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——— Abstract

The landscape of data-intensive applications today span the gamut from large-scale Web
applications expected to provide persistent, fault-tolerant, high-availability, and low-latency geo-
distributed services to loosely connected IoT networks comprised of millions of heterogeneous
devices streaming and processing realtime data feeds. In both cases, application logic is usually
expressed using high-level, often domain-specific, language abstractions, while data management
issues are typically relegated to an opaque monolithic data querying and storage service. While
this architecture encourages separation of concerns, it provides little opportunity for synergies
between the application and database/storage boundary. In particular, applying well-understood
programming language principles and verification techniques to ensure data management services
enforce application-level invariants becomes difficult, jeopardizing safety and maintainability.

To overcome these drawbacks, we propose a radically different view of how applications
and databases should interact with one another. Our approach encapsulates data management
functionality within transparent libraries written in the same language as the application they
support (OCaml in our case). An immediate benefit of our approach is that properties relevant to
the application can be now directly interpreted, enforced, and verified by the data management
layer. Similarly, database functionality related to consistency, integrity, scalability and fault-
tolerance can be couched in terms of the data types manipulated by the application.

Our ideas can be thought of as a natural extension of unikernels, applied to data (as opposed
to computation). We sketch the design of a library-centric data management stack called Dali,
and describe how we unify data representation issues across layers, and exploit language-level
data type information to realize scalability and persistence.
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1 Introduction

Modern day Web applications increasingly rely on distributed, fault-tolerant databases to
provide important data management services that ensure an always-on experience. Complex
application requirements have given rise to a large number of purpose-built distributed
data management solutions. The software stack that props up these critical services is a
messy and chaotic one. While developers use high-level language abstractions and data
structures to program application logic, they nonetheless implicitly rely on lower-level data
management, operating system, and runtime services for many important features such as
persistence, multi-threading, network communication, etc. Unfortunately, the semantics
of these services and the representation of the objects they manipulate are often defined
independently from the high-level language structures that use them. As a result, unlike
traditional database systems, distributed data management solutions in these environemnt
routinely violate application-level consistency and integrity constraints.

Further complicating matters is the recent proliferation of Internet-of-Things (IoT) devices.
Here, developers face the daunting task of programming against a loosely connected network
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of millions of unreliable, resource constrained devices, where heterogeneity and failures are
the order of the day, and issues of security and correctness are paramount. These devices
often have access to personal and sensitive data (such as GPS-based locators and heart rate
monitors) or control safety-critical systems (such as smoke alarms and home security). It is
increasingly apparent that ad hoc data management solutions running over unstable system
software will contribute to catastrophic failures in these environments.

In response to the concerns, recent efforts have looked at shrinking the number of layers
(and their complexity) in the software stack through the use of principles expounded by
library OS designs [7, 11]. These techniques lift many of the services traditionally performed
by operating systems into the application layer, and link the application directly to the
hardware resources rather than depending on an ambient operating system kernel to mediate
such traffic. Protocols and services that would ordinarily be encapsulated with operating
system modules are instead handled by high-level application libraries that selectively use
drivers required to drive the underlying architecture (either bare-metal, more commonly
a hypervisor to provide virtual memory and coarse process multiplexing). These so-called
unikernels [13] thus provide specialized computation environments tailored for both the
target hardware and for the applications that execute on them.

While unikernels have been promoted as an effective means of reducing control complexity,
this paper examines their design rationale as a vehicle for reducing data complexity. Broadly
construed, data complexity relates to various aspects of data management and manipulation
that form the bulk of modern-data enterprise application activity that typically consists of
three superficially distinct layers:

An application layer that enforces a domain model to capture application-specific invariants

and relationships;

A data model layer that represents the translation of these invariants into a lower-level

logical representation (e.g., SQL) amenable for efficient manipulation and querying;

A storage model that handles issues of persistence, consistency, fault tolerance, and data

distribution.

While programmers prefer to reason about application semantics in the application layer
(i.e., in terms of the domain model), the architecture of the stack requires them to reason about
a combination of properties across all the layers. The resultant tension is pithily captured in
the following quote by David Heinemeier Hansson, the creator of Ruby-on-Rails [6, 2]:

I don’t want my database to be clever! ...I consider stored procedures and constraints
vile and reckless destroyers of coherence. No, Mr. Database, you can not have my
business logic. Your procedural ambitions will bear no fruit and you’ll have to pry that
logic from my dead, cold object-oriented hands ...I want a single layer of cleverness:
My domain model.

Unfortunately, keeping the domain model hidden from the database while still realizing
efficiency and correctness is a non-trivial challenge: as data moves from one layer to the next,
its representation can change dramatically (e.g., a tree structure in the application may be
transformed into a relational table or key-value persistent object in the data store). Change in
representation also entails change in specification and invariant definition; relating high-level
invariants on application data structures to low-level invariants on store-defined objects thus
requires new reasoning principles. System-specific properties of the storage model—such
as consistency and replication—also affect application integrity, further complicating this
reasoning. Indeed, existing attempts to isolate domain specific knowledge from the database
has had mixed success at best, leading to surprising violations of application integrity [2].
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There are two issues we believe conspire against building efficient yet verifiably correct
data-centric applications:

A representation mismatch between the domain model of the application and the data
model of underlying data store, and

A semantic mismatch between high-level integrity specifications of the domain model and

the low-level system-specific properties of the data storage model.

Rather than letting low-level concerns dictate data representation choices at the storage layer
(e.g., SQL relations) or the application layer (e.g., CRDTs [16]), our solution (called DalLi)
unifies data representations across all layers of the stack to the one adopted by the domain
model. To support high-level data representation at the database storage layer, DaLi adopts
a content-addressable distributed memory abstraction that provides persistent storage within
a versioned Git-like architecture. This design enables system-specific aspects of database
functionality such as persistence, replication, data consistency and fault-tolerance to be
expressed in terms of application-meaningful semantics. Our prototype implementation builds
all of this directly in OCaml, with data management and storage functionality described
as OCaml module signatures and implemented as OCaml modules, and with applications
parameterized across just the signatures they need using OCaml functors.

Dali is thus a distributed data management system implemented as a collection of replicas
each of which is instantiated to precisely provide functionality necessary to guarantee salient
application invariants are preserved. Each of these replicas execute on top of a hypervisor and
thus subsume the functionality of a typical unikernel. Our vision thus conceives a database
system to be a library of specialized components rather than as a general-purpose service;
the components required for a specific application depends entirely on the application’s needs.
Because each of these components are expressed using the same OCaml language features as
the application itself, whole system reasoning becomes feasible and effective, thus bridging
the semantic mismatch between the domain model and the data and storage models.

While the conceptual elegance of a unified language framework for programming data-
centric distributed systems has obvious appeal, we believe the practical significance of such a
system—especially in the context of emerging application areas like IoT—will be particularly
important. The inherent diversity with respect to scale, heterogeneity, and functionality in
such systems demands solutions that both simplify system complexity and facilitate end-to-
end correctness arguments. Dali’s unikernel-inspired framework provides these ingredients
by radically eliminating and simplifying abstraction boundaries in the data path.

2 Motivation

In a conventional application stack, the domain model is usually captured as a set of inter-
related datatype definitions in a high-level language, while business logic is implemented
around in-memory objects and their data structures. Consider the example in Fig. 1. The
figure shows the domain model of an IoT device tracking application written in OCaml that,
for illustrative purposes, only includes the information about a device’s security setting, and
the task groups in which the device participates (e.g., a networked speaker might participate
in a music streaming task with other speakers in the home). The domain model nonetheless
captures important representation and semantic invariants of the application. For example:
A device or a group is represented as a record. Security information is a variant record,
whereas the role a device plays in a group is defined in terms of an enumerated type
(Coordinator or Participant).
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type role = Coordinator | Participant
type security =

| Public of { ip: string; }

| Protected of { auth: string; network: net ref }
type device =

{ name : string; joined : Time.t;

security : security; groups : (group ref * role) list }

and group =

{ name : string; desc : string; devices : device ref list}

Figure 1 The domain model of a device tracking application in OCaml

A device is part of zero or more task groups'. Conversely, a group contains zero or more
devices. Both these invariants follow from the inductive definition of lists. The type
system also ensures that a protected device is part of precisely one network.
Type-safety guarantees provided by ML ensure that if a device, a network, or a task
group refers to one another, then the referenced entity is guaranteed to exist.

Unfortunately, the knowledge captured by the domain model does not translate straightfor-
wardly to the data model of a typical data store. For instance, if our application were to use
a relational database to provide efficient querying capability, persistence, and fault tolerance
of device state, the various datatype definitions given in Fig. 1 would have to be translated to
relational schema definitions. Since there may not exist a store-level analogue of a high-level
type, the application has to ensure that every high-level type maps to an appropriate store
type during the translation (e.g., role and string types might be mapped to MySQL’s
varchar type). Furthermore, techniques such as normalization may need to be employed to
appropriately map compositionally defined ML datatypes to flat relational schemas.

More significantly, invariants that are implicit in datatype definitions need to be made
explicit in the relational schema. In our example, this would entail establishing foreign key
relationships between device and group relations. Integrity constraints such as non-zero
group membership that can be enforced naturally in the source, now need to be defined
through other (usually tool-specific) means. The task of adding efficient data management
services to an application strips the programmer of the comforts of high-level reasoning,
requiring reasoning in terms of a data model that is far removed from application semantics.

The above example demonstratates a so-called object-relational impedance mismatch [10].
While several object-relation mapping (ORM) frameworks exist [15, 3], their solutions are ad
hoc at best, and provide no formal, rigorous correctness guarantees. For example, using a
NoSQL store such as MongoDB or Cassandra, instead of a relational one introduces further
complications. High scalability and availability requirements compel a NoSQL store to
eschew strong data consistency guarantees that are otherwise provided by a relational store,
making it difficult to understand how application integrity invariants can be enforced. For
instance, in the absence of any provision to specify foreign key relationships, how does a
NoSQL store ensure referential integrity between devices and groups? Are transactional
semantics required? If so, in what form? Answering such questions is understandably hard
for an application programmer not familiar with the nuances of data store functionality. The
Dali stack is designed to address challenges like the ones described above.

1 Devices, such as Amazon’s Echo, can multi-task.
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Figure 2 The Dali application stack is shown on the right. Components and workflow that lead
to the application binary are highlighted in gray.

3 Dali

Figure 2 summarizes the architecture of the Dali stack, and the typical workflow of DalLi
applications. Dali applications code necessarily includes modules that implement application
logic, and optionally includes various supporting modules, such as a language-level thread
library, libraries that implement persistence and replication, libraries that interface with the
hypervisor (e.g., MirageOS [13]) etc. The presence of the entire application code base enables
cross-layer static verification and whole-program optimization, resulting in an optimized
application binary that runs directly on the hypervisor and the hardware. While each
component of the DalLi stack and workflow merits discussion, space considerations lead us
to focus our attention on the verification (Section 3.1) and data representation and storage
(Section 3.2) components. Both these components are critical to help DaLi achieve its twin
goals: while the verification library component bridges the semantic gap between high-level
application requirements and lower-level data management guarantees, the data store library
component is designed to overcome the mismatch between application and persistence layers
with respect to data structure representation and management. The Dali compilation
strategy also raises interesting challenges briefly addressed in Section 3.3.

3.1 Cross-layer Static Verification

As discussed in Section 2, the task of translating high-level application invariants to appropri-
ate store-level properties is non-trivial, especially in the presence of replication and the desire
for high availability. It is therefore imperative for an alternative software stack that aims to
simplify database programming to provide automatic reasoning tools that help applications
map their high-level requirements to appropriate lower-level datastore guarantees. We have
built a static verification engine called Q6 to serve this purpose.

Q6 is primarily designed to verify whether an application’s invariants can be preserved
under a given choice of a data store-level configuration. In its current form, Q6 focuses on
the store configuration pertaining to operation consistency [18] and transaction isolation
levels [4]. To understand the functioning of Q6, let us consider the record keeping application
from Fig. 1. Suppose the application supports add and retrieve operations on device
records, the former creating a new device record and inserting it into a devices collection,
and the later retrieving a device record (by name) from the collection. Consider a sample
client session that adds a new device record for spkr, and subsequently retrieves it. Given a
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Figure 3 A client session executing against an SC memory abstraction and an EC replicated
store.

sequentially consistent (SC) memory abstraction, the retrieve operation for spkr’s record is
always guaranteed to succeed, and the session never throws an error (Fig. 3a). This simple
invariant, enforced implicitly by language mechanisms, is however not guaranteed to hold if
we allow persistence and weakly consistent replication, which allow operations applied to just
a single replica of the store to immediately succeed, asynchronously merging their updates
at other replicas in the background. In the current example, this admits the possibility
(Fig. 3b) that an add operation is applied to one replica (A) of the store, while a subsequent
retrieve operation contacts a different replica (B) that hasn’t yet merged A’s updates,
causing retrieve to fail. To avoid such anomalies, we need to wrap retrieve within an
implementation of a so-called Read-My-Writes (RMW) session guarantee [17], to ensure the
operation witnesses all effects of all previous operations from the same session. Unfortunately,
RMW is only one of the many possible consistency guarantees [18] that can extend the
capabilities of weakly consistent replication. The canonical way of specifying such guarantees
is through a detailed axiomatic semantics defined in terms of relations over low-level system
traces [5], a characterization far-removed from application semantics.

Q6 automates the aforementioned reasoning process entirely. Using the data store’s
cost model that associates cost to alternative configurations of the store (e.g., an eventually
consistent (EC) configuration has the least cost, RMW configuration has a slightly higher cost,
and an SC configuration has the highest cost), and with help of provable counterexamples
that demonstrate the violation of application integrity, Q6 infers the least cost dynamic store
configuration strategy that is guaranteed to preserve salient application invariants. In the
current example, Q6 strengthens the consistency level of a retrieve operation, as described
above, but ensures weak consistency for other operations to retain performance.

At its core, Q6 is a symbolic execution engine that generates first-order constraints which
encode application integrity and data consistency properties, relying on an SMT solver to
solve constraints and generate counterexamples. Fortunately, there exist a range of well-
known consistency and transaction isolation guarantees with clearly-defined (albeit low-level,
as described above) first-order semantics. These guarantees can be implemented as modular
extensions to a weakly consistent replicated store, thus letting us extend store capabilities as
required. An application may not need the whole range of consistency /isolation guarantees,
in which case Q6 can be used to determine the required subset of consistency guarantees
that need to be included in the application binary.
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Version a Version c

Version b Version d

Figure 4 Concurrent modifications to a replicated data structure results in branching in IRMIN.

Grey background highlights modifications on each branch. A three-way merge involving diverging
versions (b and ¢) and their common ancestor (a) is performed to collapse the branches. The merged
version (d) includes modifications from both the branches, with all conflicts resolved (dark gray).

3.2 Storage Library

The cornerstone of the Dali stack is a library called IRMIN that implements a persistent
multi-versioned store with a content-addressable memory abstraction? [8]. Multi-versioning
and content-addressability lets IRMIN support persistent OCaml data structures, thereby
eliminating the representational mismatch between the application layer and the data store
layer. Reasoning in terms of functional data structures is now uniformly applicable. IRMIN’s
intrinsic support for object-level versioning facilitates application integrity enforcement. For
instance, in our running example, suppose patio thermometer’s device record refers to the
record of the temperature group, and suppose the application updates the group name to
indoor temperature, while also removing patio thermometer from the group’s devices and
the group from patio thermometer’s groups. Despite these changes, a computation that
references an older record of patio thermometer would continue to see it as part of the
temperature group, thus witnessing a consistent state.

Persistence itself is however not the only service expected of the storage layer; sophisticated
applications often require replication, fault-tolerance, and concurrency control. To admit
replication, IRMIN’s storage model is based on the principles of distributed version control
systems. This model fits naturally with the challenges of distributed data management, where

the replicas are expected to serve clients requests even when there are network partitions.

At its core, IRMIN provides an efficient way to clone data structures, and enables rich and
expressive ways to be able to efficiently merge back the cloned structures. To see how clone
and merge are useful in maintaining replicated data structures, let us consider a B-tree data
structure of device records that the tracking application (Fig. 1) might use to maintain
the collection of all devices. Suppose an add operation intends to insert a device record
for thermometer into the tree while another insertion operation (for accelerometer) is in
process. Instead of waiting for accelerometer’s add operation to conclude, thermometer’s
add action can execute at a replica of the tree obtained by cloning an earlier consistent

2 Simply put, content-addressibility means that the address of a data block is determined by its content.

If the content changes, then so does the address. Old content continues to be available the old address.
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version. Following the analogy of distributed version control, accelerometer’s add is said
to execute on the master branch, whereas thermometer’s add executes on the cloned branch.
After both insertions complete, the branch can be merged back to the master resulting in a
version that contains both insertions (Fig. 4). While generic merge strategies are often useful,
IRMIN lets applications define merge semantics for each data structure via a three-way merge
function that operates on the two diverging versions and their common ancestor. In addition,
the IRMIN library includes implementations of well-known data structures equipped with
efficient 3-way merges such as counters, logs, queues, ropes, etc [8]. Notably, the specification
of these merge operations can be given in terms of OCaml data structures and semantics
since there is no longer a representation mismatch between the application and storage layers.

3.3 Uncollapsing the stack

The unikernel compilation strategy offers benefits of cross-layer verification and whole-
program optimizations. But unikernels, as traditionally envisioned, also produce monolithic
executables as compilation artifacts. Adopting this philosophy to Dali means combining the
application, data management, and data storage layers within the same executable. While
small optimized executables are beneficial in terms of low-latency service scalability and
isolation [12], monolithic executables stand in stark contrast to state-of-the-art database
systems where the application and data storage layers are deployed as independent services.

While we have argued about the deficiencies of such a design, its primary advantage -
enabling each layer to be independently horizontally scaled on demand, is an important one.
For example, storage layer nodes are typically provisioned on hardware with fast, reliable,
redundant array of disks, while application layer nodes are provisioned on hardware with
fast CPUs and high bandwidth network connections, with cloud providers offering virtual
machines specialized for different data management service requirements [1]. With monolithic
executables, provisioning becomes more challenging as the machines provisioned must be op-
timized along multiple axes simultaneously. Moreover, government regulations may stipulate
legal restrictions on handling, storage and transfer of data across geographic boundaries [14];
compliance of these regulations becomes harder in the presence of homogeneous monolithic
nodes, all of which store and manage data.

To address these concerns, we envision a compilation strategy that uses compile-time
meta programming [19] to retain the advantages of unikernels but still reap the benefits of
multi-tiered deployment. Our idea is to co-compile different layers in the Dali stack, where
compile-time knowledge is fed as configuration time parameters for each layer [9]. Each layer
is described in terms of a uniform substrate that provides fine-grained representation and
access capabilities, the actual manifestation of data distribution and storage is determined by
backend implementations that can be linked, but not directly modified, by the application.
Concretely, a Dali instance can specify relationships and integrity constraints among IRMIN
objects, but the mapping and serialization of these objects onto a performant backend data
store remains the purview of the IRMIN implementation, not the application.

4 Conclusions

Dali is a new approach to storage management that meets the challenge of modern ap-
plication’s needs for geo-distributed, loosely-coupled, heterogenous storage. The modular,
library-based approach provides a principled foundation for tackling the emerging large-scale
problem of security, confidentiality, long-term archiving, and delay-tolerant search presented
by the billions of mobile and embedded systems being deployed across the Internet.
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