectation on the
resumers is that if the argument is Ok v then the task is resumed with the value v. If the argument
is Error exn, then the task is set up such that it continues with the exception exn. Observe that
the resumption must be handled in a concurrency-library-specific way. For effect handler based
concurrency libraries, we can use the continue and discontinue primitives for these two cases,

18

Effectively Composing Concurrency Libraries Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

respectively. In the case of Lwt, the resumer will use Lwt.wakeup and Lwt.wakeup_exn, respectively.
Note that Lwt.wakeup_exn exn resolves a promise with the exception exn.

6.4 Advantages of the new lazy design
Our lazy implementation has a number of nice advantages. The OCaml GC can still short-circuit the
lazy values by examining whether the value in the first field was constructed with the Forwarded

constructor. Unlike the existing OCaml 5 design, tags in the object header are no longer modified.
This eliminates the need for the concurrent GC thread marking the lazy object and the OCaml
program modifying the lazy object header [Sivaramakrishnan et al. 2020].

Thanks to the use of Suspend effect, any concurrency library that handles the Suspend effect can
safely share the lazy values. Hence, lazy values can be used by multiple tasks from Eio, Domainslib
and Lwt. But what about sharing lazy values between multiple domains (OS threads that run in
parallel) and systhreads (OS threads that time-share a domain) [OCaml threads library 2023] directly
when there is no user-level scheduler hosted on them? In this case, we will not have a handler for the
Suspend effect. We handle this case similar to the case of handling the Unhandled (Suspend block)

in Lwt (Section 5.2) and parking the domain or the systhread on a condition variable. As a result,
our lazy values can be used concurrently by all concurrency abstractions in OCaml –
domains, systhreads, effect handler based concurrency libraries such as Eio and Domainslib and
monadic concurrency libraries such as Lwt.

7 EVALUATION
In this work, we propose to compose concurrency libraries through the single Suspend effect. This
allows concurrency libraries and synchronisation structures to be implemented independently.
In this section, our goal is to show that this approach is pragmatic and does not incur additional
overheads compared to implementing bespoke concurrency libraries with their own synchronisation
structures.
We have implemented scheduler-agnostic MVars [Peyton Jones et al. 1996], a general-purpose

and expressive synchronisation structure. MVar is a blocking bounded queue with a bound of one.
Taking a value from an empty MVar and putting a value into a full MVar blocks the caller. In our
experiments, we use these MVars to compose together different libraries. Our experiments are run
on a Intel(R) Xeon(R) 5120 CPU x86-64 server with 2 sockets and 28 physical cores. It has 14 cores
on each socket and 2 hardware threads per core. Each core runs at a clock speed of 2.20 GHz. The
server has 64 GB of main memory. It runs on Ubuntu 20.04. We use OCaml compiler version 5.0.0,
which supports effect handlers and shared memory parallelism.

7.1 Producer-consumer benchmark

Table 1. Time (in `s) for sending a single
message between tasks.

Structure Serial Parallel

Eio stream 1.63 4.39
MVar 1.51 4.15

How does the scheduler-agnostic MVar fare against
synchronisation bespoke structures on communication-
intensive workloads? In order to answer this, we imple-
mented a single-producer, single-consumer benchmark in
Eio (version 0.6) where the Eio tasks exchange messages.
Eio provides streams as an efficient way to synchronise
between multiple tasks. Streams are blocking bounded
queues that can only be used between Eio tasks. We use
the bound of 1 in order to match the behaviour of an
MVar. Both streams and MVars are concurrency-safe and can be used across domains. We run two
experiments where the producer and consumer tasks reside on the same domain (serial) and on
different domains (parallel).

19

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Ande et al.

0 5 10 15 20 25
 # Cores

500

1000

1500

2000

 S
er

vi
ce

d
(re

q
/ m

in
)

Offered : 3k req / min

Eio + Domainslib
Eio Domain Manager

(a) Scaling with cores

1500 2000 2500 3000
 Offered (req / min)

1200

1400

1600

1800

2000

 S
er

vi
ce

d
(re

q
/ m

in
)

Cores = 24

Eio + Domainslib
Eio Domain Manager

(b) Scaling with requests

Fig. 8. Throughput of Fibonacci server.

Table 1 reports the time in microseconds (`s) to send a single message between the producer
and the consumer. Sending a message between domains is more expensive due to the potential cost
parking and unparking domains and failed compare_and_set operations. The results show that our
scheduler-agnostic MVar performs on par with Eio streams.

7.2 Fibonacci Server
We measure the performance of the Fibonacci server described in Section 2. Our server is a full-
fledged HTTP server that can handle a large number of concurrent connections and requests. We
compare two variants here: (1) Eio + Domainslib described in Section 3.5 but uses MVars instead
of promises and (2) Eio Domain Manager that uses the Eio’s built-in support for domains. Note
that unlike Eio + Domainslib, the Eio Domain Manager variant does not parallelise a single request
to compute the Fibonacci number, but exploits the fact that multiple requests are independent and
hence can be run in parallel. Eio Domain Manager variant uses Eio streams for communicating
between Eio tasks that may potentially run across different domains. In both cases, the client
workload is generated using wrk2 [Wrk2 2020], a high-performance workload generator for testing
the performance of HTTP servers. For simplicity, every request computes the 45th Fibonacci
number. While our server can accept different inputs, performing the same work in each request
allows us to better interpret the experimental results.

7.2.1 Throughput. We perform two experiments and report the results. First we compare the
throughput of the different variants. In the first experiment, we maintain a constant load of 3000
requests per minute and vary the number of cores. We measure the throughput in terms of the
requests serviced per minute. The results are presented in Figure 8a. In the second experiment,
we maintain the core count to be a constant 24 and increase the number of offered requests and
measure the serviced request rate. The results are presented in Figure 8b. We can see that Eio
+ Domainslib variant scales better in both experiments due to better parallelisation of available
requests with increasing number of core.

7.2.2 Latency. We also measure the 90th percentile (p90) latency on the two experiments. As
we increase the number of cores (Figure 9a), the p90 latency comes down as the requests can
be parallelised across the available cores. We see that the latency comes down faster with Eio +
Domainslib compared to the Eio Domain Manager. This is because with Eio + Domainslib, each of
the requests can itself be parallelised and hence the p90 latency for each request comes down faster.

20

Effectively Composing Concurrency Libraries Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

0 5 10 15 20 25
 # Cores

20

25

30

35

40

45

50

 p
90

 la
te

nc
y

(s
ec

on
ds

)

Offered : 3k req / min
Eio + Domainslib
Eio Domain Manager

(a) Scaling with cores

1500 2000 2500 3000
 Offered (req / min)

0

5

10

15

20

 p
90

 la
te

nc
y

(s
ec

on
ds

)

Cores = 24
Eio + Domainslib
Eio Domain Manager

(b) Scaling with requests

Fig. 9. Latency of the Fibonacci server.

SPMC MPSC MPMC
Benchmarks

0.92

0.94

0.96

0.98

1.00

1.02

1.04

1.06

No
rm

al
ize

d
Ti

m
e

30% cancelled
20% cancelled
10% cancelled

Fig. 10. Normalized time for Cancellation cost benchmark. Baseline is application without any cancelled
tasks

In the second experiment, we fix the number of cores and increase the offered request rate. With
increasing number of requests, we expect each of the requests to take longer to complete. Hence,
we expect the p90 latency to go up. The results in Figure 9b shows that the increase is slower in Eio
+ Domainslib compared to Eio Domain Manager. Thus, in all of our experiments Eio + Domainslib
performs better than Eio Domain Manager variant.

7.3 Cancellation cost
In this section, we measure the cancellation cost using the scheduler that we built in Section 4. We
set up the experiment as follows. The benchmark is a producer-consumer benchmark where the
producers share 50k items with the consumer. All the producers are run on a domain and all the
consumers are run on a different domain. We have three variants of the benchmark: (1) 1 producer
and 10k consumers (SPMC), (2) 10k producers and 1 consumer (MPSC) and (3) 5k producers and 5k
consumers (MPMC). In each of the variants, we cancel a fixed percentage (10%, 20% and 30%) of
tasks. Despite the cancellation, the experiment is set up such that the producers will all together
still send 50k items to the consumer. Hence, the total amount of work done by the benchmark is

21

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Ande et al.

still the same despite cancellation. Given the work done remains the same, the expectation is that,
if the cancellation were zero cost, then the total running time variant with and without cancellation
will be the same.

The results are presented in Figure 10. The graph presents the normalised running time for each
of the variants where the baseline is no cancellation. If the cancellation cost were zero, we would
expect not to see any bars. The graphs show that the maximum slowdown with cancellation is 5%.
But we also see that with cancellations, the programs tend to be faster, and sometimes even faster
than the baseline with no cancellations. This is because with cancellation we will have fewer tasks,
which can get through the fixed amount of work faster thanks to lower task switching overheads.
Overall, the graph shows that cancellation is efficient.

8 RELATEDWORK
Algebraic effect handlers have been an active discipline of theoretical research [Plotkin and Pretnar
2009; Plotkin and Power 2001]. Many research programming languages and libraries implemented
effect handlers. Notable ones are Koka [Leijen 2017a] and Eff [Bauer and Pretnar 2015] which
pioneered the scalable programming with effect handlers. OCaml 5 is the first-industrial strength
language that offers effect handlers. OCaml uses effect handlers as the primary means of achieving
concurrency in direct-style [Dolan et al. 2018; Sivaramakrishnan et al. 2021].
Unlike Koka or Eff, OCaml does not offer effect safety – no static guarantee that all the effects

performed are handled in the program. Effect safety is an active area of research [Biernacki et al.
2019a,b; Hillerstrom et al. 2020; Leijen 2017b]. In OCaml, when there are no handlers for an effect,
the Unhandled exception is raised at the point of perform. Interestingly, we utilise this behaviour to
compose monadic concurrency libraries with direct-style ones.
OCaml 5 introduces language-level support for programming with delimited continuations

through effect handlers. Libraries like Eio and Domainslib offer direct-style concurrency using
effect handlers as opposed to monadic concurrency libraries such as Lwt and Async. Implement-
ing concurrency libraries over first-class continuations, delimited or otherwise, is a well-studied
problem. Several languages in the Lisp family and Standard ML compilers, like SML/NJ and MLton
provide support for first-class continuations on top of which concurrency libraries such as Con-
current ML (CML) [Reppy 1999] are implemented. CML implements a preemptive FIFO scheduler,
provides unbounded blocking channels and mailboxes (MVars) and implements an expressive
framework for building communication protocol over events. The novelty in this work is that,
unlike the idea of “one concurrency library to rule them all”, the Suspend effect permits composition
of different concurrency libraries.
Many modern languages provide support for built-in lightweight concurrency such as the Go

language and GHC Haskell. Implementing the concurrency support entirely in the runtime system
makes the runtime system bloat and monolithic. While Go language is excellent for IO intensive
programs, nested parallelism can neither be expressed naturally using goroutines nor is the Go
scheduler optimised for nested parallel programming. Sivaramakrishnan et al. [KC et al. 2016]
attempted to relieve GHC Haskell of this problem by implementing support for continuations in
GHC and reimplementing the threading subsystem of GHC Haskell completely in Haskell. Similar
to OCaml users may implement their own schedulers for tasks with the help of scheduler activations.
The threads in GHC Haskell interact non-trivially with other parts of the runtime system including
the software-transactional memory, foreign calls, IO manager, lazy evaluation and timers. The
runtime system performs upcalls to the scheduler in order to service these requests similar to the
way the synchronisation structures perform Suspend effect interact with the scheduler, but in the
opposite direction. However, compared to our work, Sivaramakrishnan et al. associate a single
scheduler with every Haskell execution context (HECs), which are equivalent to domains in OCaml.

22

Effectively Composing Concurrency Libraries Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

This prevents richer scheduling policies such as hierarchical scheduling and structured concurrency
libraries such as Eio.
Adding support for asynchronous IO for highly scalable concurrent applications to a program-

ming language often creates a split between synchronous and asynchronous code [Function Colour
2023]. The Rust programming language is no exception. We cannot directly invoke async functions
from sync functions in Rust. We cannot therefore arbitrarily combine sync and asynchronous code.
The execution of async code requires an async runtime. Rust does not have a built-in async runtime,
unlike Go or GHC Haskell. It has a number of community-maintained crates such as Tokio [Tokio
2022], Async-std [Async-std 2023], Rayon [Rayon 2022], Smol, that offer various async runtimes
for concurrency. Similar to OCaml, Rust faces an interoperability problem across different runtimes
due to the presence of multiple async runtimes [Async Rust Book 2023]. Two async runtimes
cannot be freely combined. Nonetheless, efforts have been made to establish compatibility layers
between Tokio and other runtimes [Async Rust Book 2023]. It is possible to merge the Tokio and
Rayon libraries via a bespoke one-shot channel [Rayon Tokio Crate 2021]. However, these are not
universal solutions for composing runtimes.

Stephen et al. [Muller et al. 2017] developed a language and graph-based cost model to combine
competitive and cooperative threading models. The idea here is to implement a scheduling policy
that can handle both competitive and cooperative threads in the same scheduler that guarantees that
the theoretical cost bounds developed in the paper are respected by the implementation. Unlike this,
our goal is to allow composition of different schedulers developed independently. Each scheduler
maintains its own tasks and the tasks from different concurrency libraries only interact through
the synchronisation structures.

9 DISCUSSION
One of OCaml community’s strengths is that there are a variety of libraries for each problem.
Hence, it is anti-thetical that for concurrent programming, the OCaml programmer had to make a
choice between the mutually incompatible Lwt or Async ecosystems. While the arrival of OCaml 5
features, we have another cambrian explosion of concurrency libraries implemented using effect
handlers. It is important that the community finds ways for the libraries to coexist so as to prevent
futher split in the concurrent programming ecosystem. We believe that our unified interface for
expressing concurrency using the Suspend effect:

1 type 'a resumer = ('a,exn) Result.t -> bool
2 type _ Effect.t += Suspend: ('a resumer -> 'a option) -> 'a Effect.t

offers a simple, effective and performant solution for concurrency library composition. We plan to
propose the Suspend effect to be included in the OCaml standard library so that different libraries
may agree on this effect and develop their composable solutions against this interface. In this work,
we also show how to fix the tricky problem of making lazy values compatible with disparate forms
of concurrency in the OCaml language using the above interface.

REFERENCES
Async 2023. Typeful concurrent programming. https://opensource.janestreet.com/async/
Async Rust Book 2023. Asynchronous programming in Rust. https://rust-lang.github.io/async-book/01_getting_started/03_

state_of_async_rust.html#compatibility-considerations
Async-std 2023. Async version of the Rust standard library. https://docs.rs/async-std/latest/async_std/
Andrej Bauer and Matija Pretnar. 2015. Programming with algebraic effects and handlers. Journal of Logical and Algebraic

Methods in Programming 84, 1 (2015), 108–123. https://doi.org/10.1016/j.jlamp.2014.02.001 Special Issue: The 23rd Nordic
Workshop on Programming Theory (NWPT 2011) Special Issue: Domains X, International workshop on Domain Theory
and applications, Swansea, 5-7 September, 2011.

23

https://opensource.janestreet.com/async/
https://rust-lang.github.io/async-book/01_getting_started/03_state_of_async_rust.html#compatibility-considerations
https://rust-lang.github.io/async-book/01_getting_started/03_state_of_async_rust.html#compatibility-considerations
https://docs.rs/async-std/latest/async_std/
https://doi.org/10.1016/j.jlamp.2014.02.001

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Ande et al.

Dariusz Biernacki, Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski. 2019a. Abstracting Algebraic Effects. Proc. ACM
Program. Lang. 3, POPL, Article 6 (jan 2019), 28 pages. https://doi.org/10.1145/3290319

Dariusz Biernacki, Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski. 2019b. Binders by Day, Labels by Night: Effect
Instances via Lexically Scoped Handlers. Proc. ACM Program. Lang. 4, POPL, Article 48 (dec 2019), 29 pages. https:
//doi.org/10.1145/3371116

C# async/await 2023. Asynchronous programming with async and await. https://learn.microsoft.com/en-us/dotnet/csharp/
asynchronous-programming/

Stephen Dolan, Spiros Eliopoulos, Daniel Hillerström, Anil Madhavapeddy, K. C. Sivaramakrishnan, and Leo White. 2018.
Concurrent System Programming with Effect Handlers. In Trends in Functional Programming, Meng Wang and Scott
Owens (Eds.). Springer International Publishing, Cham, 98–117.

Domainslib 2022. A library for nested parallel programming. https://github.com/ocaml-multicore/domainslib
Eio 2022. Effects-based direct-style IO for multicore OCaml. https://github.com/ocaml-multicore/eio
Function Colour 2023. What Color is Your Function? http://journal.stuffwithstuff.com/2015/02/01/what-color-is-your-

function/
Tim Harris, Simon Marlow, and Simon Peyton Jones. 2005. Haskell on a Shared-Memory Multiprocessor. In Proceedings of

the 2005 ACM SIGPLAN Workshop on Haskell (Tallinn, Estonia) (Haskell ’05). Association for Computing Machinery, New
York, NY, USA, 49–61. https://doi.org/10.1145/1088348.1088354

Daniel Hillerstrom, Lindley Sam, and Robert Atkey. 2020. Effect handlers via generalised continuations. Journal of Functional
Programming 30 (2020), e5. https://doi.org/10.1017/S0956796820000040

io_uring 2023. Efficient IO with io_uring. https://kernel.dk/io_uring.pdf
Java Virtual threads 2023. JEP 444: Virtual Threads. https://openjdk.org/jeps/444
JEP428 2023. JEP 428: Structured Concurrency (Incubator). https://openjdk.org/jeps/428
JSGenerators 2023. function*. https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/function*#

description
Sivaramkrishnan KC, Tim Harris, Simon Marlow, and Simon Peyton Jones. 2016. Composable scheduler activations for

Haskell. Journal of Functional Programming 26 (2016), e9. https://doi.org/10.1017/S0956796816000071
Kotlin coroutines 2023. Coroutines. https://kotlinlang.org/docs/coroutines-overview.html
Daan Leijen. 2017a. Type Directed Compilation of Row-Typed Algebraic Effects. In Proceedings of the 44th ACM SIGPLAN

Symposium on Principles of Programming Languages (Paris, France) (POPL ’17). Association for Computing Machinery,
New York, NY, USA, 486–499. https://doi.org/10.1145/3009837.3009872

Daan Leijen. 2017b. Type Directed Compilation of Row-Typed Algebraic Effects. In Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages (Paris, France) (POPL ’17). Association for Computing Machinery,
New York, NY, USA, 486–499. https://doi.org/10.1145/3009837.3009872

Loom 2023. Project Loom: Fibers and Continuations for the Java Virtual Machine. https://cr.openjdk.org/~rpressler/loom/Loom-
Proposal.html

Lwt_domain 2023. Lwt_domain: A library to use domains-based parallelism from Lwt. https://github.com/ocsigen/lwt_domain
Simon Marlow, Simon Peyton Jones, and Satnam Singh. 2009. Runtime Support for Multicore Haskell. In Proceedings of the

14th ACM SIGPLAN International Conference on Functional Programming (Edinburgh, Scotland) (ICFP ’09). Association for
Computing Machinery, New York, NY, USA, 65–78. https://doi.org/10.1145/1596550.1596563

Stephen Muller, Umat K. Acar, and R. Harper. 2017. Responsive parallel computation: bridging competitive and cooperative
threading. In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation
(Barcelona, Spain) (PLDI 2017). Association for Computing Machinery, New York, NY, USA, 677–692. https://doi.org/10.
1145/3140587

OCaml Effects 2023. Language Extensions : Effect handlers. https://kcsrk.info/webman/manual/effects.html
OCaml Lazy 2023. Manual for Lazy module in OCaml. https://v2.ocaml.org/api/Lazy.html#TYPEt
OCaml threads library 2023. The threads library. https://v2.ocaml.org/manual/libthreads.html
Simon Peyton Jones, Andrew Gordon, and Sigbjorn Finne. 1996. Concurrent Haskell. In Proceedings of the 23rd ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (St. Petersburg Beach, Florida, USA) (POPL ’96).
Association for Computing Machinery, New York, NY, USA, 295–308. https://doi.org/10.1145/237721.237794

Gordon Plotkin and Matija Pretnar. 2009. Handlers of Algebraic Effects. In Programming Languages and Systems, Giuseppe
Castagna (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 80–94.

Gordon D. Plotkin and John Power. 2001. Adequacy for Algebraic Effects. In Foundations of Software Science and Computation
Structure.

Rayon 2022. A data parallelism library for the Rust programming language. https://docs.rs/rayon/latest/rayon/
Rayon Tokio Crate 2021. Rayon Tokio Crate. https://github.com/andybarron/tokio-rayon
John H. Reppy. 1999. Concurrent Programming in ML. Cambridge University Press. https://doi.org/10.1017/

CBO9780511574962

24

https://doi.org/10.1145/3290319
https://doi.org/10.1145/3371116
https://doi.org/10.1145/3371116
https://learn.microsoft.com/en-us/dotnet/csharp/asynchronous-programming/
https://learn.microsoft.com/en-us/dotnet/csharp/asynchronous-programming/
https://github.com/ocaml-multicore/domainslib
https://github.com/ocaml-multicore/eio
http://journal.stuffwithstuff.com/2015/02/01/what-color-is-your-function/
http://journal.stuffwithstuff.com/2015/02/01/what-color-is-your-function/
https://doi.org/10.1145/1088348.1088354
https://doi.org/10.1017/S0956796820000040
https://kernel.dk/io_uring.pdf
https://openjdk.org/jeps/444
https://openjdk.org/jeps/428
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/function*#description
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/function*#description
https://doi.org/10.1017/S0956796816000071
https://kotlinlang.org/docs/coroutines-overview.html
https://doi.org/10.1145/3009837.3009872
https://doi.org/10.1145/3009837.3009872
https://cr.openjdk.org/~rpressler/loom/Loom-Proposal.html
https://cr.openjdk.org/~rpressler/loom/Loom-Proposal.html
https://github.com/ocsigen/lwt_domain
https://doi.org/10.1145/1596550.1596563
https://doi.org/10.1145/3140587
https://doi.org/10.1145/3140587
https://kcsrk.info/webman/manual/effects.html
https://v2.ocaml.org/api/Lazy.html#TYPEt
https://v2.ocaml.org/manual/libthreads.html
https://doi.org/10.1145/237721.237794
https://docs.rs/rayon/latest/rayon/
https://github.com/andybarron/tokio-rayon
https://doi.org/10.1017/CBO9780511574962
https://doi.org/10.1017/CBO9780511574962

Effectively Composing Concurrency Libraries Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

KC Sivaramakrishnan, Stephen Dolan, Leo White, Sadiq Jaffer, Tom Kelly, Anmol Sahoo, Sudha Parimala, Atul Dhiman, and
Anil Madhavapeddy. 2020. Retrofitting Parallelism onto OCaml. Proc. ACM Program. Lang. 4, ICFP, Article 113 (Aug.
2020), 30 pages. https://doi.org/10.1145/3408995

KC Sivaramakrishnan, Stephen Dolan, Leo White, Tom Kelly, Sadiq Jaffer, and Anil Madhavapeddy. 2021. Retrofitting Effect
Handlers onto OCaml. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language
Design and Implementation (PLDI 2021). Association for Computing Machinery, New York, NY, USA, 206–221. https:
//doi.org/10.1145/3453483

Tokio 2022. An asynchronous runtime for the Rust programming language. https://tokio.rs/
Jérôme Vouillon. 2008. Lwt: A Cooperative Thread Library. In Proceedings of the 2008 ACM SIGPLAN Workshop on ML

(Victoria, BC, Canada) (ML ’08). Association for Computing Machinery, New York, NY, USA, 3–12. https://doi.org/10.
1145/1411304.1411307

Wrk2 2020. A constant throughput, correct latency recording variant of wrk. https://github.com/giltene/wrk2

25

https://doi.org/10.1145/3408995
https://doi.org/10.1145/3453483
https://doi.org/10.1145/3453483
https://tokio.rs/
https://doi.org/10.1145/1411304.1411307
https://doi.org/10.1145/1411304.1411307
https://github.com/giltene/wrk2

	Abstract
	1 Introduction
	1.1 Challenge
	1.2 Solution
	1.3 Contributions

	2 Motivation
	3 Effective composition
	3.1 A concurrency-safe FIFO scheduler
	3.2 The Suspend effect
	3.3 Promises
	3.4 Handling suspend effect
	3.5 Fixing the Fibonacci server

	4 Cancellation
	4.1 Cancellation challenges
	4.2 Cancellation awareness
	4.3 Eager and lazy cancellation

	5 Composing monadic libraries
	5.1 Monadic API for synchronisation structures
	5.2 Integrating Suspend effect with Lwt

	6 Concurrency-safe lazy values
	6.1 Lazy objects in OCaml today
	6.2 Suspending on lazy
	6.3 Resuming with an exception
	6.4 Advantages of the new lazy design

	7 Evaluation
	7.1 Producer-consumer benchmark
	7.2 Fibonacci Server
	7.3 Cancellation cost

	8 Related Work
	9 Discussion
	References

