
The Design Rationale for Multi-MLton

Suresh Jagannathan, Armand Navabi, KC Sivaramakrishnan, Lukasz Ziarek
{suresh, anavabi, chandras, lziarek}@cs.purdue.edu

Abstract
Multi-MLton is a compiler and runtime environment that targets
scalable multicore platforms. It combines new language abstrac-
tions and associated compiler analyses for expressing and imple-
menting various kinds of fine-grained parallelism (safe futures,
speculation, transactions, etc.), along with a sophisticated runtime
system tuned to efficiently handle large numbers of lightweight
threads.

Multi-MLton defines a programming model in which threads
primarily communicate via message-passing. It differs from other
message-passing systems insofar as the abstractions it provides per-
mit (a) the expression of isolation of communication effects among
groups of communicating threads; (b) composable speculative ac-
tions that are message-passing aware; (c) the construction of asyn-
chronous events that seamlessly integrate abstract asynchronous
communication protocols with abstract CML-style events, and (d)
deterministic concurrency within threads to enable the extraction
of additional parallelism when feasible and profitable.

These abstractions are supported by a combination of compile-
time analyses and specialized runtime structures to enable efficient
execution on scalable multicore and manycore platforms.

1. Motivation
Multi-MLton is an active ongoing project at Purdue that builds
upon the MLton whole-program compiler and runtime infrastruc-
ture. Its overarching goal is to develop new formalisms and tech-
niques to describe, optimize, and execute high-level concurrent pro-
grams, whose threads of control communicate using sophisticated
message-passing protocols.

Multi-MLton ’s design rationale is influenced by current trends
in CMP processor, and operating systems, design. For example,
Intel’s recently announced SCC (Single-Chip Cloud Computer) is
a manycore CPU that features 24 tiles comprised of dual-core x86
IA processors. Notably, there is no shared L2 cache among these
tiles; instead, communication across cores is via hardware-assisted
message-passing over a 2D high-bandwidth mesh network. Thus,
the SCC does not support uniform access memory – application
performance is dictated by the degree of affinity that exists between
threads and the data they access.

At the software level, Barrelfish [2] is a new operating system
kernel design that treats the underlying machine as a network of
independent cores, and assumes no inter-core sharing at the low-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright c© ACM [to be supplied]. . . $5.00.

est level. It recasts all OS services, including memory management
and inter-core communication, in terms of message-passing, argu-
ing that such a reformulation leads to improved scalability and ef-
ficiency due to additional pipelining and batching opportunities.

Well before the advent of multicore, there has been a long
history of seminal research that has explored the foundations of
message-passing [3, 4]. Indeed, languages like Concurrent ML [7],
Erlang [1], Scala [6], and F# [9] are successful current manifesta-
tions (in varying degrees) of these models. Multi-MLton extends
these efforts by integrating new forms of concurrency control into
ML, and providing aggressive runtime support for true lightweight
threading on an execution platform comprised of potentially hun-
dreds of cores.

A functional programming discipline, combined with explicit
communication via messages (rather than implicit communication
via shared-memory), and associated lightweight concurrency prim-
itives, offers an enticingly attractive programming model. However,
there are numerous challenges to realizing this model in practice on
scalable multi- and manycore platforms, with respect to both lan-
guage abstractions and their implementation. It is an investigation
of these challenges that guides the design of Multi-MLton .

2. Overview
We depict Multi-MLton’s main features in Fig. 1.

2.1 Parasites and Lightweight Isolated Threads
At its core, Multi-MLton provides runtime support for ultra-
lightweight threads called parasites [8]. As the name suggests,
parasites live on host threads, and enable efficient sharing of thread
resources. While they have potentially many uses, parasites most
commonly serve as lightweight containers for synchronous com-
munication actions. When encapsulated within a parasite, such
actions become asynchronous from the perspective of the initiating
computation.

In the fast path, when parasites do not block (i.e. perform syn-
chronous communication where a partner exists, perform asyn-
chronous communication, or purely functional computation), they
only incur an overhead of a non-tail function call, and do not entail
the creation of a new thread object. When a parasite does block,
a new parasite on the same host can be scheduled to run; a host
thread’s stack representation provides appropriate metadata to the
underlying scheduler to enable unblocked parasites to be executed.
Compiler support facilitates reorganization of parasites within a
host thread’s stack, by providing bounds on its expected stack us-
age. Threads and parasites can be created in Multi-MLton explicitly
by the application, or implicitly as a consequence of leveraging
asynchronous communication primitives, described below. Regard-
less of the thread abstraction chosen, an application may easily ini-
tiate a large number of threads.

Preventing unwanted interactions by these threads is important,
both for safety and robustness, as well as efficiency. Dynamically-
specified groups of threads can be aggregated into isolated regions

that superficially resemble multi-threaded transactions. Within a
given region, communication among threads is freely permitted;
a thread that migrates from one region to another, however, implic-
itly defines a commit action that prevents it from witnessing the
effects of ongoing computation in the isolated region it previously
inhabited.

2.2 Asynchronous Events
Asynchrony is often used to mask communication latency by split-
ting the creation of a communication action from its consumption.
An asynchronous action is created when a computation places a
message on a channel (e.g., in the case of a message send), and is
consumed when it is matched with its corresponding action (e.g.,
the send is paired with a receive); the creating thread may perform
arbitrarily many actions before the message is consumed. In con-
trast, synchronous message-passing obligates the act of placing a
message on a channel and the act of consuming it to take place as a
single atomic action.

The challenge to building expressive asynchronous communi-
cation abstractions is defining mechanisms that allow programmers
to express composable post-creation and post-consumption behav-
ior. Even with synchronous message-passing, which conflates no-
tions of creation and consumption, important functionality like se-
lective communication confounds the use of simple λ-abstraction
as a means of composability. This has led to the development of
expressive abstractions like CML’s first-class synchronous events
that enable construction of composable synchronous protocols.

Supporting composable post-creation and post-consumption in
an asynchronous setting introduces additional challenges because
achieving such composability necessarily entails the involvement
of two distinct threads of control – the thread that creates the action,
and the thread that discharges it.

Multi-MLton extends CML-style synchronous events with a
new family of event combinators and primitives that explicitly
deal with asynchronous communication. Our extensions enable
seamless composition of asynchronous protocols, and interoperate
with existing CML primitives. There are two key differences be-
tween an asynchronous event primitive and its synchronous coun-
terpart: (1) the base asynchronous primitives we define (aSendEvt
and aRecvEvt) expose both creation and consumption actions –
this means that internal asynchrony (e.g., threads created by a
synchronous event) is never hidden within events; (2) the asyn-
chronous counterparts to combinators like wrap and guard allow
composition of post-consumption and post-creation actions of an
asynchronous event.

2.3 Speculation
Speculation is one promising way to leverage large amounts of po-
tential parallelism made available by systems comprised of hun-
dreds of cores.

A future is a well-known programming construct that has typ-
ically been used to introduce concurrency to sequential programs.
A computation annotated as a future is executed asynchronously
and runs concurrently with its continuation. Safe futures [5] guar-
antee a future-annotated program produce the same (deterministic)
result as its counterpart. Because of this safety guarantee, safe fu-
tures remove the burden of providing correctness in the presence
of non-deterministic interleaving while affording additional paral-
lelism. Safe futures in MultiMLton can be used to annotate any
function call.

In the presence of side-effects (e.g. references, exceptions,
thread creation, communication, etc.), safe futures must guaran-
tee that any concurrent execution respects sequential semantics of
the future with its continuation. Safety is ensured via a compile-
time analysis and instrumentation that identifies potentially con-

Lightweight ThreadsParasites Speculation

Future

First Class
Asynchronous Events

Stabilizers

Isolates

Message Passing

ACML

Figure 1: Abstractions found in Multi-MLton . Communication,
either synchronous or asynchronous, is depicted through arrows.
Parasites are shown as raw stack frames that comprise a single
runtime thread.

flicting actions between a future and its continuation, along with a
lightweight runtime that understands compiler-inserted instrumen-
tation to statically enforce deterministic execution when possible.

In Multi-MLton , futures can encapsulate computation that cre-
ates new threads of control, engages in communication with other
threads, etc. If a future-annotated computation violates invariants
necessary to preserve determinism, its effects must be reverted.
While compiler-injected barriers can sometimes be used to prevent
such effects from being performed, runtime support is needed in
general.

A stabilizer is an abstraction that can be used in conjunction
with safe futures to monitor potentially unsafe speculative com-
munication actions, and rollback their effects when necessary. Be-
sides being used to build safe futures, stabilizers provide critical
support for multithreaded software transactions in which threads
comprising a transaction communicate via message-passing. The
checkpoints defined by stabilizers are first-class and composable:
a monitored procedure can freely create and return other moni-
tored procedures. Stabilizers can be arbitrarily nested, and work
in the presence of a dynamically-varying number of threads and
non-deterministic selective communication.

3. Status
Multi-MLton has been extensively tested using the c-code genera-
tor provided by MLton on NUMA based AMD64 machines. We
are working on additional support for Intel based x86-64.

References
[1] J. Armstrong. Programming Erlang: Software for a Concurrent World.

2007.

[2] A. Baumann, P. Barham, P. Dagand, T. Harris, R. Isaacs, S. Peter,
T. Roscoe, A. Schüpbach, and A. Singhania. The Multikernel: A New
OS Architecture for Scalable Multicore Systems. In SOSP, pages 29–
44, 2009.

[3] C. A. R. Hoare. Communicating sequential processes. Commun. ACM,
21(8):666–677, 1978.

[4] R. Milner. Communication and Concurrency. 1989.

[5] A. Navabi, X. Zhang, and S. Jagannathan. Dependence analysis for safe
futures. In Science of Computer Programming, To appear.

[6] M. Odersky. The Scala Experiment: Can We Provide Better Language
Support for Component Systems? In POPL, 2006.

[7] J. Reppy. Concurrent programming in ML. Cambridge University
Press, New York, NY, USA, 1999.

[8] KC Sivaramakrishnan, L. Ziarek, R. Prasad, and S. Jagannathan.
Lightweight Asynchrony using Parasitic Threads. In DAMP, pages 63–
72, 2010.

[9] D. Syme, A. Granicz, and A. Cisternino. Expert F#. Apress, 2007.

