Handlers.Js (Presentation)

A Comparative Study of Implementation Strategies for Effect Handlers on the Web

Daniel Hillerstrom

Sam Lindley
The University of Edinburgh, UK

Abstract

Handlers for algebraic effects provide a compelling and mod-
ular basis for effectful programming by separating the use
of an effectful operation from its meaning. Previous work
studies implementation strategies, although, most often fo-
cusing on a particular compilation strategy or a particular
embedding technique. We compare a range of implementa-
tion strategies specifically for handlers on the web.

1 Motivation

Despite being a quite recent programming abstraction han-
dlers for algebraic effects [17, 18] have already been widely
adopted by the research community as witnessed by the
many implementations and studies of handlers [1, 4, 7, 9-
11, 13, 14]. Handlers are also gaining traction in industry,
for instance, finding their way into Uber’s probabilistic pro-
gramming language Pyro [5], and inspiring the design of
Facebook’s rendering engine React Fiber [15] which under-
pins the popular JavaScript user interface framework React.

An attractive aspect of effect handlers is that they pro-
vide a modular abstraction for effectful programming which
generalises a range of contemporary programming abstrac-
tions such as generators/iterators and async/await [3, 12].
This modularity is achieved by separating invocation of an
effectful operation from implementation of its handled be-
haviour; akin to the separation of raising an exception from
its handled behaviour. In this sense effect handlers generalise
exception handlers, as they permit handling of arbitrary user-
definable effects, including exceptions, non-determinism,
concurrency, state, and so forth. Operationally, a handler
captures the continuation of an operation invocation in its
scope. The handler exposes this continuation as a first-class
value to the programmer inside the handler, allowing the
programmer to drop or stash away the continuation, or to in-
voke it, possibly multiple times, in order to resume execution
at the invocation point of the operation.

Existing systems use different strategies to implement ef-
fect handlers. Eff [1] translates handlers to a free monad
representation [19]. Multicore OCaml [4] adapts the stack-
switching design by Bruggeman et al. [2] to provide an ef-
ficient native implementation. The web programming lan-
guages Koka and Links use different strategies. Koka per-
forms a selective continuation passing style (CPS) translation

Robert Atkey
University of Strathclyde, UK

KC Sivaramakrishnan

Jeremy Yallop
University of Cambridge, UK

to lift effectful code into a free monad [13]. Links uses a gen-
eralised CEK machine to implement handlers on the server-
side [7] and makes use of a higher-order CPS translation on
the client-side [8].

In this work we consider compilation of effect handlers to
the web. We choose JavaScript as the compilation target as
it presently remains the only viable option for the web; at
least until WebAssembly has been brought up to speed [6].
We detail the advantages and disadvantages of each imple-
mentation strategy through a comparative study.

2 Five implementation strategies

We identify five implementation strategies for compiling
handlers to JavaScript including two novel translations based
on generators and iterators and another via generalised stack
inception [16]. The other three strategies are the well-known
free monad, CPS, and abstract machine approaches.

3 Methodology

As our starting point we implement each strategy as a sepa-
rate JavaScript backend for Links. For each of the backends
we evaluate the quality of the generated code on the five
most popular JavaScript execution engines: i) Chakra used by
Microsoft Edge, ii) JavaScriptCore used by Safari, iii) Spider-
Monkey used by Firefox, iv) V8 used by Chrome and Opera,
v) and Node Js. To assess the quality of the generated code we
measure the execution time and the memory consumption
as well as the warm-up time on each engine.

4 Preliminary results

Preliminary results suggest that the CPS strategy outper-
forms the other strategies when running on a platform that
supports tail call optimisation. Making it robust requires a
trampoline which has a negative impact on the performance.
The CEK machine is robust, but it has a notable interpre-
tative overhead. This overhead could likely be reduced by
using partial evaluation techniques. We are currently in the
process of tweaking each of the backends.

5 Talk objectives

The talk will cover: i) motivating examples for programming
with handlers on the web, ii) a high-level discussion of how
each implementation strategy works, iii) and a comparative
evaluation of the aforementioned strategies.



References
[1] Andrej Bauer and Matija Pretnar. 2015. Programming with algebraic

(17
[18

(19

—

-

—

e

effects and handlers. 7. Log. Algebr. Meth. Program. 84, 1 (2015), 108-
123.

Carl Bruggeman, Oscar Waddell, and R. Kent Dybvig. 1996. Represent-
ing Control in the Presence of One-Shot Continuations. In Proceedings
of the ACM SIGPLAN’96 Conference on Programming Language Design
and Implementation (PLDI), Philadephia, Pennsylvania, May 21-24, 1996,
Charles N. Fischer (Ed.). ACM, 99-107.

Stephen Dolan, Spiros Eliopoulos, Daniel Hillerstrom, Anil Mad-
havapeddy, KC Sivaramakrishnan, and Leo White. 2017. Concurrent
System Programming with Effect Handlers. TFP. (2017).

Stephen Dolan, Leo White, KC Sivaramakrishnan, Jeremy Yallop, and
Anil Madhavapeddy. 2015. Effective Concurrency through Algebraic
Effects. OCaml Workshop. (2015).

Noah Goodman. 2017. Uber Al Labs Open Sources Pyro, a Deep
Probabilistic Programming Language. (Nov. 2017). https://eng.uber.
com/pyro/

Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer,
Michael Holman, Dan Gohman, Luke Wagner, Alon Zakai, and J. F.
Bastien. 2017. Bringing the web up to speed with WebAssembly. In
PLDI. ACM, 185-200.

Daniel Hillerstrém and Sam Lindley. 2016. Liberating effects with
rows and handlers. In TyDe@ICFP. ACM, 15-27.

Daniel Hillerstrom, Sam Lindley, Robert Atkey, and K. C. Sivaramakr-
ishnan. 2017. Continuation Passing Style for Effect Handlers. In FSCD
(LIPIcs), Vol. 84. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
18:1-18:19.

Ohad Kammar, Sam Lindley, and Nicolas Oury. 2013. Handlers in
action. In ICFP. ACM, 145-158.

Oleg Kiselyov, Amr Sabry, and Cameron Swords. 2013. Extensible
effects: an alternative to monad transformers. In Haskell. ACM, 59-70.
Daan Leijen. 2017. Implementing Algebraic Effects in C - "Monads for
Free in C". In APLAS (Lecture Notes in Computer Science), Vol. 10695.
Springer, 339-363.

Daan Leijen. 2017. Structured Asynchrony with Algebraic Effects. In
TyDe@ICFP. ACM, 16-29.

Daan Leijen. 2017. Type directed compilation of row-typed algebraic
effects. In POPL. ACM, 486—-499.

Sam Lindley, Conor McBride, and Craig McLaughlin. 2017. Do be do
be do. In POPL. ACM, 500-514.

Sebasitian Markbaage. 2016. How React Fiber Works. (2016).
https://www.facebook.com/groups/2003630259862046/permalink/
2054053404819731/ Facebook discussion.

Greg Pettyjohn, John Clements, Joe Marshall, Shriram Krishnamurthi,
and Matthias Felleisen. 2005. Continuations from generalized stack
inspection. In ICFP. ACM, 216-227.

Gordon D. Plotkin and John Power. 2001. Adequacy for Algebraic
Effects. In FoSSaCS (LNCS), Vol. 2030. Springer, 1-24.

Gordon D. Plotkin and Matija Pretnar. 2013. Handling Algebraic Effects.
Logical Methods in Computer Science 9, 4 (2013).

Matija Pretnar, Amr Hany Saleh, Axel Faes, and Tom Schrijvers. 2017.
Efficient compilation of algebraic effects and handlers. Technical Report
CW 708. KU Leuven, Belgium.


https://eng.uber.com/pyro/
https://eng.uber.com/pyro/
https://www.facebook.com/groups/2003630259862046/permalink/2054053404819731/
https://www.facebook.com/groups/2003630259862046/permalink/2054053404819731/

	Abstract
	1 Motivation
	2 Five implementation strategies
	3 Methodology
	4 Preliminary results
	5 Talk objectives
	References

