
Eff Directly in OCaml

Oleg Kiselyov
Tohoku University, Japan

oleg@okmij.org

KC Sivaramakrishnan
University of Cambridge, UK

sk826@cam.ac.uk

Abstract
We present the embedding of the language Eff into OCaml, us-
ing the library of delimited continuations or the OCaml-effects
branch. The embedding is systematic, lightweight, performant and
supports even higher-order, ‘dynamic’ effects with their polymor-
phism. OCaml thus may be regarded as another implementation of
Eff, broadening the scope and appeal of that language.

1. Summary
The Eff language1 is an OCaml-like language centered on algebraic
effects [1], designed to try out algebraic effects on a larger scale and
gain practical experience using them. It is currently implemented as
an interpreter, with a compiler to OCaml in the works.

Rather than compile Eff to OCaml, we embed it. After all, save
for algebraic effects, Eff truly is a subset of OCaml. The effect-
specific parts are translated to the OCaml code that uses the library
of delimited control delimcc [3] or the new effects of the OCaml-
effects branch [2]. The translation is local and straightforward. In
fact, it is so simple that it is currently done by hand. We thus present
a set of OCaml idioms for effectful programming with the almost
exact look-and-feel of Eff.

We idiomatically support even ‘dynamic effects’ of Eff 3.1 with
their attendant polymorphism, offering a more general view: on our
translation, the dynamic creation of effects is but another effect,
with no special syntax or semantics.

The source code of all our examples and benchmarks is avail-
able at http://okmij.org/ftp/continuations/Eff/.

2. Eff in Itself and OCaml
We illustrate the Eff embedding on the running example, juxtapos-
ing Eff code with the corresponding OCaml. We thus demonstrate
both the simplicity of the translation and the way to do Eff-like
effects in idiomatic OCaml.

An effect in Eff has to be declared first2:
type α nondet = effect

operation fail : unit → empty
operation choose : (α ∗ α) → α

end

Our running effect is thus familiar non-determinism. The declara-
tion introduces only the names of effect operations and their types.
The semantics is to be defined by a handler later on.

In OCaml, the Eff declaration is rendered as the data type:
type α nondet =
| Fail of unit ∗ (empty → α nondet result)
| Choose of (α ∗ α) ∗ (α → α nondet result)

assuming the previously defined types
type empty

1 http://www.eff-lang.org/
2 Eff code is marked with double lines to distinguish it from OCaml.

type ε result = Done | Eff of ε

The translation pattern should be easy to see: each data type vari-
ant has exactly two arguments, the latter is the continuation. The
attentive reader quickly recognizes the freer monad [4]3.

Next we “instantiate the effect signature”, as Eff puts it:
let r = new nondet

after which we can write the sample Eff code with the non-
determinism effect:

let f () =
let x = r#choose (”a”, ”b”) in
print string x ;
let y = r#choose (”c”, ”d”) in
print string y

In OCaml, the effect instantiation takes the form
let r = new prompt ()

calling the function from the delimcc library. An effect instance of
Eff hence corresponds to a prompt of delimcc. We are now ready
to translate the sample Eff code to OCaml. The translation looks
cleaner if we first define helper functions, for each effect of the
nondet signature:

let choose : α nondet result prompt → α ∗ α → α = fun p arg →
shift0 p (fun k → Eff (Choose (arg,k)))

and similar for fail. These definitions are entirely regular and can be
mechanically generated. The (inferred) signature tells that OCaml’s
choose is quite like Eff’s r#choose: it takes the effect instance
(prompt) and a pair of values and (non-deterministically) returns
one of them. Strictly speaking, however, choose does hardly any-
thing: it merely captures the continuation and packs it, along with
the argument in the data structure, to be passed to the effect handler.
It is the handler that does the choosing.

The sample Eff code can be literally pasted into OCaml, with
small stylistic adjustments:

let f () =
let x = choose r (”a”,”b”) in
print string x;
let y = choose r (”c”,”d”) in
print string y;

The effect instance r is passed to choose as the regular argument,
without any special r# syntax.

To run the sample code, we have to tell how to interpret the
effect actions Choose and Fail: so far, we have only defined their
names and types: the algebraic signature. It is the interpreter of
the actions, the handler, that infuses the action operations with
their meaning. For example, Eff may execute the sample code by
interpreting choose to follow up on both choices, depth-first:

let test1 = handle f () with
| val x → x
| r#choose (x, y) k → k x ; k y
| r#fail () → ()

3 The connection to the freer monad points out thatα nondet does not really
need the parameter – neither in OCaml, nor, more importantly, in Eff.

That is, when asked to choose, we continue the program with the
first alternative – and continue it again, with the second one.

The Eff handling can be performed in OCaml in the same way,
having built a small bit of infrastructure. Recall, the result of every
ε action has the type ε result, which does not include the type of
the result. The result has to be extracted via a side-effect then:

type α result value = α option ref
let get result : α result value → α = fun r →
match !r with Some x → r := None; x

This round-about extraction trick gives “answer-type” polymor-
phism without the first-class polymorphism and the attendant awk-
wardness. The other bit of the infrastructure is the boilerplate to set
the prompt (limiting the extent of the continuation captured by the
effect action) and to save the result, to be extracted by the handler:

let handle it :
α result prompt → (∗ effect instance ∗)
(unit → ω) → (∗ expression ∗)
(ω result value → α result → γ) → (∗ handler ∗)
γ = fun effectp exp handler →

let res = ref None in
handler res (push prompt effectp @@ fun () →

res := Some (exp ()); Done)

The Eff handler example looks in OCaml as:
let test1 = handle it r f @@ fun res →
let rec handler = function
| Done → get result res
| Eff Choose ((x,y),k) → handler (k x); handler (k y)
| Eff Fail (x,k) → ()

in handler

The only difference is that Eff handlers are “deep” (that is, they
automatically re-apply to the continued computations) whereas our
handlers are shallow, and we have to re-apply them manually. Other
than that, the translation is straightforward and local.

Eff supports nested handlers; e.g., the inner nondet handler may
handle only Choose in some special way, leaving Fail for the outer
handler. The inner handler may also do its own nondet effects, to be
dealt with by the outer handler then. All these cases are translated
to OCaml in the manner just outlined, and just as straightforwardly.
The accompanying code shows several examples.

3. Higher-order Effects
Our running example used the single instance r of the nondet ef-
fect, created at the top level – essentially, ‘statically’. Eff also sup-
ports creating effect instances as the program runs. These, ‘dy-
namic effects’ let us, for example, implement reference cells as
instances of the state effect. The realization of this elegant idea
required extending Eff with default handlers, with their special syn-
tax and semantics. The complexity was the reason dynamic effects
were removed from Eff 4.0 (but may be coming back).

The OCaml embedding of Eff gave us the vantage point of view
to realize that dynamic effects may be treated themselves as an
effect. This New effect may create arbitrarily many instances of
arbitrary effects of arbitrary types. Below we briefly describe the
challenge of dynamic effects and its resolution in OCaml.

We take the state effect as the new running example:
type α state =
| Get of unit ∗ (α → α state result)
| Put of α ∗ (unit → α state result)

Having defined get and put effect-sending functions like choose
before, we can use state as we did nondet:

let a = new prompt () in
handle it a (fun () →
let u = get a () in let v = get a () in
put a (v + 30); let w = get a () in (u,v,w))

(handler ref 10)

The handler in Eff (and in OCaml) is a function and so can be
detached (defined separately) as we have just done for the handler
of state requests. It receives as argument the initial state value.

let rec handler ref s res = function
| Done → get result res
| Eff Get (,k) → handler ref s res @@ k s
| Eff Put (s ,k) → handler ref s res @@ k ()

To really treat an instance of state as a reference cell, we
need a way to create many state effects of many types. When-
ever we need a new reference cell, we should be able to create
a new instance of the state signature and to wrap the program
with the handler for the just created instance. The first part is easy,
especially in the OCaml embedding: the effect-instance–creating
new prompt is the ordinary function, and hence can be called any-
where and many times. To just as dynamically wrap the program in
the handle it . . . (handler ref n) block is complicated. Eff had to
introduce ‘default handlers’ for a signature instance, with special
syntax and semantics. An effect not handled by an ordinary (local)
handler is given to the default handler, if any.

Our OCaml embedding demonstrates that dynamic effects re-
quire nothing special: Creating a new instance and handling it may
be treated as an ordinary effect:

type ε handler t = {h: ∀ω. ω result value → ε result → ω}
type dyn instance =

New : ε handler t ∗ (ε result prompt → dyn instance result)
→ dyn instance

let new instance p arg = shift0 p (fun k → Eff (New (arg,k)))

The New effect receives as the argument the handling function h.
The New handler creates a new instance p and passes it as the reply
to the continuation – at the same time wrapping the continuation
into the handling block handle it . . . h:

let rec new handler res = function
| Done → get result res
| Eff New ({h= h},k) →

let p = new prompt () in
handle it p (fun () → new handler res @@ k p) h

Both steps of the dynamic effect creation are hence accomplished
by the ordinary handler. The allocation of a reference cell is hence

let pnew = new prompt ()
let newref s0 = new instance pnew {h = handler ref s0}
 val newref : α → α state result prompt = <fun>

Being polymorphic, newref may allocate cells of arbitrary types.
The New effect, albeit ‘higher-order’, is not special. Program-

mers may write their own handlers for it, e.g., to implement trans-
actional state.

In conclusion, we have demonstrated the embedding of Eff 3.1
in OCaml by a simple, local translation. We may almost cut-and-
paste Eff code into OCaml, with simple adjustments. Theoretically,
the framework of delimited continuation has clarified the thorny
dynamic effects, demonstrating that there is nothing special about
them. Dynamic effect creation can be treated as an ordinary effect.
The accompanying code shows several examples, including the
queens benchmark.

References
[1] A. Bauer and M. Pretnar. Programming with algebraic effects and

handlers. Journal of Logical and Algebraic Methods in Programming,
84(1):108–123, 2015. .

[2] S. Dolan, L. White, K. Sivaramakrishnan, J. Yallop, and A. Mad-
havapeddy. Effective concurrency through algebraic effects, 2015.
OCaml Users and Developers Workshop.

[3] O. Kiselyov. Delimited control in OCaml, abstractly and concretely.
Theoretical Computer Science, 435:56–76, June 2012. .

[4] O. Kiselyov and H. Ishii. Freer monads, more extensible effects. In
Haskell, pages 94–105. ACM, 2015. .

