
A Coherent and Managed Runtime for ML on the
SCC

KC Sivaramakrishnan†, Lukasz Ziarek\, and Suresh Jagannathan†

† Purdue University, \ SUNY Buffalo
{chandras, suresh}@cs.purdue.edu, lziarek@buffalo.edu

Abstract—Intel’s Single-Chip Cloud Computer (SCC) is a
many-core architecture which stands out due to its complete lack
of cache-coherence and the presence of fast, on-die interconnect
for inter-core messaging. Cache-coherence, if required, must
be implemented in software. Moreover, the amount of shared
memory available on the SCC is very limited, requiring stringent
management of resources even in the presence of software cache-
coherence.

In this paper, we present a series of techniques to provide
the ML programmer a cache-coherent view of memory, while
effectively utilizing both private and shared memory. To that
end, we introduces a new, type-guided garbage collection scheme
that effectively exploits SCC’s memory hierarchy, attempts to
reduce the use of shared memory in favor of message passing
buffers, and provides an efficient coherent global address space.
Experimental results over a variety of benchmarks show that
more than 99% of the memory requests can be potentially cached.
These techniques are realized in MultiMLton, a scalable extension
of MLton Standard ML compiler and runtime system on the
SCC.

I. INTRODUCTION

One of the key benefits, and perhaps, the most interesting
aspect of the Intel Single-chip Cloud Computer (SCC) [1] is
the lack of cache-coherence and the presence of a fast, hard-
ware interconnect for message passing. This design choice,
however, forces the programmer to treat the SCC as a cluster of
machines and to be programmed in an SPMD style. Programs
written for an SMP system under the assumption of coherent
shared memory, unfortunately, cannot be easily ported to the
SCC. Such programs not only must be re-designed, but must
strictly manage the use of non cache-coherent shared memory
for inter-core communication due to its size. Efficient use of
the SCC’s message passing buffers (MPB) is often required
for scalability and to ease memory pressure.

As such, any programming model which allows program-
ming processors like the SCC in a manner similar to a
traditional cache-coherent multicore machine, by hiding the ar-
chitectural details of the SCC, must provide: 1) software based
cache-coherence, 2) memory management for shared memory,
and 3) use of MPBs for inter-core communication. Thus, the
runtime should perform the task of effectively mapping the
uniform memory space onto the private, core-local memories,
as well as the shared memory. In addition, the model should
also hide the existence of specialized messaging hardware
like the MPBs. Whenever profitable, inter-core communication
should be automatically performed through MPBs, without
relying on the programmer to identify such communication.

To achieve such a programming model, we introduce a
series of compiler, garbage collection, and runtime techniques.
First, we introduce a garbage collection scheme with thread-
local heaps and shared heaps to provide a single coherent ad-
dress space across all of the cores. The runtime automatically
optimizes locality of objects based on the type information,
such that, most object accesses are cached. Second, whenever
possible, inter-core communication is optimized using object
type information to eschew usage of shared memory for
fast, on-die MPB memory. These techniques are realized in
the MultiMLton compiler and runtime system for a parallel
extension of Standard ML.

This paper presents the following contributions:
• A memory management scheme for the SCC which

provides an efficient, global, coherent address space
• A thread-local garbage collector that uses object type

information and software managed coherence for efficient
object placement

• A type discriminated mapping of first-class channel op-
erations on to the MPB memory

II. BACKGROUND

A. MultiMLton

MultiMLton is a scalable, whole-programming optimizing
compiler and multicore aware runtime system for Standard
ML [2], a mostly functional language. Parallel programs in
MultiMLton are written using ACML [3], an asynchronous
extension of Concurrent ML [4]. Concurrency in ACML is
expressed in the form of lightweight user-level threads, and
typical ACML programs create thousands of threads during
their lifetime. The lightweight thread allows the programmer
to reason about concurrency as a design principle rather than
as a way to extract parallelism from the program. It is the duty
of the runtime system to schedule, manage and load balance
the lightweight threads across multiple cores in order to exploit
the parallelism on the target platform.

Although MultiMLton supports mutable state, the pro-
grammer is encouraged to share data between threads using
message-passing, and restrict the use of mutable state within
each thread. To this end, MultiMLton has excellent support for
constructing composable message passing protocols. Threads
in MultiMLton can communicate with each other by sending
messages, both synchronously as well as asynchronously,
over first-class typed channels. Apart from sending immutable
values, mutable ref cells, arrays and channels may also be

exchanged over channels. In addition, complex communication
protocols can be successively built up from smaller kernels in
a monadic style using events [3].

B. SCC Processor
Intel’s Single-chip Cloud Computer (SCC) is an experimen-

tal platform from Intel labs with 48 P54C Pentium cores.
The most interesting aspect of SCC is the complete lack of
cache coherence and a focus on inter-core interactions through
a high speed mesh interconnect. The cores are grouped into
24 tiles, connected via a fast on-die mesh network. The tiles
are split into 4 quadrants with each quadrant connected to a
memory module. Each core has 16KB L1 data and instruction
caches and 256KB L2 cache. Each core also has a small
message passing buffer (MPB) of 8KB used for message
passing between the cores. Programmers can either use MPI
or RCCE, a lightweight message passing library tuned for
SCC [5].

Since the SCC does not provide cache coherence, coher-
ence must be implemented in software if required. From the
programmer’s perspective, each core has a private memory
that is cached and not visible to other cores. The cores also
have access to a comparatively small shared memory, which
is by default not cached to avoid coherence issues. However,
caching can be enabled on the shared memory with the caveat
that the coherence protocol must be implemented in software.
The cost of accessing data from the cached local memory
is substantially less when compared to accessing uncached
shared memory, since each shared memory access must be
routed through the mesh interconnect to the memory controller.

Software managed coherence (SMC) [6] for SCC provides
a coherent, shared, virtual memory space on the SCC. It
exploits SCC’s support for tagging a specific virtual address
space as having message passing buffer type (MPBT). Data
typed as MPBT bypass L2 and go directly to L1. SCC
also provides a special, 1-cycle instruction called CL1INVMB
that marks all data of type MPBT as invalid L1 lines. By
tagging a shared virtual memory space as having MPBT, the
programmer can control caching in this virtual address space.
However, since SCC does not provide cache coherence, the
programmer is recommended to use release consistency model
to utilize the cached shared virtual memory. A core issues a
smcAcquire() to fetch changes from other cores and issues
smcRelease() to publish its updates.

III. SYSTEM DESIGN

A. Threading System
In our implementation, we spawn one Linux process per

SCC core which serves as a virtual processor (VProc) for the
lightweight threads. The lightweight threads are multiplexed
over the VProcs. Each VProc runs a scheduling loop that
looks for runnable lightweight threads and schedules them.
Lightweight threads are preemptively scheduled. Load bal-
ancing is achieved by a work sharing mechanism where new
lightweight threads are spawned in a round-robin fashion on
the VProcs, to which they are pinned for the rest of their
execution. Finally, the lightweight threads run concurrently
with other threads in the same global address space.

Shared Memory

Private
Memory

Uncached Shared
Heap

(Mutable Objects)

Cached Shared
Heap

(Immutable Objects)

Private
Memory

Private
Memory

Local
Heap

Local
Heap

Local
Heap

Core 0 Core 1 Core 47

Fig. 1: Heap Layout.

1 pointer readBarrier (pointer p) {
2 if (!isPointer(p)) return p;
3 if (getHeader(p) == FORWARDED) {
4 /* Address in shared heap */
5 p = *(pointer*)p;
6 if (p > MAX_CSH_ADDR) {
7 /* Address in cached shared heap, and has not
8 * been seen so far. Fetch the updates. */
9 smcAcquire();

10 MAX_CSH_ADDR = p;
11 }
12 }
13 return p;
14 }

Fig. 2: Read barrier.

B. Memory Management

1) Local collector: In order to provide a semblance of
a single global address space, we split the program’s heap
among the set of cores as shown in Figure 1. We call this
design a local collector. Other terms have also been used in
literature including private nurseries, thread-local collector,
etc, [7], [8], [9], [10]. Each core has a local heap into which
new objects are allocated. No pointers are allowed from one
local heap to another since the other core’s private memory is
inaccessible.

In order to share data between cores, we also create shared
heaps in the shared memory which is accessible to all of the
cores. Objects are allocated in the shared heap only when there
is an explicit need to share the objects with another core. This
occurs when spawning a new lightweight thread on another
core, during which time, the environment of the function
closure is shared between the spawning and spawned cores.
New objects are allocated in the local heap and the shared
heaps by bumping the corresponding heap-local frontier.

2) Memory Barriers: Inter-core sharing can also occur
when a shared heap object is assigned a reference to a local
heap object (exporting writes). During an exporting write, a
pointer is created from the shared heap to the local heap. In
order to prevent a core from transitively accessing another
core’s local heap through such a pointer, a write barrier is
triggered on an exporting write. The pseudo-code for the write

1 val writeBarrier (Ref r, Val v) {
2 if (isObjptr(v) &&
3 isInSharedHeap(r) &&
4 isInLocalHeap(v)) {
5 /* Move transitive object closure to shared
6 * heap, and install forwarding pointers */
7 v = globalize (v);
8 /* Publish the updates */
9 smcRelease();

10 }
11 return v;
12 }

Fig. 3: Write barrier.

barrier is given in Figure. 3. Before an exporting write, the
transitive closure of the local heap object is moved to the
shared heaps and then the assignment is performed. We call
this globalization of local heap objects. Globalization prevents
pointers from the shared heaps to the local heaps.

In the place of objects globalized during an exporting write,
forwarding pointers are installed in the original objects, which
now point to their shared heap counterparts. In order to
interpret the forwarding pointers, every object read also needs
a read barrier, which returns the correct address of the shared
heap object (Figure. 2). For more information about the local
collector and memory barriers, we refer the interested reader
to our earlier work [10].

3) Bi-partitioned shared heap: Unlike a typical local heap
collector, including our earlier work [10], which has a single
shared heap, we split our shared heap into cached and un-
cached partitions. We take advantage of the fact that standard
ML can statically distinguish between mutable and immutable
objects. Since immutable objects by definition will not change
after initialization, we enable caching on one of the shared
heaps into which only globalized immutable objects will be
allocated. We call this heap a cached shared heap (CSH).
Since most objects in standard ML are immutable, we gain the
advantage of caching by placing these objects in CSH while
not having to deal with coherence issues. CSH is implemented
using Software Managed Coherence (SMC) for SCC [6]. We
choose the default (SMC_CACHE_WTMP) caching policy for
CSH where the data bypasses L2 and caching operates in a
write-through mode.

Caching is disabled in the uncached shared heap (USH) into
which globalized mutable objects are allocated. By disabling
caching, we circumvent the coherence issues at the cost of
performance. A local heap object being globalized might
contain both mutable and immutable objects in its transitive
object closure. Hence, globalization might involve allocating
new objects in both partitions of the shared heap. For the same
reason, pointers are allowed between the two partitions of the
shared heap.

4) Memory Consistency: In order to ensure that the updates
to and from CSH are visible to all the cores, explicit cache
invalidations and flushes must be implemented in the memory
barriers. CSH is always mapped to an address greater than the
starting address of the USH. Each core maintains the largest
address seen in CSH in the MAX_CSH_ADDR variable. During

an object read, if the address of the object lies in the shared
heap and is greater than MAX_CSH_ADDR , we invalidate any
cache lines that might be associated with CSH by invoking
smcAcquire() (Line 9 in Figure 2). This ensures that
the values read are not stale. Since the objects in CSH are
immutable, there is no need to perform cache invalidation
while reading an address that is less than MAX_CSH_ADDR .
Finally, after garbage collection, MAX_CSH_ADDR is set to
point to the start of the CSH.

Similarly, whenever an object is globalized to the CSH, we
must ensure that the updates are visible to all of the cores.
After an exporting write, we invoke smcRelease(), to flush
any outstanding writes to the memory (Line 9 in Figure 3).

5) Garbage Collection: As mentioned before, the local
collector has two invariants. First, no pointers are allowed from
one local heap to another and second, no pointers are allowed
from the shared heap to any local heaps. Apart from preventing
the program from directly trying to access another core’s
private memory, the heap invariants also allow for independent
collection of the local heaps. This is the primary motivation
for local collector designs. While the local heaps are collected
concurrently, the shared heap is collected after stopping all
of the cores. Independent collection of local heaps means
that less coordination is required for majority of the garbage
collections. This scheme is particularly suited for SCC like
architecture where the cores are to be treated as a cluster on
a chip.

While the local heap collection proceeds concurrently, the
shared heap collection is performed in an SPMD fashion. After
the initial barrier synchronization, each processor collects
roots from its local heap which is followed by a single core
collecting the shared heaps. The garbage collection algorithm
is Sansom’s dual-mode garbage collection [11], which starts
off as a Cheney’s copying collector and dynamically switches
to Jonker’s sliding mark-compact collector.

C. Channel Communication

The primary mode of interaction between lightweight
threads is by exchanging messages over first-class typed
channels. MultiMLton supports both synchronous and asyn-
chronous channel communication. During a synchronous com-
munication, the sender or receiver thread blocks until a match-
ing communication is available. When a thread blocks, the
scheduler switches control to another runnable thread from the
queue of threads. When a thread becomes unblocked after a
communication match, it is added back to the scheduler queue.
Asynchronous communication is implemented by spawning a
new parasitic thread [12], which performs the communication
synchronously.

Channels are also many-to-many, where multiple sender and
receiver threads can communicate over the same channel. The
pairing up of a sender with a receiver thread is determined
based on their order of arrival. Channels are implemented as
a two tuple with a FIFO queue each for blocked senders along
with the value being sent and blocked receiver threads, and are
treated as regular heap objects.

1) Heap invariant exception – Remembered List: Whenever
a thread performs a channel communication, it can get blocked
if the matching communication action is not available. A
reference to the thread is added to the channel queue such
that the thread may be restarted at a later point of time. If
the channel happens to be in the shared heap, the thread, its
associated stack and the transitive closure needs to be moved
to the shared heap to avoid breaking the local collector heap
invariants. Since channel communication is the primary mode
of thread interaction in our system, we would quickly find that
most local heap objects end up being globalized to the shared
heap. This would be highly undesirable.

Hence, we allow shared heap channel objects to reference
thread objects residing in the local heap. A reference to such
a thread is added to a remembered list of objects, which is
considered as a root for local heap collection.

2) Communication Optimization: Our channel implemen-
tation exploits both the cached shared heap and MPB for
efficient inter-core message passing. We take advantage of our
heap layout and the availability of static type information to
take advantage of the fast, on-die MPB memory. We consider
the following five cases:

1) Channel is located in the local heap
2) Channel is located in the shared heap, and the message

being sent is an unboxed value
3) Channel is located in the shared heap, the message is

in the local heap, and at least one of the objects in the
transitive closure of the message being sent is mutable

4) Channel is located in the shared heap, the message is in
the local heap, and all objects in the transitive closure
of the message being sent are immutable

5) Channel and the message are located in the shared heap
For case 1, we observe that only channels that are located

in the shared heap can be used for inter-core communication.
Our heap invariants prevent pointers from one local heap to
another. Thus, if a channel is located in the local heap, then
no thread on the other cores have a reference to this channel.
Thus, communication under case 1 only involves a value or
a pointer exchange between the communicating lightweight
threads.

MultiMLton supports unboxed types that represent raw
values. Hence, under case 2, we add a reference to the thread
along with the value being sent to the channel. In addition,
we add a reference to the blocked thread to the remembered
list so that the local garbage collection can trace it.

If the message being sent has a mutable object in the
transitive closure, we must make this object visible to both
the sender and the receiver core. Figure 4 shows the case
where a thread T1 sends a mutable object a on a shared
heap channel C . In this case, we eagerly globalize a before
T1 blocks. Since the message is already in the shared heap,
when the receiver thread T2 eventually arrives, it just picks
up a pointer to the message in the shared heap.

Figure 5 shows the case where a thread T1 sends an
immutable object a on a shared channel C . Here, we simply
add to the channel C , a reference to the message a in the local
heap, along with the reference to the thread T1 . In addition,
a reference to the object a is added to the remembered list,

so that a local garbage collection will be able to identify a
as being alive.

Afterward, when the receiver thread T2 arrives and finds
the message not to be in the shared heap, it sends an inter-core
interrupt to the core on which the message is located (core 0,
in this case). After this message transfer is initiated over the
MPB using RCCE to transfer the object a from core 0 to
core 1. Since Standard ML immutable objects do not have
identity, making a copy of the immutable object is safe under
MultiMLton.

If the channel and the message are located in the shared
heap, communication only involves a value or a pointer
exchange. This case is similar to case 1.

IV. EVALUATION

For our experimental evaluation, we picked 8 benchmarks
from the MLton benchmark suite. The benchmarks were
derived from sequential standard ML implementation and were
parallelized using ACML [3]. The details of the benchmarks
and their characteristics can be found at [10]. Our programs
partition the available work among thousands of lightweight
threads, multiplexed on to the available cores. Hence, although
we do not perform load balancing after the threads have started
to run, we get a fairly uniform distribution of load across the
cores.

The core, mesh controller, and memory on the SCC can be
configured to run at different frequencies. For our experiments
we chose 533 MHz, 800 MHz, and 800 MHz for core, mesh,
and memory respectively.

A. Bi-partitioned shared heap

In order to analyze the performance of our bi-partitioned
shared heap scheme, we implemented a local collector with
a single shared heap. Since this heap would be used to store
both mutable as well as immutable data, caching is disabled
on the single shared heap. Figure 6a shows the normalized
speedup of the two local collector designs as we increase the
number of cores. On 48 cores, the bi-partitioned shared heap
collector is 48% faster than the single shared heap collector.

Figure 6b illustrates the space-time trade-offs critical for
garbage collector evaluation. The results were obtained on 48
cores on the SCC. On the x-axis we have the heap size as a
factor of the minimum heap size under which the programs
would run. As we decrease the overall heap size, we see that
the programs take longer to run. However, the performance of
bi-partitioned heap scheme degrades more gracefully that the
single shared heap scheme. At 3X the minimum heap size,
bi-partitioned heap is 48% faster than the single shared heap
scheme.

In order to study the reason behind this, we separate the
mutator time (Figure 6c) and the garbage collection time
(Figure 6d). At 3X the minimum heap size, partitioned shared
heap collector spends half as much time performing garbage
collection when compared to the single shared heap collector.
Since our GC involves sequentially scanning the heap, caching
even a part of the shared heap improves performance dramat-
ically.

Uncached Shared Heap

Local Heap 0

 a
M

C

T1

Before a blocking send

Local Heap 1

T2

Uncached Shared Heap

Local Heap 0

 a
MC

T1

After a blocking send

Local Heap 1

T2

Uncached Shared Heap

Local Heap 0

 a
MC

T1

After communication

Local Heap 1

T2

Fig. 4: Steps involved in sending an mutable object a by thread T1 on a shared heap channel C , which is eventually received
by thread T2 .

Uncached Shared Heap

Local Heap 0

 a
I

C

T1

Before a blocking send

Local Heap 1

T2

Uncached Shared Heap

Local Heap 0

 a
I

C

T1

After a blocking send

Local Heap 1

T2

Uncached Shared Heap

Local Heap 0

 a
I

C

T1

After communication

Local Heap 1

T2 a
I

Fig. 5: Steps involved in sending an immutable object a by thread T1 on a shared heap channel C , which is eventually
received by thread T2 .

0 10 20 30 40 50
Cores

0

5

10

15

20

25

30

35

S
p
e
e
d
u
p

Partitioned

Single

(a) Scalability

0 1 2 3 4 5 6
Heap size relative to min heap size

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

N
o
rm

a
liz

e
d
 T

im
e

Partitioned

Single

(b) Total time (48 Cores)

0 1 2 3 4 5 6
Heap size relative to min heap size

1.00

1.10

1.20

1.30

1.40

1.50

1.60

N
o
rm

a
liz

e
d
 M

u
ta

to
r

T
im

e Partitioned

Single

(c) Mutator time (48 Cores)

0 1 2 3 4 5 6
Heap size relative to min heap size

1

2

4

8

16

32

64

128

N
o
rm

a
liz

e
d
 G

C
 T

im
e
 (

lo
g
) Partitioned

Single

(d) GC time (48 Cores)

Fig. 6: Performance comparison of Bi-partitioned shared heap and single, uncached shared heap: Geometric mean for 8
benchmarks.

At 3X the minimum heap size, mutator with the bi-
partitioned shared heap is 30% faster than single shared heap
implementation. This improvement, although significant, was
less than the expected improvement with caching enabled. In
order to interpret this improvement, we instrumented our read
and write barriers to classify the memory accesses. On average,
across all of the benchmarks, 89% of the read or write requests
were to the local heap, which is private and is cached both
in L1 and L2. This is common to both versions of the local
collector. Hence, bi-partitioned shared heap can at best aim to
optimize only 11% of the memory requests.

Out of the shared heap memory requests, on average, 93%
of all requests were to the cached shared heap. However,
it should be noted that cached shared heap data bypass L2,
and are only cached in the comparatively smaller L1 cache.
Hence, the benefit of caching shared heap data, as far as the
mutator is concerned, may not be dramatic if the cached shared
heap reads are far and few between. In any case, with bi-
partitioned shared heap, less than 1% of mutator accesses were
to the uncached memory. Thus, bi-partitioned shared heap

local collector is able to potentially cache more than 99% of
memory accesses.

B. MPB mapped channels

0 10 20 30 40 50
Cores

0

5

10

15

20

25

30

35

S
p
e
e
d
u
p

MPB-

MPB+

Fig. 7: Performance comparison of first-class channel com-
munication over the MPB (MBP+) vs solely over the shared
memory (MPB-) : Geometric mean over 8 benchmarks.

In order to evaluate the benefit of mapping the first-class

channel communication over the message passing buffer mem-
ory, we implemented a version of our communication library
that does not use the message passing buffer memory. Recall
that if the channel is located in the shared heap, the message
in the local heap, and the message does not have a mutable
object in its transitive closure, we perform the transfer over the
message passing buffer (Case 4 in Section III-C2). Instead, we
eagerly globalize the transitive closure of the message and just
share the pointer with the receiving thread (similar to Case 3).
We call this version MPB-, and the original version MPB+.

Figure 7 shows the performance comparison of MPB+
versus MPB-. On 48-cores, MPB+ is only around 9% faster
than the MPB- version. We can attribute several reasons
for this marginal improvement. First, we observed that, on
average, around only 32% of channel communications were
taking advantage of the MPB (Case 4) in the case of MPB+.
The rest of the channel communications were either local
or were using the shared memory to transfer the messages.
Moreover, in the case of MPB-, immutable inter-core messages
are transferred over the CSH which is cached.

Second, the cost of inter-core interrupts is substantial, as
was observed by others [13], [14]. We measured the time it
takes between a core issuing an inter-core interrupt to the time
it sends or receives the first byte is around 2000 core cycles.
Since majority of the immutable messages exchanged between
cores are small, the overhead of setting up the message transfer
outweighs the benefit of using the MPB. However, utilizing
the MPB prevents immutable messages from being globalized,
thus reducing the pressure on the shared memory. As a result,
the number of expensive shared heap collections are reduced.

V. RELATED WORK

Software managed cached coherence (SMC) [6] for SCC
provides a coherent, shared virtual memory to the programmer.
However, the distinction between private and shared memory
still exists and it is the responsibility of the programmer
to choose data placement. In our system, all data start out
as being private, and is only shared with the other cores if
necessary. The sharing is performed both through the shared
memory as well as over the MPB, based on the nature of
message being shared. MESH framework [15] provides a
similar mechanism for flexible sharing policies on the SCC
as a middle-ware layer.

In the context of mapping first-class channels to MPBs, the
work by Prell et al. [16] which presents an implementation
of Go’s concurrency constructs on the SCC is most similar.
However, unlike our channel implementation, channels are
implemented directly on the MPB. Since the size of MPB
is small, the number of channels that can be concurrently
utilized are limited. Moreover, their implementation diverges
from Go language specification in that the go-routines running
on different cores run under different address spaces. Hence,
the result of transferring a mutable object over the channels
is undefined.

Our channel communication utilizes both shared memory
and the MPBs for inter-core messaging. Barrelfish on the
SCC [13] uses MPBs to transfer small messages and bulk

transfer is achieved through shared memory. However, Bar-
relfish differs from our system since it follows a shared-
nothing policy for inter-core interaction.

VI. CONCLUSION

Intel SCC provides an architecture that combines aspects
of distributed systems (no cache coherence) with that of
a shared memory machine, with support for programmable
cache coherence and fast inter-core messaging. In order to
effectively utilize this architecture, it is desirable to hide the
complexity behind the runtime system.

In this paper, we have presented a port of MultiMLton for
the SCC which provides an efficient global address space.
Whenever possible and profitable, we utilize MPBs to per-
form inter-core communication. We observe that while cached
shared memory is immensely beneficial, the prohibitive cost
of inter-core interrupts diminish the benefits of effectively
utilizing the MPBs for first-class channel communication.

ACKNOWLEDGMENTS

This work was supported in part by a gift from the Intel
Corporation, and National Science Foundation grants CCF-
1216613 and CCF-0811631.

REFERENCES

[1] “SCC Platform Overview,” 2012. [Online]. Available: http:
//communities.intel.com/docs/DOC-5512

[2] R. Milner, M. Tofte, and D. Macqueen, The Definition of Standard ML.
Cambridge, MA, USA: MIT Press, 1997.

[3] L. Ziarek, K. Sivaramakrishnan, and S. Jagannathan, “Composable
Asynchronous Events,” in PLDI, 2011, pp. 628–639.

[4] J. Reppy, Concurrent Programming in ML. Cambridge University Press,
2007.

[5] T. G. Mattson, M. Riepen, T. Lehnig, P. Brett, W. Haas, P. Kennedy,
J. Howard, S. Vangal, N. Borkar, G. Ruhl, and S. Dighe, “The 48-core
scc processor: the programmer’s view,” in SC, 2010, pp. 1–11.

[6] (2012) Software-Managed Cache Coherence for SCC Revision
1.5. [Online]. Available: http://marcbug.scc-dc.com/svn/repository/tags/
SMC V1.0/smc/SMC.pdf

[7] D. Doligez and X. Leroy, “A Concurrent, Generational Garbage Col-
lector for a Multithreaded Implementation of ML,” in POPL, 1993, pp.
113–123.

[8] T. A. Anderson, “Optimizations in a Private Nursery-based Garbage
Collector,” in ISMM, 2010, pp. 21–30.

[9] S. Marlow and S. Peyton Jones, “Multicore Garbage Collection with
Local Heaps,” in ISMM, 2011, pp. 21–32.

[10] K. Sivaramakrishnan, L. Ziarek, and S. Jagannathan, “Eliminating read
barriers through procrastination and cleanliness,” in ISMM, 2012, pp.
49–60.

[11] P. M. Sansom, “Dual-Mode Garbage Collection,” in Proceedings of
the Workshop on the Parallel Implementation of Functional Languages,
1991, pp. 283–310.

[12] K. Sivaramakrishnan, L. Ziarek, R. Prasad, and S. Jagannathan,
“Lightweight asynchrony using parasitic threads,” in DAMP, 2010, pp.
63–72.

[13] S. Peter, A. Schüpbach, D. Menzi, and T. Roscoe, “Early experience
with the barrelfish os and the single-chip cloud computer,” in MARC
Symposium, 2011, pp. 35–39.

[14] D. Petrović, O. Shahmirzadi, T. Ropars, and A. Schiper, “Asynchronous
broadcast on the intel scc using interrupts,” in MARC Symposium, 2012,
pp. 24–29.

[15] Thomas Prescher, Randolf Rotta and Jörg Nolte, “Flexible sharing and
replication mechanisms for hybrid memory architectures,” in MARC
Symposium, 2011.

[16] T. R. Andreas Prell, “Gos Concurrency Constructs on the SCC,” in
MARC Symposium, 2012, pp. 2–6.

http://communities.intel.com/docs/DOC-5512
http://communities.intel.com/docs/DOC-5512
http://marcbug.scc-dc.com/svn/repository/tags/SMC_V1.0/smc/SMC.pdf
http://marcbug.scc-dc.com/svn/repository/tags/SMC_V1.0/smc/SMC.pdf

	Introduction
	Background
	MultiMLton
	SCC Processor

	System Design
	Threading System
	Memory Management
	Local collector
	Memory Barriers
	Bi-partitioned shared heap
	Memory Consistency
	Garbage Collection

	Channel Communication
	Heap invariant exception – Remembered List
	Communication Optimization

	Evaluation
	Bi-partitioned shared heap
	MPB mapped channels

	Related Work
	Conclusion
	References

