Composing Schedulers using Effect Handlers

Deepali Ande
IIT Madras, India

Abstract

OCaml 5 introduces effect handlers as a mechanism for con-
current programming. With effect handlers, concurrency can
be expressed in direct-style rather than in monadic-style as
in Lwt [9] and Async [2]. Rather than baking in the notion
of a thread scheduler, the compiler exposes delimited contin-
uations, with the idea that different libraries may implement
their own concurrency primitive, with their own schedulers.
Under this setting, given that the notion of a concurrent task
is tied to a particular scheduler, it is challenging to allow
tasks from different schedulers to interact with each other.
If this problem is not solved, the ecosystem runs the risk
of repeating the schism between Lwt and Async in OCaml
today.

In this paper, we observe that the composability of effect
handlers permits composability of schedulers. The key idea is
that we can use effect handlers to define a uniform interface
for suspending and resuming tasks, which is implemented by
each of the schedulers. On top of this, we define scheduler-
agnostic synchronization structures that allows tasks from
different schedulers to interact. We also report on how this
mechanism can be extended to capture the notion of task
cancellation that extends across different schedulers.

1 The challenge of scheduler composition

OCaml 5 introduces support for shared-memory parallelism
and native concurrency in OCaml. OCaml is the first industrial-
strength language to incorporate effect handlers. OCaml
users may define their own domain-specific schedulers us-
ing effect handlers.

As an example, Eio [4] is an effect-based direct-style IO
library for OCaml 5. The library aims to be a replacement
for monadic style libraries such as Lwt and Async. Unlike
monadic concurrency libraries, Eio uses effect handlers to
implement concurrent tasks. Eio introduces structured con-
currency using switches where groups of tasks may be waited
on together for completion. While Eio supports multiple do-
mains, to retain the simplicity of program reasoning, Fio
does not multiplex tasks across multiple domains. Another
user of effect handlers is Domainslib [3], a library for nested
parallel programming. Domainslib tasks are created and their
results consumed using async/await primitives. Domainslib
scheduler uses a lock-free work-stealing queue to distribute
tasks across the available workers.

Conference’17, July 2017, Washington, DC, USA

KC Sivaramakrishnan
IIT Madras, India

It is conceivable that an application may want to use both
Eio and Domainslib at the same time. For example, a data-
base management system in OCaml 5 may want to handle
concurrent client sessions using Eio while offloading query
processing to Domainslib. Another example is the Tezos
blockchain baker nodes which may use Eio for communicat-
ing with the rest of the network while offloading serialisation
and cryptography to Domainslib. Unfortunately, while both
Eio and Domainslib use effect handlers to implement tasks,
they have incompatible mechanisms for suspending and re-
suming threads.

Consider the example of an Eio task performing await on
a Domainslib promise. If the Eio and Domainslib handlers
(run functions) are arranged such that the Domainlib handler
encloses the Eio handler,

Domainslib.run (->

Eio.run (_ >
Domainslib.await ...;

)

then, the await function call may block the entire Eio sched-
uler since await is handled at Domainslib. run which encloses
Eio.run. We call this issue as vertical composition of sched-
ulers. Alternatively, the application might have Domainslib
and Eio schedulers running on different domains. If an Eio
task performs await, then there will be no Domainslib han-
dler in scope, and the program will raise Unhandled exception.
We call this the horizontal composition problem.

There are already several alternative concurrency libraries
being proposed for OCaml 5 [1]. Unless the issue of scheduler
composition is addressed, we may have the situation where
different concurrency libraries remain incompatible, leading
to either the library authors maintain compatibility with
several different concurrency libraries or (more likely) a split
in the library ecosystem.

2 Proposal

We propose that the libraries agree on a common interface
that captures the notion of suspending and resuming tasks.
Each library implements this interface. Such an interface may
be used to implement blocking synchronisation structures
such as MVars and Channels. The simplified version of the
interface is given below:

'a resumer = 'a -> unit
_ Effect.t +=

Suspend ('a resumer -> unit) -> 'a t

Conference’17, July 2017, Washington, DC, USA

Whenever the synchronization structure (say MVar or
Channel) wants to block the current user-level thread on
a particular condition, it performs Suspend f. At the han-
dler, i.e, the scheduler, f is applied to a “resumer” function.
This resumer function, when applied to the result, adds the
blocked thread to the scheduler so that it resumes with the
result. The blocking operation squirrels away this resumer
in the synchronization structure’s state. Now that the cur-
rent thread is blocked in the synchronization structure, the
handler switches control to the next runnable thread in the
scheduler. The full-fledged interface will also need to handle
racy access to the synchronization structure from multiple
domains (the suspend operation may fail) and the cancella-
tion of suspended tasks (the resume operation may fail).

We have built a prototype of the scheduler-agnostic MVar
implementation implementation'. As one can see in the MVar
implementation, the MVar does not refer to any concrete
scheduler. The prototype shows how to compose two sched-
ulers where one schedules tasks in FIFO order and the other
schedules them in LIFO order. The schedulers are composed
horizontally, and the example shows that the tasks from
these two schedulers can coordinate using the MVar imple-
mentation without blocking other tasks from their respective
schedulers. We have also experimented with larger exam-
ples that utilises Domainslib and Eio together in the same
application.

3 Related work

OCaml is not the first language to support concurrency na-
tively. Undelimited continuations using call/cc are well
known in the literature and are implemented by various
language in the Lisp family as well as Standard ML compil-
ers such as SML/NJ and MLton. While there have been many
implementation of concurrency libraries such as Concurrent
ML [7], the focus is not composition of several schedulers.

Language such as Go and GHC Haskell support light-
weight threads. Go has goroutines and GHC Haskell has
threads. These lightweight tasks are implemented directly
by the compiler and the runtime system, with the scheduler
being part of the runtime system. Given that the language
bakes in the concurrency model, the problem of composition
does not exist. The downside of this approach is that the run-
time does not specialise the scheduler for specific purposes
as is the case with Domainslib and Eio.

The Rust programming language does not itself impose
a concurrent and parallel programming model, leaving the
libraries to implement them. Tokio [8] is an asynchronous
runtime for Rust that has similar goals as Eio in OCaml.
Rayon [5] is a data-parallel programming library that has
similar goals as Domainslib in OCaml. Using these libraries
has the same challenges as the ones that we are trying to

https://github.com/kayceesrk/code-snippets/tree/master/scheduler_
parateric_mvar

D.Ande, K.C.Sivaramakrishnan

solve in this work. However, unlike our proposal which aims
to develop a scheduler agnostic solution that works across
any scheduler that implements this interface, Rust’s solution
is a bespoke one-shot channel [6] to communicate between
Tokio and Rayon. These bespoke solutions by definition do
not work with other concurrency libraries.

References

[1] Affect 2022. Composable concurrency primitives for OCaml 5.0. https:
//erratique.ch/software/affect

[2] Async 2022. A hybrid approach to asynchronous programming. https:
//opensource.janestreet.com/async/

[3] Domainslib 2022. A library for nested parallel programming. https:
//github.com/ocaml-multicore/domainslib

[4] Eio 2022. Effects-based direct-style IO for multicore OCaml. https:
//github.com/ocaml-multicore/eio

[5] Rayon 2022. A data parallelism library for the Rust programming lan-
guage. https://docs.rs/rayon/latest/rayon/

[6] Rayon Tokio Crate 2021. Rayon Tokio Crate. https://github.com/
andybarron/tokio-rayon

[7] John H. Reppy. 2007. Concurrent Programming in ML. Cambridge Univ.
Press.

[8] Tokio 2022. An asynchronous runtime for the Rust programming language.
https://tokio.rs/

[9] Jérome Vouillon. 2008. Lwt: A Cooperative Thread Library. In Proceed-
ings of the 2008 ACM SIGPLAN Workshop on ML (Victoria, BC, Canada)
(ML °08). Association for Computing Machinery, New York, NY, USA,
3-12. https://doi.org/10.1145/1411304.1411307

https://github.com/kayceesrk/code-snippets/tree/master/scheduler_parateric_mvar
https://github.com/kayceesrk/code-snippets/tree/master/scheduler_parateric_mvar
https://erratique.ch/software/affect
https://erratique.ch/software/affect
https://opensource.janestreet.com/async/
https://opensource.janestreet.com/async/
https://github.com/ocaml-multicore/domainslib
https://github.com/ocaml-multicore/domainslib
https://github.com/ocaml-multicore/eio
https://github.com/ocaml-multicore/eio
https://docs.rs/rayon/latest/rayon/
https://github.com/andybarron/tokio-rayon
https://github.com/andybarron/tokio-rayon
https://tokio.rs/
https://doi.org/10.1145/1411304.1411307

	Abstract
	1 The challenge of scheduler composition
	2 Proposal
	3 Related work
	References

