
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Adapting the OCaml ecosystem for Multicore
OCaml

Anonymous Author(s)

Abstract
OCaml 5.0 with support for shared-memory parallelism
being around the corner, there’s increasing interest in
the community to port existing libraries to Multicore.
This talk will take the attendees through what the ar-
rival of Multicore means to the OCaml ecosystem, and
existing tools and methods for a smooth transition to
benefit from Multicore parallelism. We aim to share some
insights from our experience of porting existing libraries
to Multicore OCaml. We will cover:

∙ Building your package with the Multicore compiler
∙ Breaking changes in the runtime
∙ Global state & thread-safety
∙ Multiprocess vs multicore
∙ Example of parallelizing a library: Lwt

1 Introduction
Multicore OCaml1 is an extension of OCaml with sup-
port for shared memory parallelism through Domains
[Sivaramakrishnan et al. 2020] and concurrency through
Algebraic effects [Sivaramakrishnan et al. 2021]. Ef-
forts are underway for upstreaming Multicore OCaml’s
domains-only parallelism to mainstream OCaml and is
slated for release in its OCaml 5.0 version. OCaml 5.0
will be accompanied by a robust set of libraries such
as domainslib to aid writing efficient parallel programs.
Algebraic effects is expected to land in later versions of
OCaml.

Parallelizing your OCaml code with Multicore OCaml
[Jaffer et al. 2020] gives an overview of the parallel pro-
gramming primitives and libraries that Multicore OCaml
offers and performance tuning methods for writing effi-
cient parallel programs in Multicore OCaml. This presen-
tation will focus on adapting the ecosystem to Multicore,
potential roadblocks and ideas to resolve them. This will
be of particular interest to users who wish to port their
libraries to Multicore.

1https://github.com/ocaml-multicore/ocaml-multicore

2020. 2475-1421/2020/1-ART1 $15.00
https://doi.org/

2 Building your package with
multicore compiler

The multicore compiler can be obtained from multicore-
opam2. Currently the multicore tree is at compiler ver-
sion 4.12, with two variants:

∙ 4.12+domains : With support for domains-only
parallelism. This branch is close to what’s intended
to be shipped with OCaml 5.0.

∙ 4.12+domains+effects : With support for par-
allelism and algebraic effects.

2.1 OPAM Health Chek

opam-health-check is deployed to keep a tab on any
build failures occurring on opam packages. One of the in-
stances of opam-health-check tracks the multicore branch
4.12+domains. The server builds packages and runs their
testsuites once every week. Any build or run failures can
be viewed in a web interface. So far, this has been useful
in identifying package failures, debugging and fixing bugs
in the package or compiler.

2.2 OCaml Multicore CI

A select set of widely used OCaml packages are to be
monitored for every commit made to the 4.12+domains

branch, by building and running the testsuites of those
packages. This will ensure compatibility of the Multicore
compiler with external packages and keep check on any
digression in the testsuite results from that of stock
OCaml. OCaml Multicore CI can be added as a GitHub
app to the library’s repository.

3 Changes in the runtime
Multicore OCaml comes with a concurrent Garbage Col-
lector (GC). Good news is, the parallel minor collector
is compatible with OCaml C API, so C FFI will be
unaffected by the Multicore GC. Care has been taken
to ensure that we maintain backwards compatibility to
a large extent. Development of the multicore GC led to
quite some changes in the runtime primitives. Hence,
libraries using runtime primitives that may no longer be
compatible with the Multicore runtime will need to be
updated.

Some examples of changes in the runtime are:

∙ A large number of global variables are now moved
to a domain-specific environment called Caml_state.

2https://github.com/ocaml-multicore/multicore-opam

1

https://github.com/ocaml-multicore/ocaml-multicore
https://doi.org/
https://github.com/ocaml-multicore/multicore-opam

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

Conference’17, July 2017, Washington, DC, USA Anon.

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

∙ Garbage collector colors are changed with gray
colour eliminated. Multicore compiler uses the cat-
egories MARKED, UNMARKED and GARBAGE as opposed
to stock OCaml’s BLACK, WHITE, GRAY and BLUE.

∙ GC module no longer has attributes that are not
necessary for the concurrent GC, and some assump-
tions made about GC hooks will vary from stock
OCaml.

∙ Naked pointers are strongly discouraged from use
and tools are developed to detect them.

∙ Lazy values can be forced from only one domain at
a time. Concurrently forcing the same lazy value
would result in an exception.

More such changes may be seen in the runtime in
coming releases of OCaml. To ease the process of adjust-
ing with the runtime changes, the compiler ships with
compatibility.h providing necessary primitives. The pre-
sentation will go through the recommendations for tack-
ling such changes.

4 Multiprocess vs Multicore
Multiprocess primitives such as Unix.fork provide a way
to execute processes on multiple cores and such tech-
niques have been used to speedup OCaml programs.
A notable distinction between multiprocess programs
written with Unix.fork and Multicore programs using
domains is; Multicore programs share data amongst
different domains while multiprocess programs have a
separate copy of data per process. Upon comparison
on the same benchmarks, Multicore programs tend to
exhibit better performance especially when the number
of cores is high, as opposed to multiprocess programs.
We will cover details one needs to be aware of while
porting multiprocess programs to Multicore OCaml.

5 Global state & Thread-safety
OCaml allows mutable data to be stored in variables,
unlike some purely functional languages. This has proved
to be an advantage for OCaml programmers and has
been useful to implement some algorithms easily. It is
also easier to achieve better performance with imperative
programs as opposed to their purely functional counter-
parts. However, global data without synchronizations
will not sit well in a multicore environment. An example
to illustrate this:

5.1 Mutable counter

let counter = ref 0

let () =

incr counter;

print_int !counter

incr counter;

print_int !counter

counter is well-behaved as long as it is accessed from
only one domain like above.

let counter = ref 0

let () =

let domains = Array.init 4 (fun _ ->

Domain.spawn(fun () -> incr counter)) in

Array.iter Domain.join domains;

print_int !counter

The output of this program is non-deterministic, be-
cause the order of execution is not constant between
different runs of the same program. We will cover var-
ious synchronization methods to make mutable code
thread-safe, their advantages and downsides. They are
mainly:

∙ Eliminating global data
∙ Making mutable data atomic
∙ Using thread-safe data structures available in stdlib
and external libraries

∙ Synchronization primitives in the compiler. (Mutex
and Condition variables)

6 Example of parallelizing a library:
Lwt

One of the libraries to have been successfully ported
to benefit from parallelism is the monadic concurrency
library Lwt. In our prototype, a new module Lwt_domain

was added which has the feature to offload CPU in-
tensive tasks to multiple cores. Ideas to integrate this
module with Lwt are being worked out with Lwt main-
tainers. This presentation will walk through the process
we adopted for parallelising Lwt and how this feature
could be incorporated in programs written with Lwt.

References
Sadiq Jaffer, Tom Kelly, Sudha Parimala, KC Sivaramakrishnan,

and Anil Madhavapeddy. 2020. Parallelising your OCaml code

with Multicore OCaml. OCaml Workshop (2020).

KC Sivaramakrishnan, Stephen Dolan, Leo White, Sadiq Jaffer,
Tom Kelly, Anmol Sahoo, Sudha Parimala, Atul Dhiman, and

Anil Madhavapeddy. 2020. Retrofitting Parallelism onto OCaml.
In Proceedings of the 25th ACM SIGPLAN International Con-
ference on Functional Programming (ICFP 2020).

KC Sivaramakrishnan, Stephen Dolan, Leo White, Tom Kelly,

Sadiq Jaffer, and Anil Madhavapeddy. 2021. Retrofitting Ef-
fect Handlers onto OCaml. arXiv preprint arXiv:2104.00250
(2021).

2

	Abstract
	1 Introduction
	2 Building your package with multicore compiler
	2.1 OPAM Health Chek
	2.2 OCaml Multicore CI

	3 Changes in the runtime
	4 Multiprocess vs Multicore
	5 Global state & Thread-safety
	5.1 Mutable counter

	6 Example of parallelizing a library: Lwt
	References

