
Experiences with Effects

Thomas Leonard Craig Ferguson Patrick Ferris Sadiq Jaffer
Tom Kelly KC Sivaramakrishnan Anil Madhavapeddy

May 27, 2021

Abstract

The multicore branch of OCaml adds support for
effect handlers. In this talk, we report our expe-
riences with effects, both from converting existing
code, and from writing new code. Converting the
Angstrom parser from a callback style to effects
greatly simplified the code, while also improving
performance and reducing allocations. Our experi-
mental Eio library uses effects to allow writing con-
current code in direct style, without the need for
monads (as found in Lwt or Async).

Effects

The multicore branch of OCaml adds support for
effect handlers1. Using effects brings several ad-
vantages over using callbacks or monadic style:

• It is faster, because no heap allocations are
needed to simulate a stack.

• Concurrent code can be written in the same
style as plain non-concurrent code.

• Because a real stack is used, exception back-
traces and stack-based profiling work as ex-
pected.

• Other features of the language (such as
try/with, match, while, etc) can be used in
concurrent code.

Installing an effect handler executes a function
in a new stack, called a fibre. The function can
perform an effect (similar to raising an exception),
transferring control to the handler. Unlike an ex-
ception handler, an effect handler also receives a

1Retrofitting Effect Handlers onto OCaml, accepted to
PLDI 2021

continuation, which can be used to resume the sus-
pended fibre when the handler is ready.

Angstrom with effects

A natural implementation for a parser is a function
that takes an input stream and returns the parsed
result. This works well if the complete input is
present at the start, or if the application can block
while waiting for more data.

However, if the parser needs to run concurrently
with other code (as is typical in a network service),
then this API needs to change so that when it re-
quires more input the parser returns a callback to
the application. Angstrom2 is a parser-combinator
library written in this way. It is intended for high-
performance applications, such as network proto-
cols.

To give a quick idea of the difference between
the callback style and the direct style, here is
Angstrom’s implementation of the *> combinator
(which uses a pair of parsers a and b to parse a
pair of items, discarding the first result):

let (*>) a b =

{ run = fun input pos more fail succ →
let succ’ input’ pos’ more’ _ =

b.run input’ pos’ more’ fail succ in

a.run input pos more fail succ’

}

Here is the same thing written in direct style
(without support for asynchronous reads):

let (*>) a b state =

let _ = a state in

b state

2https://github.com/inhabitedtype/angstrom/

1

https://github.com/inhabitedtype/angstrom/


But now, thanks to effects, the simpler direct-
style version does support asynchronous reads. If
the a or b parser needs more input, it can perform
an effect to get it.

Interestingly, our “effects” version of Angstrom
doesn’t actually perform or handle any effects. In-
stead, it allows the user to provide a function for
reading more data; if that function happens to per-
form an effect that suspends the parsing operation
during the read then other threads will be able to
run while the parser is waiting for the read to com-
plete.

An initial benchmark (parsing an HTTP re-
quest) shows that the simpler direct-style version
of Angstrom is also slightly faster, and performs
considerably fewer allocations:

Time MinWrds MajWrds
Callbacks 11.18ms 4640k 50471
Effects 10.46ms 1066k 285

We can also implement the old (callback-based)
API on top of the new one, for compatibility. The
refill-buffer effect is only performed rarely, and so
we only allocate a callback occasionally, when more
data is actually needed, not for every parsing oper-
ation.

Effects-based IO

It is easy to use effects to implement a cooperative
scheduler, by running each thread in its own fibre.
Threads perform effects when they want to block
(e.g. for IO). The scheduler handles the effect by
saving the continuation in the IO operation and
resuming the next runnable thread.

Our experimental new IO library3 does this to
provide direct-style IO, without the need for mon-
ads. The library aims to support multiple plat-
forms using optimised platform-specific backends,
such as io uring4 on Linux and Grand Central
Dispatch5 on macos.

In the talk we will demonstrate the current state
of the library, and provide comparisons between
Lwt and Eio.

3https://github.com/ocaml-multicore/eio
4https://kernel.dk/io_uring.pdf
5https://developer.apple.com/documentation/

DISPATCH

HTTP benchmarks

Results from our preliminary benchmarking of
HTTP servers indicate that an effect-based IO
library is competitive both with callback-based
OCaml implementatons but also commonly used
frameworks in other languages, such as Go’s
net/http. There remains a performance gap be-
tween the OCaml implementations and high per-
forming Rust ones, the closing of which is a goal
we intend to provide more progress on in the talk.

Figure 1: HTTP throughput comparison

Figure 1 shows a throughput comparison of sev-
eral HTTP server implementations:

• OCaml 4.12 with cohttp 4.0 and Lwt 5.4.0 (co-
http lwt unix)

• OCaml 4.12 with httpaf 0.7.1 and Lwt 5.4.0
(httpaf lwt)

• OCaml 4.12+domains+effects with 0.7.1 and
aeio 0.2.0 (httpaf effects)

• Go 1.15.4 with net/http (nethttp go)

• rust 1.47.0 with hyper 0.12 and tokio 0.1.11
(rust hyper)

All benchmarks were restricted to one
core. The results above were from an In-
tel(R) Xeon(R) Silver 4108 CPU with turbo
disabled running Ubuntu 18.04.3 LTS and
Linux 4.15.0-65-generic. Code for the specific
run used for benchmarking can be found at
https://github.com/ocaml-multicore/retro-httpaf-
bench/tree/ocamlworkshop2021 .

2

https://github.com/ocaml-multicore/eio
https://kernel.dk/io_uring.pdf
https://developer.apple.com/documentation/DISPATCH
https://developer.apple.com/documentation/DISPATCH

