
Building a lock-free STM for OCaml

Vesa Karvonen
Tarides

vesa.a.j.k@gmail.com

Bartosz Modelski
Tarides

modelski.bartosz@gmail.com

Carine Morel
Tarides

carine@tarides.com

Thomas Leonard
Tarides

talex5@gmail.com
KC Sivaramakrishnan

Tarides
kc@kcsrk.info

YSS Narasimha Naidu
IIT Madras

shashankyeluri@gmail.com

Sudha Parimala
Tarides

sudharg247@gmail.com

Abstract
The kcas1 library was originally developed to provide a prim-
itive atomic lock-free multi-word compare-and-set operation.
This talk introduces kcas and discusses the recent development
of kcas turning it into a proper lock-free software transactional
memory implementation for OCaml that provides composable
transactions, scheduler friendly modular blocking, and comes
with a companion library of composable lock-free data struc-
tures.

Motivation
Having just recently acquired the ability to have multiple do-
mains running in parallel OCaml is in a unique position. Instead
of having a long history of concurrent multicore programming
we can start afresh. What sort of concurrent programming
model should OCaml provide?

Libraries like Eio2 and Domainslib3 utilize OCaml’s support for
algebraic effects to provide lightweight threads of control. But,
while threads are a prerequisite for concurrent programming,
we also need mechanisms for threads to communicate and
synchronize.

Traditional mechanisms for communication and synchroniza-
tion, such as message queues, and mutexes and condition vari-
ables, do not compose. On the other hand, in the author’s
anecdotal experience, composable message passing models tend
to be unfamiliar and challenging to programmers. Transac-
tional memory is a more recent abstraction that offers both a
relatively familiar programming model and composability.

Composing transactions
Consider the implementation of a least-recently-used (LRU)
cache or a bounded associative map. A simple approach to
implement a LRU cache is to use a hash table and a doubly-
linked list and keep track of the amount of space in the cache:

1(“kcas: Software Transactional Memory Based on Lock-Free Multi-
Word Compare-and-Set” 2023)

2(“eio: Effect-Based Direct-Style IO API for OCaml” 2023)
3(“domainslib: Nested-Parallel Programming Library” 2023)

type ('k, 'v) cache =
{ space: int Loc.t; (* Loc is like Atomic *)

table: ('k, 'k Dllist.node * 'v) Hashtbl.t;
order: 'k Dllist.t }

On a cache lookup the doubly-linked list node corresponding
to the accessed key is moved to the left end of the list:

let get_opt {table; order; _} key =
Hashtbl.find_opt table key
|> Option.map @@ fun (node, value) ->

Dllist.move_l node order; value

On a cache update, in case of overflow, the association corre-
sponding to the node on the right end of the list is dropped:

let set {table; order; space; _} key value =
let node =

match Hashtbl.find_opt table key with
| None ->

if 0 = Loc.update space (fun n -> max 0 (n-1))
then Dllist.take_opt_r order

|> Option.iter (Hashtbl.remove table);
Dllist.add_l key order

| Some (node, _) -> Dllist.move_l node order; node
in
Hashtbl.replace table key (node, value)

While this is a fine sequential implementation, in a concurrent
setting this doesn’t work even if the individual operations on
lists and hash tables were atomic.

Fortunately, rather than having to wrap the cache implemen-
tation behind a mutex and make another individually atomic
yet uncomposable data structure, or having to learn a com-
pletely different programming model and rewrite the cache
implementation, we can use the transactional programming
model provided by the kcas library and the transactional data
structures provided by the kcas_data4 library to trivially con-
vert the previous implementation to a lock-free composable
transactional data structure.

To make it so, we simply use transactional versions, *.Xt.*, of

4(“kcas_data: Compositional Lock-Free Data Structures and Primitives
for Communication and Synchronization” 2023)

1



operations on the data structures and explicitly pass a transac-
tion log, ~xt, to the operations.

For the get_opt operation we end up with

let get_opt ~xt {table; order; _} key =
Hashtbl.Xt.find_opt ~xt table key
|> Option.map @@ fun (node, value) ->

Dllist.Xt.move_l ~xt node order; value

and the set operation is just as easy to convert to a transac-
tional version.

Transactional operations, like get_opt, can then be performed
atomically by committing them

Xt.commit { tx = get_opt cache key }

or such operations can be composed further — just like we
composed the get_opt operation itself by explicitly passing a
transaction log, ~xt, through the operations.

In addition to the ability to compose atomic operations, sim-
ilarly to the Haskell STM,5 kcas also provides the ability to
await on arbitrary conditions over the contents of shared mem-
ory locations. As an example, we can convert the non-blocking
get_opt operation to a blocking get operation as follows:

let get ~xt cache key =
match get_opt ~xt cache key with
| None -> Retry.later ()
| Some value -> value

The Retry.later () call tells the transaction mechanism of
kcas that the transaction should only be retried after some
shared memory locations accessed by the transaction have been
modified by another thread of execution. While the operation
is blocked, schedulers like Eio and Domainslib are free to run
other threads on the domain.

The design and evolution of kcas

The kcas library was originally developed to provide a primitive
atomic lock-free multi-word compare-and-set (k-CAS) based
on a practical algorithm.6 k-CAS is a powerful tool for de-
signing concurrent algorithms as it allows one to update an
arbitrary number of shared memory locations atomically. k-
CAS is also attractive as, with relatively recently developed
algorithms,7 it can be implemented both efficiently, requiring
only k+1 single-word compare-and-set operations, and scalably,
such that disjoint operations can progress in parallel without
interference. These properties make k-CAS potentially compet-
itive with locking based STM algorithms.8

However, there is still room to improve. Programming in terms
of compare-and-set operations is not particularly convenient, as
it requires one to laboriously build lists of operations, account

5(T. Harris et al. 2005)
6(T. L. Harris, Fraser, and Pratt 2002)
7(Guerraoui et al. 2020)
8(Dice, Shalev, and Shavit 2006)

for read skew, and implement mechanisms to retry in case of
interference.

Furthermore, while k-CAS is able to express arbitrary updates
of shared memory locations, it is quite common even for mutat-
ing operations on data structures to only read some locations.9
Due to the way shared memory works, implementing read-only
operations in terms of read-write operations is inefficient and
unscalable.

With the goal to make kcas attractive both

• for experts implementing correct and performant lock-free
data structures, and

• for everyone gluing together programs using such data
structures

the kcas library has gone through a series improvements to
both the interface and the internal implementation. After
introducing the kcas and kcas_data libraries, we will briefly
discuss these improvements.

In particular, this talk will briefly discuss:

• The new obstruction-free k-CAS-n-CMP algorithm10 im-
plemented by kcas that also provides efficient lock-free
k-CAS as a subset.

• The direct style transactional programming interface of
kcas that is easy to use with all the control flow structures
of OCaml.

• The internal implementation of the transaction mechanism
of kcas based on a splay tree and how the properties of
splay trees can be exploited to allow allows many transac-
tions to be performed in linear time.

• The scheduler friendly blocking mechanism11 used by kcas
and provided by schedulers like Eio and Domainslib allow-
ing blocking abstractions to work across schedulers.

This talk will also briefly discuss the main trade-offs that kcas
makes in an attempt to provide both scalable performance and
a convenient programming model. In particular, this talk will
briefly discuss:

• The support for nested transactions provided by kcas
requiring explicit snapshot and rollback operations.

• The read skew anomaly or lack of opacity12 and the ways
in which kcas attempts to mitigate it.

References
Dice, Dave, Ori Shalev, and Nir Shavit. 2006. “Trans-

actional Locking II.” In Proceedings of the 20th Inter-
national Conference on Distributed Computing, 194–208.
DISC’06. Berlin, Heidelberg: Springer-Verlag. https:
//doi.org/10.1007/11864219_14.

9(Luchangco, Moir, and Shavit 2003)
10(Karvonen 2023)
11(“domain-local-await: A Scheduler Independent Blocking Mechanism”

2023)
12(Guerraoui and Kapalka 2008)

2

https://doi.org/10.1007/11864219_14
https://doi.org/10.1007/11864219_14


“domain-local-await: A Scheduler Independent Blocking
Mechanism.” 2023. https://opam.ocaml.org/packages/
domain-local-await/.

“domainslib: Nested-Parallel Programming Library.” 2023. ht
tps://opam.ocaml.org/packages/domainslib/.

“eio: Effect-Based Direct-Style IO API for OCaml.” 2023. https:
//opam.ocaml.org/packages/eio/.

Guerraoui, Rachid, and Michal Kapalka. 2008. “On the Cor-
rectness of Transactional Memory.” In Proceedings of the
13th ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming, 175–84. PPoPP ’08. New
York, NY, USA: Association for Computing Machinery.
https://doi.org/10.1145/1345206.1345233.

Guerraoui, Rachid, Alex Kogan, Virendra J. Marathe, and
Igor Zablotchi. 2020. “Efficient Multi-Word Compare and
Swap.” https://arxiv.org/abs/2008.02527.

Harris, Tim, Simon Marlow, Simon Peyton-Jones, and Maurice
Herlihy. 2005. “Composable Memory Transactions.” In
Proceedings of the Tenth ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, 48–60.
PPoPP ’05. New York, NY, USA: Association for Comput-
ing Machinery. https://doi.org/10.1145/1065944.1065952.

Harris, Timothy L., Keir Fraser, and Ian A. Pratt. 2002. “A
Practical Multi-Word Compare-and-Swap Operation.” In
Distributed Computing, edited by Dahlia Malkhi, 265–79.
Berlin, Heidelberg: Springer Berlin Heidelberg.

Karvonen, Vesa. 2023. “Extending k-CAS with Efficient Read-
Only CMP Operations.” https://gist.github.com/polytypic/
0efa0e2981d2a5fc4b534a0e25120cc9.

“kcas: Software Transactional Memory Based on Lock-Free
Multi-Word Compare-and-Set.” 2023. https://opam.ocaml
.org/packages/kcas/.

“kcas_data: Compositional Lock-Free Data Structures and
Primitives for Communication and Synchronization.” 2023.
https://opam.ocaml.org/packages/kcas_data/.

Luchangco, Victor, Mark Moir, and Nir Shavit. 2003. “Non-
blocking k-Compare-Single-Swap.” In Proceedings of the
Fifteenth Annual ACM Symposium on Parallel Algorithms
and Architectures, 314–23. SPAA ’03. New York, NY, USA:
Association for Computing Machinery. https://doi.org/10.1
145/777412.777468.

3

https://opam.ocaml.org/packages/domain-local-await/
https://opam.ocaml.org/packages/domain-local-await/
https://opam.ocaml.org/packages/domainslib/
https://opam.ocaml.org/packages/domainslib/
https://opam.ocaml.org/packages/eio/
https://opam.ocaml.org/packages/eio/
https://doi.org/10.1145/1345206.1345233
https://arxiv.org/abs/2008.02527
https://doi.org/10.1145/1065944.1065952
https://gist.github.com/polytypic/0efa0e2981d2a5fc4b534a0e25120cc9
https://gist.github.com/polytypic/0efa0e2981d2a5fc4b534a0e25120cc9
https://opam.ocaml.org/packages/kcas/
https://opam.ocaml.org/packages/kcas/
https://opam.ocaml.org/packages/kcas_data/
https://doi.org/10.1145/777412.777468
https://doi.org/10.1145/777412.777468

	Motivation
	Composing transactions
	The design and evolution of kcas
	References

