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Abstract

Handlers for algebraic effects provide a compelling and mod-
ular basis for effectful programming by separating the use
of an effectful operation from its meaning. Previous work
studies implementation strategies, although, most often fo-
cusing on a particular compilation strategy or a particular
embedding technique. We compare a range of implementa-
tion strategies specifically for handlers on the web.

1 Motivation

Despite being a quite recent programming abstraction han-
dlers for algebraic effects [17, 18] have already been widely
adopted by the research community as witnessed by the
many implementations and studies of handlers [1, 4, 7, 9-
11, 13, 14]. Handlers are also gaining traction in industry,
for instance, finding their way into Uber’s probabilistic pro-
gramming language Pyro [5], and inspiring the design of
Facebook’s rendering engine React Fiber [15] which under-
pins the popular JavaScript user interface framework React.

An attractive aspect of effect handlers is that they pro-
vide a modular abstraction for effectful programming which
generalises a range of contemporary programming abstrac-
tions such as generators/iterators and async/await [3, 12].
This modularity is achieved by separating invocation of an
effectful operation from implementation of its handled be-
haviour; akin to the separation of raising an exception from
its handled behaviour. In this sense effect handlers generalise
exception handlers, as they permit handling of arbitrary user-
definable effects, including exceptions, non-determinism,
concurrency, state, and so forth. Operationally, a handler
captures the continuation of an operation invocation in its
scope. The handler exposes this continuation as a first-class
value to the programmer inside the handler, allowing the
programmer to drop or stash away the continuation, or to in-
voke it, possibly multiple times, in order to resume execution
at the invocation point of the operation.

Existing systems use different strategies to implement ef-
fect handlers. Eff [1] translates handlers to a free monad
representation [19]. Multicore OCaml [4] adapts the stack-
switching design by Bruggeman et al. [2] to provide an ef-
ficient native implementation. The web programming lan-
guages Koka and Links use different strategies. Koka per-
forms a selective continuation passing style (CPS) translation
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to lift effectful code into a free monad [13]. Links uses a gen-
eralised CEK machine to implement handlers on the server-
side [7] and makes use of a higher-order CPS translation on
the client-side [8].

In this work we consider compilation of effect handlers to
the web. We choose JavaScript as the compilation target as
it presently remains the only viable option for the web; at
least until WebAssembly has been brought up to speed [6].
We detail the advantages and disadvantages of each imple-
mentation strategy through a comparative study.

2 Five implementation strategies

We identify five implementation strategies for compiling
handlers to JavaScript including two novel translations based
on generators and iterators and another via generalised stack
inception [16]. The other three strategies are the well-known
free monad, CPS, and abstract machine approaches.

3 Methodology

As our starting point we implement each strategy as a sepa-
rate JavaScript backend for Links. For each of the backends
we evaluate the quality of the generated code on the five
most popular JavaScript execution engines: i) Chakra used by
Microsoft Edge, ii) JavaScriptCore used by Safari, iii) Spider-
Monkey used by Firefox, iv) V8 used by Chrome and Opera,
v) and Node Js. To assess the quality of the generated code we
measure the execution time and the memory consumption
as well as the warm-up time on each engine.

4 Preliminary results

Preliminary results suggest that the CPS strategy outper-
forms the other strategies when running on a platform that
supports tail call optimisation. Making it robust requires a
trampoline which has a negative impact on the performance.
The CEK machine is robust, but it has a notable interpre-
tative overhead. This overhead could likely be reduced by
using partial evaluation techniques. We are currently in the
process of tweaking each of the backends.

5 Talk objectives

The talk will cover: i) motivating examples for programming
with handlers on the web, ii) a high-level discussion of how
each implementation strategy works, iii) and a comparative
evaluation of the aforementioned strategies.
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