Safe Replication through Bounded Concurrency Verification

GOWTHAM KAKI, Purdue University, USA

KAPIL EARANKY, Purdue University, USA

KC SIVARAMAKRISHNAN, University of Cambridge, UK
SURESH JAGANNATHAN, Purdue University, USA

High-level data types are often associated with semantic invariants that must be preserved by any correct im-
plementation. While having implementations enforce strong guarantees such as linearizability or serializability
can often be used to prevent invariant violations in concurrent settings, such mechanisms are impractical in
geo-distributed replicated environments, the platform of choice for many scalable Web services. To achieve
high-availability essential to this domain, these environments admit various forms of weak consistency that
do not guarantee all replicas have a consistent view of an application’s state. Consequently, they often admit
difficult-to-understand anomalous behaviors that violate a data type’s invariants, but which are extremely
challenging, even for experts, to understand and debug.

In this paper, we propose a novel programming framework for replicated data types (RDTs) equipped with
an automatic (bounded) verification technique that discovers and fixes weak consistency anomalies. Our
approach, implemented in a tool called Q9, involves systematically exploring the state space of an application
executing on top of an eventually consistent data store, under an unrestricted consistency model but with a finite
concurrency bound. Q9 uncovers anomalies (i.e., invariant violations) that manifest as finite counterexamples,
and automatically generates repairs for such anomalies by selectively strengthening consistency guarantees
for specific operations. Using Q9, we have uncovered a range of subtle anomalies in implementations of
well-known benchmarks, and have been able to apply the repairs it mandates to effectively eliminate them.
Notably, these benchmarks were written adopting best practices suggested to manage distributed replicated
state (e.g., they are composed of provably convergent RDTs (CRDTs), avoid mutable state, etc.). While the
safety guarantees offered by our technique are constrained by the concurrency bound, we show that in practice,
proving bounded safety guarantees typically generalizes to the unbounded case.

CCS Concepts: « Software and its engineering — Formal software verification; - Information systems
— Distributed database transactions;

Additional Key Words and Phrases: Weak Consistency, Replication, CRDTs, Concurrency, Model Checking

ACM Reference Format:

Gowtham Kaki, Kapil Earanky, KC Sivaramakrishnan, and Suresh Jagannathan . 2018. Safe Replication through
Bounded Concurrency Verification. Proc. ACM Program. Lang. 2, OOPSLA, Article 164 (November 2018),
27 pages. https://doi.org/10.1145/3276534

1 INTRODUCTION

Replicated data types (RDTs) are a common abstraction used to program sophisticated distributed
applications intended to operate in geo-replicated environments [Burckhardt et al. 2014]. These
environments often expose a storage layer in which different replicas may hold different states of

Authors’ addresses: Gowtham Kaki, Purdue University, USA, gkaki@purdue.edu; Kapil Earanky, Purdue University, USA,
kearnky@purdue.edu; KC Sivaramakrishnan, University of Cambridge, UK, sk826@cl.cam.ac.uk; Suresh Jagannathan,
Purdue University, USA, suresh@cs.purdue.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2018 Copyright held by the owner/author(s).

2475-1421/2018/11-ART164

https://doi.org/10.1145/3276534

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 164. Publication date: November 2018.

https://doi.org/10.1145/3276534
https://doi.org/10.1145/3276534

164:2 Gowtham Kaki, Kapil Earanky, KC Sivaramakrishnan, and Suresh Jagannathan

the same RDT instance. This occurs because RDT operations may not be atomically and uniformly
applied across all replicas, as a consequence of network partitions and failures, weak ordering and
delivery guarantees, etc. [Brewer 2000; Gilbert and Lynch 2002]. Consequently, replicas may hold
different, potentially irreconcilable, views of an RDT object’s state as the program executes. This
situation can be mitigated in some cases by carefully engineering RDT implementations to provide
certain (albeit weak) properties like commutativity and convergence that ensure all instances of a
replicated object found on different replicas will eventually reflect the same state [Balegas et al.
2015; Shapiro et al. 2011a,b].

In general, however, it remains a challenging exercise to determine if a distributed program
built around RDTs satisfies application-specific safety properties. While recent work has shown
that it is possible to check the integrity of a distributed application by employing heavyweight
specification and verification techniques [Bouajjani et al. 2017; Burckhardt et al. 2014; Gotsman
et al. 2016; Padon et al. 2017a, 2016; Wilcox et al. 2015], doing so with a high-degree of automation
has remained an open (and important) challenge. Full verification of distributed applications is
challenging in part because of the need to specify suitably strong inductive invariants [Padon et al.
2016] that justify the validity of the safety property being verified in terms of the actions performed
by the application; such invariants capture deep semantic properties and are thus difficult to
extract automatically. Furthermore, modern distributed storage layers [Alvaro et al. 2013; Bailis and
Ghodsi 2013] provide relatively weak consistency guarantees because they are designed to achieve
high-availability (low-latency) access to data, and thus expose a semantics that is inconsistent
with easily-understood serializable or sequentially-consistent executions [Brutschy et al. 2017].
The tension between the need for expressive high-level invariants to facilitate verification and the
requirement that any verification mechanism be robust in the face of a weakly consistent storage
layer greatly complicates how we formulate and prove precise correctness arguments.

Rather than tackling the problem of full (unbounded) verification head-on, we instead consider
an alternative fully-automated lightweight verification strategy that leverages symbolic execution
to provide bounded guarantees on a program’s correctness. Our verification strategy explores a
search space of abstract executions in which each point in the space represents a global program
state parameterized over a bounded number of concurrent effects. A concurrent effect captures an
effectful operation on an RDT instance that has not yet been applied. Because multiple concurrent
effects may be serviced in different order on different replicas, our symbolic execution engine
considers distinct permutations over sets of effects. We determine a safety property’s validity
by considering all such executions, limiting the number of concurrent effects (and, by extension,
the number of replicas that process these effects), to retain a tractable analysis. Other than the
specification of the safety property, our approach does not require any additional programmer
involvement.

Our symbolic execution engine (called' Q9) operates over RDT-centric distributed applications.
The engine abstracts executions in terms of path conditions and RDT operations, under an axioma-
tization of a data storage model that only provides weak eventual consistency guarantees on object
updates. The engine checks application-specific safety properties on different state configurations
induced by considering executions in which the visibility and ordering of RDT operations on
different replicas may vary. Q9 tracks operations precisely (up to a bound), thus ensuring that every
violation of a safety property is a true violation. Over a collection of benchmark results, including
well-studied database applications [TPC 2018], Q9 was able to correctly identify anomalies that

1The number 9 in Q9 refers to our initial hypothesis that most replication anomalies manifest under 9 or fewer concurrent
operations. The letter ‘q’ is a symbol resembling 9, hinting at our approach of using symbolic execution to uncover such
anomalies.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 164. Publication date: November 2018.

164:3

arise because satisfiability of the application’s safety properties demand greater coordination and
synchronization than manifest explicitly in the application or which is implicitly supported by the
storage layer. Counterexamples generated by Q9 are used to automatically strengthen the consis-
tency level (i.e., the degree of global synchronization required) of offending operations. Empirical
results support our thesis that anomalies can be detected quickly under relatively small bounds,
and repaired easily by selectively strengthening consistency requirements on RDT operations to
enforce greater coordination among replicas.
The paper makes the following contributions:

(1) We define a programming framework embedded in OCaml that allows the expression of
replicated data types and effectful computations over instances of these types. Our formulation
has a natural runtime interpretation in terms of effectful messages sent among replicas. These
messages define complex, potentially transactional, actions whose evaluation is triggered on
the replicas that receive them.

(2) We describe Q9, a symbolic execution engine for programs built around replicated data types
in our framework. The engine explores a search space of executions, bounded by the number
of concurrent effects yet to be processed by different replicas. Each execution explores a
feasible configuration in which replicas may have some number of outstanding effects (up
to the specified bound) that need to be processed, with ordering constraints determined by
axiomatically-defined visibility and happens-before relations incrementally constructed as
execution proceeds.

(3) We present experimental evidence over a range of benchmarks, including well-studied
database applications that demonstrate Q9 can precisely identify anomalies, i.e., concrete ex-
ecutions that violate application-specific safety properties, even with relatively small bounds
on the number of concurrent effects tracked during symbolic execution. The counterex-
amples generated by the engine can be used to automatically strengthen the consistency
requirements of offending operations to eliminate anomalies; this strengthening mechanism
chooses the weakest consistency level that nonetheless satisfies the safety property under
the concurrent effect bound.

To the best of our knowledge, Q9 is the first fully-automated anomaly detection and repair mecha-
nism for distributed applications intended to execute on weakly-consistent replicated data stores.

The remainder of the paper is organized as follows. The next section motivates the problem
of reasoning about replicated objects and sets the context for symbolic execution. In Section 3,
we introduce a programming model for expressing RDTs and reasoning about effects. Section 4
introduces a general system model that defines a communication mechanism in which replicas
broadcast effects, that are eventually executed on each replica that receives them. We present
a formal description of Q9 in Section 5 that defines concrete and symbolic executions, safety
properties, and a repair strategy developed within this context. Section 6 discusses how symbolic
execution generalizes to transactions that manipulate multiple RDT instances. Details about Q9’s
implementation and evaluation results are given in Section 7. Sections & and 9 present related work
and conclusions, resp.

2 REPLICATED STATE ANOMALIES: THE MOTIVATION FOR VERIFICATION

Consider a simple distributed application that maintains a bank account with replicated state. The
representation of a bank account may be in terms of a convergent replicated type (e.g., an integer
PN-counter [Shapiro et al. 2011a] that admits increments and decrements) that guarantees all
replicas will eventually reflect the same value of the account. However, convergence alone may not
be sufficient to preserve application-specific safety properties. For example, suppose we wish to

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 164. Publication date: November 2018.

164:4 Gowtham Kaki, Kapil Earanky, KC Sivaramakrishnan, and Suresh Jagannathan

- R R
1

' bal =0
bal=1 1 Deposit (1)_, a
____________ I
Alice Bob \
i U wi Bob 4
withdraw (1)‘5_>) A/:t/wnhdraw 1)

la-
A/ [1 Bty N
get_balance ()= -17 Cheryl

______________ | .\‘

*get_balance ()= -1,
1 1

\ \

A ly due t
(a) Anomaly due to concurrency (b) Anomaly due to out-of-order message delivery

Fig. 1. Anomalous executions of a simple bank account application. All operations operate over a single
replicated account object.

assert that the balance of the account will always be non-negative. Given operations to deposit and
withdraw amounts into the account, it is straightforward, in a sequential execution, to ensure this
invariant is always preserved, by ensuring that deposit only ever adds to the balance, and that
withdraw always checks if there is a sufficient balance before withdrawing. However, asynchronous
replication may lead to anomalous executions that violate the invariant. Two such executions that
are illustrative of the anomalies possible under asynchronous replication are shown in Fig. 1.

Fig. 1a depicts an execution that allows two withdraw operations to be applied concurrently
at different replicas. Two users, Alice and Bob, assume that there is a sufficient balance in their
(joint) account, and issue a withdraw operation for $1 each, to replicas R; and Ry, respectively. Each
withdraw operation reads the local balance ($1), checks that it is sufficient for the withdraw ($1 >
$1), and subsequently issues a Withdraw effect that will be asynchronously transmitted to the other
replica. The effect is essentially a computational message that updates the state of the account
on the replicas which receive it. When both Withdraw effects are eventually applied at both the
replicas, the balance drops below $0 resulting in an invariant violation, which gets witnessed by
Alice when she queries the balance. The anomaly is reminiscent of a classical data race between
two writes in a shared memory system, except that writes are not lost or overwritten”

However, unintended executions that are unfamiliar to shared memory programmers are also
possible in an asynchronous replicated system. Consider the execution shown in Fig. 1b involving
three users - Alice, Bob, and Cheryl, and two replicas - R; and R;. The initial balance at both the
replicas is $0. Alice first submits a deposit operation for $1 to R;. Bob, who subsequently connects
to Ry, finds there is sufficient balance to perform a withdraw for $1. While effects from both the
operations are expected to be delivered to Ry, it is possible that because of transient network
conditions, the Withdraw effect gets delivered first while the Deposit is still in transit. This results
in a transient violation of the no-negative-balance invariant, which gets witnessed when Cheryl
queries the balance at R;. The Deposit effect will eventually be delivered to R, resulting in the
invariant being restored; however since there are no bounds on when this can happen, there are no
guarantees on how this violation may affect system behavior. Indeed, it is possible that a temporary
violation of safety may lead to cascading errors that compromise application integrity. For instance,
a negative (albeit temporary) balance could be witnessed by a minimum balance enforcement

2Note that we cannot rectify this anomaly by simply forcing each replica to check the balance before applying a received
Withdraw effect as that may cause the account balance on different replicas not to converge.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 164. Publication date: November 2018.

164:5

BankAccount (C:CRInt) CRInt
BANKACCT = t
m=1t ->1t
t =C.t
m=0C.m init_val : t
add : int ->m
init = C.init_val get : unit -> int

get_balance () : int =
C.get () Bank (Checking : BANKACCT)
(Savings: BANKACCT) =
do_deposit (amt:int) : m =

C.add amt = Checking.t * Savings.t
m=1t ->1t
do_withdraw (amt:int) : m =
C.get () >= amt txn_transfer (amt:int) : m =
C.add (@-amt) m1 = Checking.do_withdraw
error "Insufficient Balance" amt
m2 = Savings.do_deposit
inv_non_neg_bal () : bool = amt
CRInt.get () >= 0 (x,y) -> (m1 x, m2 y)

Fig. 2. A Bank Account application written in Q9

module, which may erroneously impose a penalty on the account that remains even after the
violation is remedied. As this example demonstrates, asynchronous replication of an application’s
state can result in anomalous behaviors that could be confounding to understand and repair. It is
clearly unreasonable to expect an application programmer to be prescient about the anomalies that
might manifest under replication, determine if they indeed lead to invariant violations, and fix the
application to avoid them.

Q9’s verification engine is based on the observation that concurrency anomalies under replication
most often have small representative counterexamples involving few concurrent operations, similar
to those shown in Fig. 1. Such anomalies can be exposed by exploring the state space of the
application with a relatively small bound on the number of concurrent operations. Moreover, by
representing the state space using an appropriate formal vocabulary that abstracts away low-level
details, such as process crashes and network faults, we can compute an abstract representation
of each counterexample that represents not only the counterexample, but an entire class of such
counterexamples. Systematically eliminating such classes of counterexamples by consistency
strengthening leads us to compute the weakest consistency configuration at which an application
is free of all discovered anomalies, and hence most likely to be safe.

3 THE Q9 PROGRAMMING FRAMEWORK

The first component of Q9 is a programming framework implemented as a collection of type
definitions and libraries in OCaml, intended to operate within a replicated, eventually consis-
tent, distributed environment; for this purpose, it comes equipped with a library of convergent
RDT [Shapiro et al. 2011a] definitions. The semantics of a CRDT object guarantee that even when
multiple operations are applied to it in different order on different replicas, the object’s state at all

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 164. Publication date: November 2018.

164:6 Gowtham Kaki, Kapil Earanky, KC Sivaramakrishnan, and Suresh Jagannathan

replicas, after all operations have been delivered and executed (i.e., when the system becomes quies-
cent), will be the same. Q9 uses CRDT specifications to specify richer RDTs through compositional
abstractions, capturing notions of convergent state replication for free without having to define a
specialized network/storage layer, or to prove additional semantic properties (e.g., commutativity)
for the sake of convergence. In this section, we illustrate the programming model with the help of
an example.

Fig. 2 shows a simple BankAccount application written in Q9 that was informally introduced in
the previous section. The application manages a replicated object (a bank account) whose underlying
representation is given in terms of a CRDT integer (C.t). The signature of a CRInt defines two
operations: get returns the current value of the integer, and add adds its argument to the existing
value of the integer. Observe that while the signature for get is unremarkable, add’s type returns a
value of type m, a function type with signature C.t -> C.t. This return type captures the essence
of an effectful operation in a replicated setting. The function returned by add is intended to be
applied to every instance of C on every replica in the distributed environment managed by Q9
supplying the value of the integer (C. t) at that replica as the argument to this function. On the
other hand, get’s signature does not appeal to m - it is expected to return the value of the integer on
the replica to which it is applied, in contrast to add. This particular specification of CRDTs allows
us to hide the implementation artifacts of replication behind high-level signatures that characterize
an operation’s local and remote effects.

The BankAccount module defines standard banking operations that internally manipulate the
CRInt CRDT. The operations include get_balance, do_deposit, and do_withdraw. get_balance
function is standard - like C. get, it returns the integer value of the current state on whatever replica
it is applied to. Operations do_deposit and do_withdraw, on the other hand, are effectful. These
operations return an effect, which is essentially a computation that must eventually be performed
on all replicas. The type of an effect is therefore t -> t for which we introduce a type synonym m.
Thus, the type of an RDT operation” over type t, that expects an argument of type a, and returns a
t effect (i.e, m=t -> t)is as follows:

at =t ->a ->m

Note that, by definition, an RDT operation acts on a single instance of an RDT.

As described above, the semantics of an RDT operation follows from the CRDT computation it
returns. For instance, a do_deposit operation returns a CRInt.m computation that when invoked
on a replica R will add amt to C’s integer state (C.t) on R. This abstract notion of an effect can
be concretized as a function that maps a replica state to a new state. As a convention, we use
pascal case and uncurried arguments to denote an effect, and snake case and curried arguments
for an operation. We also drop the prefix do_. Hence, the effect of (do_deposit amt) is written
Deposit(amt). Its semantics is defined by ascribing it the following denotation:

[Deposit(amt)] = As’. s’ + amt

In ascribing the above denotation to Deposit, we assumed that CRInt.t isan int and CRInt.add is
basically integer addition. We can similarly ascribe a denotation to Withdraw(amt) effect. Assuming
that withdraw generates an effect only when the balance check is satisfied on the origin replica,
the Withdraw(amt) effect can be thought of as a function that simply decrements amt from the
integer state on all the replicas:

[withdraw(amt)] = As’. s’ — amt

The function get_balance doesn’t generate an effect, and thus has no need for a denotation.
3By convention, we denote such operations by prefixing their name with do_.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 164. Publication date: November 2018.

164:7

As highlighted by the oper type definition above, an RDT operation (do_. . .) is only ever allowed
to operate on a single RDT. However, in general, distributed applications will need to compose mul-
tiple RDT operations to perform useful computation. To express such compositions, Q9 additionally
supports transactions over replicated objects. In Fig. 2, module Bank composes two BankAccount
objects - one (Checking.t) denoting a checking account and the other (Savings.t) savings. It
defines a txn_transfer transaction (the prefix txn_ is a naming convention for transactions) that
withdraws from the former and deposits to the latter. Provided that the withdraw on the checking
account is successful, it returns a composite effectful computation that when applied on a replica
serves to perform the transfer on the instance of Checking and Savings on that replica. If we
think of a transaction as generating an aggregate effect, that effect is a composition of effects of
individual RDT-specific operations that constitute the transaction. For instance, if txn_transfer
amt is thought of as generating a Transfer (amt) effect, its denotation is as follows:

[Transfer(amt)] = A(s], s5). ([Withdraw(amt)](s]), [Deposit(amt)](s5))

The result of executing transfer is therefore the generation of this effect.

Finally, Q9 also allows applications to specify safety properties as boolean functions, via functions
whose names are prefixed by inv_. These safety properties become the basis for verifying RDT
applications.

3.1 Explicit Effect Representation

Besides explicating the semantics of RDT operations, the notion of an effect serves a more con-
crete purpose in Q9. Named effects (e.g., Withdraw(amt)) constitute the class of messages that are
exchanged between replicas, and act as the pivot for consistency enforcement. More importantly,
effects provide a tangible structure to reason about concurrent operations potentially executable
on different replicas, an essential requirement for any verification exercise. For these reasons, Q9
translates high-level RDT programs to an intermediate representation (IR) that uses explicit effects.
In our running example, the translated version of the BankAccount RDT in the IR includes the
following definitions

apply_eff (s':int) (e:eff) = e

| Deposit(a) -> s' + a

| Withdraw(a) -> s'-a

eff = Deposit int
| Withdraw int

Note that the eff type definition and the apply_eff function reify the abstract notions of effects
and their semantics in the context of the BankAccount application. Operations and transactions
can now be defined in terms of these explicit effects:

deposit (amt:int) = Deposit(amt) transfer (amt:int) =

eff1l = Checking.withdraw amt
eff2 = Savings.deposit amt
(eff1,eff2)

withdraw (amt:int) =
s>= amt Withdraw(amt)
error "Insufficient Balance"

Observe that, under this formulation, CRDT definitions such as CRInt exist only to transfer CRDT
semantics to their consumers. After compilation to the effect-aware IR, the application’s RDTs
themselves become CRDTs; e.g., applying (via apply_eff) a collection of effects (i.e., values of
eff type) in any order results in the same BankAccount state. Thus, the Q9 programming model
serves as a way to engineer arbitrary distributed applications with convergent semantics, while its
underlying IR directly manipulates effects in ways consistent with CRDT semantics.

The translation to this IR elaborates each operation (i.e., do-prefixed function on an RDT) in
to a representation that returns the corresponding effect. The effect takes the place of the RDT

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 164. Publication date: November 2018.

164:8 Gowtham Kaki, Kapil Earanky, KC Sivaramakrishnan, and Suresh Jagannathan

Microblog(Tweet: TWEET)(Userline : USERLINE) (Timeline : TIMELINE) =
t = Tweet.t * Userline.t * Timeline.t

txn_new_tweet (uid: user_id) (str: string) =

tweet_id = UUID.new ()

el = Tweet.new tweet_id str

e2 = Userline.add uid tweet_id

fids = User.get_followers uid

e3 = Timeline.add (Set.map (fid -> (fid, tweet_id)) fids)
(el,e2,e3)

Fig. 3. Microblog application’s txn_new_tweet transaction

computation m in the definition of the operation (for e.g., compare withdraw given above to its
definition in Fig. 2). Conversely, the interpretation of the effect of an operation at state s’ is obtained
by inlining the CRDT computation (m), and applying it on s’ (for e.g., compare the interpretation of
Withdraw in apply_eff above to the definition of do_withdraw in Fig. 2). A transaction’s effect
is a composition of effects on multiple RDT objects in the same way as the object it manipulates
is a composition of multiple RDT objects. For instance, txn_transfer of Bank returns a pair of
BankAccount effects for the type it manipulates (Bank. t) is a pair of BankAccount. t objects.

Microblog. Fig. 3 shows a more complex transaction from a Twitter-like microblogging ap-
plication in explicit effect representation. The transaction manipulates objects of three different
types: Tweet.t, Userline.t, and Timeline. t. Each object can be thought of as a set of records
of a similar type, akin to a table in a relational database. For instance, Tweet. t represents a set of
tweets. The transaction first constructs an effect (e1) for adding the new tweet to the collection
of tweets, followed by an effect (e2) to add the corresponding tweet id to userline of the author
(identified by uid: user_id), and finally an effect (e3) to add the tweet id to the timeline of every
follower of the author. It returns a tuple of these effects to be applied on first, second and third
components of Microblog.t object, respectively. We shall revisit this transaction in Sec. 7, where
we describe the anomalies it exhibits, along with the fixes that Q9 discovers.

4 SYSTEM MODEL

Figure 4 presents a schematic diagram of the sys-

g e e model adopted by Q9. An application’s state
: 5 o 5 is c‘omI.)osed .of multiple object§ (xy,.. :), each of
g PR — ¢ which is replicated across multiple locations. Each
yo A @ fef) i location is called a replica. Each replica maintains
i an unordered history of an object’s effects known to

" —— © that replica. For example, the history of of the object
R WA (SRR x at replica Ry (in Fig. 4) is the set {e], e} }, whereas
its history at replica n is the set {e}, e} }. The differ-
ence in histories is due to asynchronous replication
which allows effects to be propagated lazily (through
the network) and delivered asynchronously. Under a
reasonable assumption that the network offers even-

tual delivery guarantees, all generated effects will

N

i
|01 4 @ foo(argy); (e

1
i
Sessior|| | v2 « x.bar(args); (e5)
Order (| 1 : :

oy

] .
| Session,

Session, |

Fig. 4. Q9 system model.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 164. Publication date: November 2018.

164:9

be present on all replicas eventually. The state of an
object at a replica is a function of the object’s history; it is computed by applying the effects, in no
particular order, to the initial object of the RDT. For instance, if x is a BankAccount object, and ef
is Deposit(10), and e} is Withdraw(5), then a possible state of x at R; is:

=
|

[Deposit(10)] ([Withdraw(5)] (BankAccount.init))
(As.s +10) ((As.s — 5)0)
5

The clients of the application interact with the system by invoking operations (e.g., deposit) on
objects. The sequence of operations invoked by a particular client on an object is called a session,
and the operations found in this sequence are said to be in a session order with one another. Session
order also relates the operations within a transaction. For e.g., in the txn_transfer transaction
of Fig. 2, the withdraw operation precedes the deposit operation in session order. At any given
instant, an application could be serving multiple concurrent clients/sessions. An operation or a
transaction invoked by a client is executed at one of the replicas (e.g., operation foo executes at
Ry in Fig. 4). Due to transient system conditions (e.g., network partitions, load balancing etc), it
is possible that the operations of the same session get executed at different replicas. For example,
operation bar from the same session as foo executes at a different replica. When an operation (e.g.,
foo) is executed on an object (x) at a replica (R;), it is supplied the state of the object (x) computed
from its history at the replica (R;). In this case, we say that the effects in the history (ef and e}) are
visible to the operation (foo).

The system described above is quite general insofar as it makes no assumptions on either the
timing or order in which effects are generated and propagated. Indeed, the model abstracts many
realworld distributed data stores [Lakshman and Malik 2010; Riak 2018; Sivasubramanian 2012;
Voldemort 2009], and is consistent with the models used in a number of research prototypes such
as Walter [Sovran et al. 2011], Chapar [Lesani et al. 2016], Antidote [Shapiro et al. 2018], and
Quelea [Sivaramakrishnan et al. 2015].

5 THE Q9 VERIFICATION ENGINE
5.1 Core Calculus

Fig. 5 shows the syntax of the core calculus (Ag) of Q9 that lets us capture the essence of Q9
programs abstractly. The calculus operates on integer and boolean values, sets, and functions. A
special type eff for effects is also present, and it is assumed to be a (non-recursive) sum type of N
effect constructors - Wj¢[1,], Where each constructor has exactly one argument of a base type (B).
The syntactic class of expressions includes the usual suspects - lambda abstractions, applications etc.,
along with set expressions which include an empty set constructor (@), a singleton constructor ({e}),
and a set union constructor (e; U ey). Applications of effect constructors (W;¢[1, N]) are expressions
of type eff. A match-with-else expression lets a value be matched against a pattern (p), and if the
match is successful, evaluates the corresponding expression. Any Ag expression can be annotated
with its type ([e]7).

At the top-level, a Ag program (i) is a parallel composition of functions of type B — eff, where
B is a non-effect (base) type. Intuitively, a Agx program models a Q9 application operating over a
single RDT maintaining a state of type B (e.g., B could be int in our running BankAccount example).
Each function represents an invocation of an operation on the RDT; this construction models the
generation of operations by a client in a given session; invocations can proceed in parallel (r || 7).
When an operation is invoked, it reads the current state at some replica, which is a value of type
B, and generates a new effect (an eff). Since our system model does not mandate that all replicas

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 164. Publication date: November 2018.

164:10 Gowtham Kaki, Kapil Earanky, KC Sivaramakrishnan, and Suresh Jagannathan

x,y, f € Variables c € ZU {true, false} Wie[1, N € Eff Constructors
B € Base Types = int | bool | Bset | B— B
T € Types = B |eff | Tset | T>T
p € Patterns = true | false | Wigpnj(x) | 0 | {x} | xUy
e € Expressions = c¢ | x| Ax.e | fixe | ee | 0 | {e} | eVe

| Wier,ny(e) | matchewithp = eelsee | [e]r
m € Programs = [Ax.elpoers | 7|7

Fig. 5. AR: The core calculus of Q9

witness the effect generated by an operation instantaneously, any operation may witness a subset
(say, S) of effects generated so far by operations that executed previously. The state an operation
witnesses is the result of applying the effects in S to an initial state. We write ¢ : B to denote the
initial state of the RDT being modeled.

Recall that the denotation of an effect is a function that defines what it means to apply that
effect (e.g., from Sec. 3: [Deposit(amt)] = As. s + amt). The denotation of a set of effects is simply
a functional composition of the denotation of its constituents (in the following, & denotes a disjoint
union, € stands for an effect, and o is the function composition operator as in f o g):

o] = Ax.x
[Sw{et] = [Slo[el
Thus, the result of applying a set S of effects to ¢ is defined by ([S] »).

Our calculus does not support transactions - each invocation ([Ax.e]p—eff) operates over a single
RDT, and produces a single effect. Supporting transactions is however straightforward - invocations
would need to be supplied multiple RDTs to operate over, may produce multiple effects, and each
of these effects may have internal (session) ordering guarantees that would need to be preserved.
We revisit these issues in Sec. 6.

Having defined what it means to apply a set of effects, we can now capture the essence of the

operational semantics of a Ag program in a single rule defined over sets of effects, rather than
replicas, or other system-level artifacts:

SCA (Ax.e) ([S] 01 Wj(v)
(A, [Ax.e]pefs [l 1) — (AU {W;(v)}, 7)

The rule uses the set of effects generated thus far (A) as a proxy for the overall system state, and
[S], where S C A as a proxy for a replica state. Since this covers all possible system configurations
and replica states, the semantics is general enough to admit all possible behaviors of a distributed
program interacting within asynchronously replicated state.

The E-OPER rule describes a small-step evaluation relation of Ag programs () with the following
signature:

[E-OprER]

(A,m) — (A", ")

As described above, A is the set of effects generated in the system, and 7 denotes the program being
reduced. E-OPER is the only computation rule of the small-step relation; the rest are congruence
rules that let s morph into a form suitable for E-OPER. The antecedent uses a big-step evaluation
relation ({}) to interpret expressions. The definition of this relation is standard and elided here.

Safety. Recall that Q9 applications define their safety properties as boolean functions. Let I =
[Ax. e]B—boo1 denote such an invariant. We say that a certain RDT state s : B satisfies the invariant
iff I(s) evaluates to true as per the big-step semantics of Ag. Using I, we can informally capture
the safety of the application as follows:

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 164. Publication date: November 2018.

164:11

o The initial state ¢ at every replica satisfies the invariant I, and

e At any given instance, if the state at every replica satisfies the invariant I, and if we execute
any operation f at some replica R generating an effect €, then applying € at any replica R’
results in a state that still satisfies I.

We can transplant this informal characterization into the framework of our calculus thus:

Definition 5.1. An execution of a program = is safe with respect to invariant I if and only if
VA, A, if:
e [:] true
e VS CAI(S]v | true
e (A1) — (A7)
then VS’ € A", I([S] 1) | true.

Note that the definition folds the generation of effect € into the small-step transition (A, 7) —
(A, 7"); it is expected that A” = A U {e}. The definition also takes into account the effects that are
generated concurrently with e: these are the effects that are present in A, but not in the set S € A
witnessed by €. The effects in A — S may have been generated before or been concurrent with € in
realtime, but our asynchronous model doesn’t make such distinctions: if an effect is not visible to
€ (i.e,, not present on the replica where € was generated), it is a concurrent effect insofar as the
operational semantics is concerned.

A subtle yet consequential aspect of the above formal development is that it only loosely con-
strains the notion of an initial state 1. Def. 5.1 defines the safety of a concrete execution starting from
any state 1 that satisfies the invariant I. In particular, is not obligated to denote either an empty
state (i.e., a state with no effects), or a state reachable from an empty state; instead, it need only be a
state that satisfies the invariant I. This rather broad definition of : nonetheless captures the reality
of a database application, which is allowed to start its execution from an arbitrary database state
created independently of the application’s interface, as long as the state satisfies the application’s
integrity constraints I. For instance, TPC-C’s reference implementation [TPC 2018] ships with a
sample workload generator that executes the application against a database state not reachable
from an empty state by a TPC-C execution, but one that satisfies all of the TPC-C’s stated integrity
constraints. A downside to this relaxed specification of : however is that it may require I to be
strengthened to include all valid database states, failing which the application could be judged
unsafe by Def. 5.1. This problem is revisited in Sec. 5.3, and again in Sec. 7 in the context of real
applications.

The calculus and operational semantics described here succinctly capture the semantics of
concurrent programs under asynchronous state replication without having to concretize low-level
aspects of the system model such as message communication, process creation, replica organization,
etc. Notwithstanding its succinctness, checking safety in the sense described above by naively
exploring a concrete state space of executions is clearly infeasible given the large set of behaviors
that are possible. We therefore refine our semantics to leverage symbolic reasoning to enable us to
characterize and represent many concrete states at once.

5.2 Abstract Relations

In this section, we introduce the formal vocabulary that lets Q9 represent anomalies and consistency
specifications abstractly. We say effect e; is visible to another effect e, (vis(e1, e2)) if the operation
that generated e, was executed against a state to which e; has already been applied. For instance, in
Fig. 1b, the effect (call it e;) of Alice’s Deposit is visible to the effect (call it e;) of Bob’s Withdraw.
The visibility relation is irreflexive - effects cannot see themselves; asymmetric - if e; is visible to
ez, then e; necessarily happened before e;, therefore cannot see e,; and, non-transitive - if e; is

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 164. Publication date: November 2018.

164:12 Gowtham Kaki, Kapil Earanky, KC Sivaramakrishnan, and Suresh Jagannathan

visible to e;, and ey is visible to es, then e; need not necessarily be visible to es; Fig. 1b captures
such a scenario. Another important aspect of visibility is that it only ever relates effects on the
same object. This follows from the fact that an operation is only allowed to access the state of a
single object, hence can only witness the effects of previous operations on that object. Given a
relation sameobj that relates effects on the same object, we have:

Ve, ez. vis(e1, e2) = sameobj(e, e2)

The session-order relation relates effects of the same session in the order they are generated. For
instance, in Fig. 4, effects ej and e are in a session order (written so(e}, eY)). Session order is
irreflexive and asymmetric for the same reason as visibility, but it is transitive because the order of
operations in a session is a total order.

Having formalized visibility (vis) and session order (so), we can define what it means for an
effect e; to happen before an effect e,. Clearly, e; has happened before e, if vis(es, e2) or so(e, e3).
Moreover, if we already know that an effect ey has happened before e;, and if vis(e;, e2) or so(ey, e3),
then it follows that ey has happened before e;. Observe that these are the only two ways that the
asynchronous system model we defined in Sec. 4 lets us define a happens-before ordering of effects.
Thus, the happens-before relation (denoted hb) is simply a transitive closure of vis U so:

hb = (vis Uso)™

Visibility, session order, and happens-before are the major (binary) relations that let us cap-
ture dependencies among effects generated by an application. To aid our exposition, we also
define various helper (unary) functions - oper and arg, that let us project various attributes of
an effect. Recall that the type of effects in Q9’s IR (Sec. 3) is a tagged union of effect arguments.
Functions oper and arg project the tag and the argument, respectively, of an effect. For instance,
oper(Withdraw(5)) = Withdraw and arg(Withdraw(5)) = 5.

5.3 Symbolic Execution

In this section, we consider a replacement of the concrete evaluation relations (—, |}) with symbolic
counterparts (<, |) to facilitate symbolic reasoning over states and effects. In the process, we also
take into account the specific characteristics of asynchronous state replication so as to bound the
state space and expedite the process of anomaly detection.

5.3.1 Intuition. Recall that the semantics of A tracks the state of a program’s execution as A, the
set of effects generated thus far, and the state of a replica as a subset S of A. This construction
accounts for any number of replicas, and a liberal network semantics with arbitrary latency and
message reordering. (In reality though, there are only a finite number of replicas), and inter-replica
latency is usually comparable to (i.e., a small multiple of) replica-local execution time. As a result,
in practice, a non-trivial subset S, of effects in A can be expected to be already present on all
replicas [Bailis et al. 2012].

The corresponding state b = [S;] is therefore a “common prefix” of all the replica states, which
is extended at each replica by applying a subset of effects from S = A — S. The effects in S, are
called concurrent effects. A concurrent effect is an effect that is not present on (i.e., not applied to
the state of) at least one replica. Each replica contains a subset of concurrent effects, which are
applied to the common prefix b to compute the state at that replica. Let k denote the number of
concurrent effects. Lower k values represent concrete executions where replicas are more-or-less in
sync with each other. Conversely, high k values indicate executions characterized by, e.g., network
partitions, process crashes, high network latency etc, that result in divergence between replicas.

Note that representing executions as a pair of a common prefix state b, and a set S, of concurrent
effects is not any less general than the scheme used by operational semantics, which tracks the set
A of all effects. We can let the former simulate the latter by setting b = 1 (1 is the initial state) and

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 164. Publication date: November 2018.

164:13

S-MatcH-EFFSYm
I'rtelve v=oper(ve)=W;
T AvE[arg(ve)/x]er L vi TA-vEey |
T+ match e with Wj(x) = ej elseey | v?v1: 1o

S-MAaTcH-BooLSYMm S-MATCH-SETSYM
T'telve TAVFierlvi TA-VEe |12 Trtelve H(T,[ve,xUy, e1,e2]) =2
I'+match ewith true = e; else ey | ve?v1 : V2 I'rmatchewithxUy = e elseey | 2z

Fig. 6. Symbolic evauation rules for Ar expressions

Sc = A. However, the advantage of using the (b, S;) scheme instead of A is that it lets us perform
bounded verification by allowing us to bound the amount of concurrency (i.e., the size k of the set
S¢) without having to constrain the pre-state (). The pre-state is constrained only inasmuch as the
application allows it. For instance, in the BankAccount application, where the invariant allows the
balance to be any non-negative quantity, setting k = 3 and b > 0 lets us explore all executions with
an unknown (but non-negative) initial balance, and at most 3 concurrent effects, a setting sufficient
to detect the anomalies given in Fig. 1. In practice, we find that small values of k are sufficient to
discover all anomalies an application may exhibit under arbitrary asynchronous replication.

5.3.2 Formalization. Symbolic execution is formalized in terms of evaluation relations for Ag
expressions (|), and Ag programs (—). These relations are symbolic counterparts to Ag’s big-step
concrete expression evaluation relation (|}), and small-step program evaluation relation (—). The
class of symbolic values is defined as follows:

v o= clxAxe|vv [v?2viv]| 0] {v} | vUv | Wegn®

Constants (integer and boolean) and variables are symbols. An application of a symbolic value to a
symbolic value is a symbolic value. For instance, x + y is an application of the built-in function +
to x, and the result to y. A guarded symbolic value is a value of the form v;? v, : v5. An example is
(x > 10)?2 : 3. Sets of symbolic values are also symbolic values. Finally, application of an effect
constructor to a symbolic value results in a symbolic value of type eff.

Based on their structure, symbolic values can be divided into two categories: values that are
either constants or applications of the constructors (e.g., Wie[1, N1, {*} etc.) at the top level, and the
rest (e.g., a variable or a guarded value). The values of the former kind are destructible, meaning that
they can be deconstructed and matched against a pattern in a match expression, with execution
proceeding as if it were a concrete execution. We let v| denote destructible symbolic values. In
contrast, non-destructible values (denoted v,) require the symbolic execution to explicitly handle
the case of such values being matched against patterns. Fig. 6 contains a few symbolic execution
rules that illustrate the point. The rule S-MaTcH-EFrSym describes how non-destructible symbolic
values of type eff are handled in a match expression. I' is a conjunction of path constraints, which
are simply boolean symbolic values. The scrutinee of match is a non-destructive eff value (vs),
which is matched against an eff constructor. Unable to destruct v,, the rule evaluates both the
branches under appropriate path constraints (involving the application of oper special function),
and returns a guarded value. The rule S-Match-BoolSym does guarded symbolic execution over
match expressions involving non-destructible boolean values. The rule S-MATcH-SETSYM describes
a case where the symbolic execution cannot make progress even by constructing guarded values.
Here, a set expression e evaluates a non-destructible symbolic value v,, which is matched against
a union pattern x U y. Since the execution cannot determine whether v matches x U y or not (v

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 164. Publication date: November 2018.

164:14 Gowtham Kaki, Kapil Earanky, KC Sivaramakrishnan, and Suresh Jagannathan

could be a variable, for example), it has no way to make progress. Attempts to execute both the
branches (e; and e;), and return a guarded value may lead to divergence if either of e; or e, contains
a recursive call on either x or y (because each recursive call branches further, which never ends).
The symbolic evaluation prevents this by halting the evaluation and returning a fresh symbol with
the same type as the match expression. It uses a (meta) function H for this purpose. The function
H essentially performs memoization; it takes enough arguments to ensure that if the symbolic
execution evaluates the same match expression again in the same context ('), it returns the same
symbol (z). To avoid cluttering the rule with technicalities, we assume that the type binding for z is
already present in I, and z does not occur free in the match expression. The rule S-App deals

Example. Consider the following version of apply_eff, which is slightly modified from Sec. 3
to make it conform to the syntax of Ag (for brevity, we use D for Deposit, and W for Withdraw):

A(s : int).A(e : eff). match e withD(a) = s+a
else matchewithWa) = s—aelses

The result of symbolically evaluating the body of the function is a guarded symbolic value shown
below. We name it v,,,, and parameterize it on the free symbols e and s:

vapp(e,s) = (oper(e) =D)? (s + arg(e))
: (oper(e) =W)? (s —arg(e)) : s
[m}
As mentioned previously, symbolic evaluation explores the state space of the application starting
from a symbolic state (b) that satisfies the invariant (I), and assuming that the number of concurrent

effects (|Sc|) never exceeds a fixed value k. We write S¥ to explicitly denote a set S that has
cardinality k. Let us name the k concurrent effects as E;¢[y, k). Thus:

k
sk = U{Ei}
i=1

A replica state (s) is computed by applying a subset of S¥ to b. Let us say an operation f executes
against the state s at replica R and generates an effect €. From the definition of vis, it follows that a

subset of Sf effects at R is visible to €; this subset can be constructed thus:

k
U vis(Es, €)? {Ei} : 0
i=1
where E; € Sf . That is, the effect E; is included in the set only if it is visible to €. We call this set a
projection of S¥ on ¢, and denote it as S¥ > €. We define what it means to apply such a set of visible
effects by defining its denotation as follows:
[0 €] = As.s
[(Sw{Ei}) > €] [Se] o As.vis(Ei, €)?([Ei] s) : s
Intuitively, the state at replica R witnessed is [S¥ > €] b, where b is the common prefix state.
Having defined what it means to apply a projection, we can now define a symbolic equivalent
of the concrete small-step evaluation rule. The rule represents the global state as a tuple of the
common prefix and concurrent effect set (b, Sf), instead of the set of all effects (A):

(Ax.e) ([Sk>e] b) | e
(6. SF). [Ax.elposers ||) > 7

The conclusion of the rule indicates that the Ag program [Ax.e]p_eff || 7 symbolically reduces to =
under the state (b, S¥) while generating an effect €. The antecedent requires that the effect € be the
result of symbolically executing Ax.e against a state that applies a subset of effects visible to € to b.
We now redefine our notion of safety to consider k-bounded symbolic execution:

[S-OpER]

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 164. Publication date: November 2018.

164:15

Definition 5.2 (k-safety). A symbolic execution of a program 7 bounded by k concurrent effects
is k-safe with respect to invariant I if Vb, k, Sk e, ef s.t:

o I([Sk>ef]b) | true
o Vo, ', ((b, Sf),) S
then I([(S* U {e}) > er]b) | true

In the above definition, € is the effect generated by the small-step reduction of the program s,
whereas €y is an effect generated by some operation f witnessing the state. The first premise asserts
that f initially sees an invariant-satisfying state regardless of what subset of concurrent effects
it witnesses. In the context of a replicated state system, it means that all replicas initially satisfy
the invariant. Invariant satisfiability is defined by asserting that the symbolic value resulting from
symbolically evaluating the invariant function is equal to true. The second premise (interpreted
using the S-OPER rule) states that the effect € is the result of symbolically evaluating an operation
in 7 against a state containing a subset of concurrent effects. Concretely, it means that € is an effect
generated by executing an operation in 7 at some replica. Under these premises, proving k-safety
of 7 requires proving that f continues to see an invariant satisfying state even when the set Sk of
concurrent effects is extended with e. That is, even if f is executed on a replica that includes the
newly generated effect €, it still sees an invariant satisfying state.

Note that, since k-bounded verification only explores a limited state space, k-safety does not
guarantee the unconditional safety of Ag programs, but it does guarantee that any counterexample
to safety it discovers is a real counterexample, assuming the invariant I is a complete specification
of valid program states, i.e., any assignment to the symbolic pre-state b that satisfies I is a valid
assignment’. We call the counterexample discovered by symbolic execution of program = as a
witness to the k-unsafety of 7, and a counterexample discovered by the concrete execution as a
witness to the unsafety of 7. The soundness of bounded verification can now be stated thus:

THEOREM 5.3. If a Ag program is k-unsafe with witness w, then it unsafe with witness w, provided
that its invariant I is a complete specification of valid program states.

The proof of the theorem follows from the fact that the symbolic execution computes an underap-
proximation of the set of behaviors a Ag program can exhibit. Thus, any execution captured by the
symbolic encoding of the program is a valid program execution, including an unsafe execution.

The soundness guarantee of Theorem 5.3 is conditional to the invariant I being a complete
specification of valid program states. If on the other hand I is only a partial specification, then
symbolic execution may capture executions that do not manifest concretely, thereby leading to false
k-safety violations. However, as explained in Sec. 5.1, completeness of I is a reasonable assumption
to make in the context of database programs, which are often executed against databases populated
independently of such programs. In this setting, the only valid assumptions about the database
state are the stated integrity constraints ().

5.3.3 Example. Let us say we would like to verify the 3-safety of a withdraw(amt) operation, i.e.,
safety of withdraw(amt) assuming three concurrent effects 52 = {Ey, Ey, E5}.

As per Def. 5.2 the invariant can be assumed to be valid in any pre-state. That is, for some effect
e, assume inv_non_neg_bal([S} > €] b) | true. The term [S} > e¢] denotes the application of
effects visible to €7 via BankAccount’s apply_eff. Recall (from the previous example) the symbolic
value vqp,(e, s), which is the result of symbolically executing apply_eff on a symbolic effect e

4This assumption is already captured by Def. 5.1, which defines a valid concrete execution as one starting from any invariant

satisfying state. To avoid potential sources of confusion, we explicitly qualify our soundness guarantees with this assumption
wherever required.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 164. Publication date: November 2018.

164:16 Gowtham Kaki, Kapil Earanky, KC Sivaramakrishnan, and Suresh Jagannathan

and a symbolic state s. Since [S] > €] applies an effect E; € S} only if vis(E;, ef), it reduces to the
following symbolic value (let bindings are used for the sake of clarity):
let sy = vis(E1,€r)? vapp(E1,b) : b in
let sy = ViS(Ez,Ef)? Vapp(E2,51) & 51 in
vis(E3, €7)? Vapp(E3, 52) © 2

Let us name the above symbolic value v* re(ef). The parameterization on €¢ underscores that ef
could be any effect witnessing the pre-state. Since the invariant is valid initially, v/ re(ef) > 0.

Next, Def. 5.2 lets us assert the conditions under which the program z generates the effect €. In
other words, it lets us capture the local safety of €. Here, 7 is simply the withdraw(amt) operation,
and € is a Withdraw effect. The operation generates the effect only if the balance it reads is not
less than amt. The symbolic execution captures this condition as a path constraint (i.e., a logical
formula whose satisfiability determines the feasibility of the current program path), which is then
allowed to be asserted as a premise of k-safety. The balance that withdraw(amt) reads is [S> > €] b,
which expands to v"¢(€). Thus, the premise that withdraw(amt) is locally-safe translates to the
assertion v/ ¢(e) > amt.

Having captured the two premises of Def. 5.2 as constraints on symbolic values, we are now
required to prove that if we include € in the set of concurrent effects, the invariant still evaluates
to true, i.e, inv_non_neg bal([{S] U {e}} > ef] b) | true. The expression [{S} U {e}} > ef] b
essentially applies € to the result of [S] > €] if and only if vis(e, ef). Recalling that the result of
applying a symbolic BankAccount effect e on a symbolic state s is vy (e, s), and that [S? > ef] =

Vfre(ef), we deduce that the result of [{S? U {e}} > ef] b is the following symbolic value:
vis(e. €7)? vapp(e, V5 Nep) + Vi (ep)
Let us call the above value v/ OSt(ef). The proof obligation generated by Def. 5.2 is:
VP ep) 2 0 A vET(e) 2 amt = v (ep) 2 0

The validity of the above implication is equivalent to the unsatisfiability of the following conjunc-
tion:

V" er) 2 0 A vET(e) 2 amt A (% (ef) > 0)

An SMT solver, such as Z3 determines the conjunc-

Deposit(1) Withdraw(1) tion to be satisfiable’, thus proving that withdraw
is 3-unsafe. The counterexample that Z3 returns

vis vis involves assigning amt = 1, and making E; a
Withdraw(1) & Deposit(1) effect that is visible to the current ef-

fect € = Withdraw(1), but not making it visible to
the (reference) effect €. The counterexample is vi-
sualized in Fig. 7a, and is an abstract representation
of the concrete anomaly described in Fig. 1b. Fix-
@) (b) ing the anomaly (as described in the next section),
and rechecking the satisfiability lets us discover an-
other counterexample, visualized in Fig. 7b. This
counterexample is an abstraction of the concurrent
withdraws anomaly of Fig. 1a. Fixing the second anomaly is enough to show that the constraints
are unsatisfiable, thus withdraw is 3-safe.

vis vis

€f Withdraw(1)

Fig. 7. Counterexamples to 3-safety.

5In general, the efficacy of bounded verification in Q9 depends on the ability of the solver to reason about the theories
required to encode the path constraints of the program and the invariant. Fortunately, there exist decidable theories, such
as linear arithmetic, that are useful in practice.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 164. Publication date: November 2018.

164:17

5.4 Automated Repair

Once a counterexample demonstrating an anomaly has been discovered, Q9 helps to automatically
repair the application by appropriately strengthening the consistency of the offending operation.
We equip Q9 with a set of consistency levels, each designed to exempt a few classes of anomalous
executions. Realization of these levels incurs a performance penalty in proportion to their strength
(stronger consistency levels prohibit more anomalies and incur heavier penalty). The challenge is
to determine the weakest consistency model that prohibits the anomaly exhibited by the counterex-
ample. Fortunately, this step can be automated by observing that consistency levels can be captured
in the same abstract language as the counterexamples that the symbolic execution discovers.

Consider the counterexample execution depicted in Fig 7a. We can formally express behaviors
that admit this execution as the following counterexample (call it ¢cex):

oper(E1) = Deposit A oper(e) = Withdraw A sameobj(E1,€) A sameobj(e, €f)
Avis(E1,€) A vis(e,ef) A —vis(E1,ep) A —vis(er, E1)

Given this characterization, we are interested in finding the weakest consistency assignment to
withdraw (the operation that generated €) that would prevent the counterexample. Here, we are
aided by the fact that consistency levels can be specified in terms of the anomalies they prohibit.
For instance, consider causal write, a consistency level that ensures a write is applied at a replica
only after all the causally preceding writes have been applied. Thus, if € is a causal write, then any
anomalous execution involving three effects a, €, and b, where (i). a causally precedes €, and (ii). €
is visible to b, but (iii). a is not visible to b, is prohibited. Causal precedence is effectively captured
by the happens-before relation (hb), which is a composition of vis and so (recall: hb = (vis U so)*).
Thus, if € is a causal write, then the following must be true:

Va,b. =(hb(a,e) A vis(e,b) A —wvis(a, b))
Or, equivalently:
Va,b. hb(a,e) A vis(e, b) = vis(a, b)

If we name the above proposition ¢,,, and can prove that @cex A @cyy is UNSAT, then it would be
sufficient to make withdraw a causal write to prevent this anomaly. An off-the-shelf SMT solver like
Z3 confirms that this is indeed the case®. Similar reasoning can be applied to second counterexample
execution in 7b to determine that withdraw also needs to be totally-ordered w.r.t other withdraws,
i.e., it must be a Total Write.

The state space of consistency models found in the literature and implemented on various systems
can be characterized in terms of a finite partially-ordered lattice [Viotti and Vukolic 2015], where
the partial order denotes the relative strength of the models under consideration. It is therefore
possible to determine the consistency level of an operation by systematically traversing the lattice
and checking whether each consistency model is sufficient to prevent the counterexample. Among
the consistency models that are at the same level of the lattice, the order of traversal can be heuristic,
perhaps based on their relative run-time costs on a specific system. Systematic traversal of the
consistency lattice is indeed the search strategy adopted by Q9.

The consistency models that Q9 considers in its search are shown in Table 1. The relation
txn relates a transaction (its name 7) to the set of its constituent effects. Note that Atomicity
is a property of a transaction. It is in fact a transaction’s baseline consistency level in Q9. A
transaction’s consistency and isolation properties can also be strengthened in various ways, just
like an operation’s. One such way is to obtain a (conceptual) write lock on an object each time a
write is performed, releasing all locks only when the transaction commits. The resultant consistency

% We adopt an approach similar to [Itzhaky et al. 2014] to encode an overapproximation of hb, a transitive closure relation,
in first-order logic

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 164. Publication date: November 2018.

164:18 Gowtham Kaki, Kapil Earanky, KC Sivaramakrishnan, and Suresh Jagannathan

Table 1. Consistency Models

Model Name Specification Description
Causal Write | Va,b. hb(a, €) A vis(e, b) = vis(a, b) A write € is applied only after all the
(CwW) causally preceding writes (a) are ap-
plied. [Bouajjani et al. 2017]
Monotonic VYa,b. so(a,€) A vis(e, b) = vis(a, b) A write € is applied only after all the pre-
Write (MW) vious writes (a) from the session are ap-
plied [Terry et al. 1994].
Total-Order Va. oper(a) = oper(e) Aa # € All writes of the same operation as € are
Write (TW) = vis(a, €) V vis(e, a) applied in the same order everywhere.
SC Write Va. sameobj(a,e) Aa # € All writes on the same object as € are ap-
(SC) = vis(a, €) V vis(e, a) plied in the same order everywhere.
Atomicity Ya,b,c. txn(r,{a,b}) A =txn(z, {c}) Writes from a transaction 7 are applied
(ATOM) Avis(a, c) A sameobj(b, c) = vis(b,c) | atomically
Parallel Snap-| ATOM A Writes from a transaction 7 are made SC,
shot Isolation Ya,b. txn(t, {a}) A =txn(zr, {b}) and applied atomically.
(PSI) A sameobj(a, b) =
vis(a, b) V vis(b, a)

level, called Parallel Snapshot Isolation (PSI) [Sovran et al. 2011], is specified in Table 1. As shown,
it results in the writes outside a PSI transaction 7 being totally ordered with 7’s writes on the same
objects. Other consistency levels found in the literature, e.g., Session Guarantees [Terry et al. 1994],
can be specified in a similar way.

6 TRANSACTIONS

In our exposition thus far, we have focused on operations that generate a single effect. Q9 program-
ming framework also supports transactions that operate on multiple RDT objects, and generate
multiple effects. To deal with such transactions, symbolic execution and verification require a few
extensions, which we describe below.

First, the concept of state has to be generalized from a single object to a collection of objects. Thus,
the common prefix state is b instead of b, and b; denotes the common prefix state for the i’th object.
The denotation of an effect ¢, i.e., [€] is now a function that operates on a sequence of objects, but
only updates (i.e., computes an updated value for) the object for which € was generated. Building
on these refined notions of state and effect denotation, we now generalize the S-OPER symbolic
execution rule to deal with transactions. In Ag, we formalize transactions simply as functions that
accept multiple arguments, and generate a set ¢ of effects. The generalized S-OPER is shown below:

scsk (x.e)([S]b) Lo
V(e’ € S), (e € o).sameobj(e’, €) = vis(e’, €)

(5, S5), [A%.elpess || 1) <> 7

[S-OpER]

The rule reflects the system model of Q9, where a transaction, is executed at a single replica
atomically, leading to all of its effects (¢) witnessing the same state that includes a set S C S¥ of
concurrent effects. The quantified assertion in the premise captures the constraint that all effects
€ € o witness the same set of concurrent effects that are on the same object as €.

Safety is defined w.r.t an invariant function I, which relates multiple objects, i.e., it is a boolean
function on multiple objects. The generalized k-safety definition that extends k-safety to transac-
tions is defined thus:

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 164. Publication date: November 2018.

164:19

Definition 6.1 (k-safety). A symbolic execution of a program 7z bounded by k concurrent effects
is k-safe with respect to invariant I if Vb, k, S, Sf, €,0 s.t:
o SCSk
o I([S]b) | true
o Vo, 7', ((b, Sk, 1) <o
then I(([S] o [o]) b) | true

The generalized definition is similar to the previous definition in the sense that it allows us to
assume invariant on any subset S of the pre-state, and asks us to prove the invariant in the post
state when S is extended with all the effects (o) generated by the transaction, thus guaranteeing
atomicity. Note that [S] o [o] denotes the functional composition of denotations of the sets S and
0. With the updated k-safety definition, anomaly detection and repair can work just as described
in the previous section.

7 IMPLEMENTATION AND EVALUATION

The Q9 programming framework is implemented in OCaml as a collection of data and module type
definitions, and modules that implement various CRDT semantics, such as counters, sets, maps, and
boolean flags [Shapiro et al. 2011c]. The Q9 symbolic execution engine is implemented as a compiler
pass that follows typechecking in the OCaml 4.03 compiler’. Its first component is a translator
that translates high-level RDT programs with implicit effects to their intermediate representation
with explicit effects in preparation for analysis and verification. The second component performs
bounded verification, given the k-bound as an input, and works in a tight loop with an SMT solver.
The third component handles consistency repair. Verification progresses one operation at a time,
followed by one transaction at a time. Each operation/transaction is verified for safety against its
current consistency setting, starting with eventual consistency; this baseline reflects the system
model described in Sec. 4. If verification fails, the verifier obtains a counterexample from the solver,
computes its abstract representation, and passes it on to the repair engine, which then traverses
a lattice of consistency models as described in Sec. 5.4, using the solver to check if a particular
model is sufficient to preempt the counterexample. It returns the weakest such model to the verifier,
which repeats verification with the new setting. This process continues until the verification of
the operation/transaction succeeds, or the top of the consistency lattice has been reached, and no
consistency setting was found to be adequate to guarantee safety®.

The main component of the verifier is a symbolic execution engine that executes the body of an
operation/transaction against symbolic inputs. The crux of the symbolic execution algorithm is as
described in Sec. 5.3, but the engine also includes a number of optimizations aimed at rewriting
symbolic values so as to keep their size roughly proportional to the length of the program traversed.
An example of such a rewrite rule is shown below:

(n?2ve: v3)?vs: v5 — (V1 Av2) V(=11 Av3))?vg: 15

Symbolic execution generates verification conditions (VCs) based on the k-safety definition
(Def. 5.2). A VC-Encode component encodes these VCs as satisfiability queries in Z3, after asserting
the required axioms on special relations such as vis and so (e.g., so is transitive, hb is irreflexive
etc). If the query is satisfiable, then a model is obtained and passed on to the verifier, which then
uses it for consistency repair as described above.

https://github.com/tycon/q9

8This might happen if the consistency lattice given to the analysis is not strong enough. If the lattice describes the consistency
levels of a data store, then the failure means that the safety of the program cannot be guaranteed on that store.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 164. Publication date: November 2018.

https://github.com/tycon/q9

164:20 Gowtham Kaki, Kapil Earanky, KC Sivaramakrishnan, and Suresh Jagannathan

Table 2. A sample of the anomalies found and fixes discovered by Q9

Oper/Txn Violated Inv. [Anomalies [Fix
eBanking
withdraw bal >0 i. Deposits & Withdraws not being ap- | CW +
plied in causal order. ™

ii. Concurrent Withdraws independently
succeed resulting in a negative balance.

txn_transfer bal >0 Concurrent txn_transfers indepen- | PSI
dently succeed resulting in a negative
balance.
Twissandra
txn_new_tweet Timeline x, Tweet Write to Timeline is applied before the | MW
previous write to Tweet
add_username Uniqueness of usernames Concurrent checks for the uniqueness of | TW

a username succeed independently, result-
ing in duplicates.

RUBIS
txn_bid_for_item | WalletBids ﬁ Bids Write to WalletBids is applied before the | MW
previous write to Bids
eCart
checkout V(a € stock). qty(a) = 0 Concurrent checkouts of same items suc- | TW
ceed independently resulting in negative
stock.
TPC-C
txn_new_order Per-district order ids are | Concurrent txn_new_order transactions | PSI
unique and sequential read the same next_oid from a District

record, and insert new orders with this id,
resulting in orders with duplicate ids.
TPC-E

f
complete_trade Broker —> COUNT(Trade) Update to Trade is applied before the pre- | CW
vious insert to Trade.

f
txn_trade_result | Broker — COUNT(Trade) Concurrent trade_result txns complete | PSI
the same trade, and independently incre-
ment Broker’ num_trades.

7.1 Verification Experiments

To test the effectiveness of Q9 in detecting and fixing replication anomalies, we ported a range of
applications, including several standard database benchmarks, to the Q9 programming model, and
verified them under various values of bound (k). The applications are briefly described below:

e eBanking: A banking application that extends the running example with additional func-
tionality.

e Twissandra: A Twitter-like microblogging application based on a popular Cassandra appli-
cation with the same name [Twissandra 2014].

o RUBIS: Rice University Bidding System [RUBiS 2014] - an eBay-like auction site.

e eCart: An eCommerce application that lets users jointly control a shopping cart.

e TPC-C: A database benchmark that emulates a warehouse application.

e TPC-E: A database benchmark that emulates a brokerage application.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 164. Publication date: November 2018.

164:21

Both TPC-C and TPC-E, which were originally written for testing relational databases [TPC 2018],
were reimplemented to leverage CRDTs to make them amenable for execution in a distributed
environment. Specifically, each TPC-C/TPC-E table translates into an RDT. For instance, TPC-C’s
Order table is implemented by an Order.t RDT, which internally uses a set CRDT to manage
its contents. Every INSERT, UPDATE and DELETE operation on the table is implemented by a
dedicated operation on the RDT. For example, a SQL INSERT operation that inserts an order record
is implemented by an operation do_add_order that adds the order information to the set. The
operation is eventually translated into an AddOrder effect, and symbolic reasoning is performed
on such effect representations.

Each application described above defines one or more invariants that capture its salient safety
properties. During verification, we found anomalies that violate a subset of the invariants for each
application. Table 2 presents an interesting sample of the violations we found. These anomalies
can be broadly classified into the following categories:

¢ (In)equality invariants: Invariants on integers involving equalities and inequalities. An
example is bal > 0 found in the eBanking application.

e Uniqueness invariants: Invariants that require a value of a particular type to be unique. An
example is TPC-C’s requirement that every order under a district to have a unique identifier.
Another example is the requirement that user names be unique in Twissandra.

e One-to-one referential integrity: Invariants that require references between objects to be
valid. That is, if an object of type A refers to another object of type B, then the corresponding B
object must be present whenever an A object is present. We denote such one-to-one referential

integrity relations as A kiR B, whenever A and B are both objects. For example, Twissandra
requires references from users’ timelines to tweets to be valid.

e One-to-many referential integrity: Whenever an object of type A refers to a certain
property (f) of (some) objects of type B, then the property must hold of the corresponding

f
B objects whenever an A object is present. We denote such a relation as A = f(B), and
call it one-to-many referential integrity provided A and B are both object types, and f is a

f
function from B to some base type. Usually, whenever A = f(B) there is also an inverse
f
one-to-one relation, i.e., B — A. An example of one-to-many referential integrity is the

f
Order —> COUNT(OrderLine) invariant in TPC-C, which requires an order’s o_ol_count
field to accurately reflect the number of OrderLine records referring back to the order.

£
Another example is TPC-C’s Warehouse = SUM(History) that requires a warehouse’s year-
to-date balance to agree with its ledger stored in the History table. Similar constraints are
also present in TPC-E.

Table 2 lists various operations and transactions that violate the invariants of the kind described
above. For each violation, the table briefly describes the anomaly that was discovered, and also
lists the consistency level suggested to preempt the anomaly (c.f.,, Table 1 for a description of
consistency levels). As an example of the kind of repair Q9 was able to perform, consider TPC-
C’s txn_new_order transaction, which adds a new Order record with an id (Order.o_id) equal
to the sequence number of the next order for the corresponding district (District.next_o_id).
The transaction also increments the district’s order sequence number. During the verification of
txn_new_order, Q9 was able to discover an anomaly that violates TPC-C’s safety requirement
that every order must have a unique id. The anomaly consists of two concurrent txn_new_orders
reading the same id of the district’s next order (District.next_o_id), and inserting duplicate
Order records with that id. Subsequent to the discovery of anomaly, Q9 was also able to use the

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 164. Publication date: November 2018.

164:22 Gowtham Kaki, Kapil Earanky, KC Sivaramakrishnan, and Suresh Jagannathan

Table 3. Verification Statistics

Application Opers Txns Anomalies Max k for Max time (s) Max k
found an anomaly | for an anomaly | verified
eBanking 3 2 3 5 0.28 60
Twissandra 20 10 5 5 6.59 50
RUBIS 17 6 5 5 3.03 50
eCart 10 5 5 6 1.09 60
TPC-C 18 6 10 51.79 18
TPC-E 44 10 3 10 113.53 17

counterexample to reason that if txn_new_order is executed under Parallel Snapshot Isolation
(PSI) consistency model, then the anomaly can be preempted. While Q9 found a violation of
uniqueness invariant in TPC-C, through a similar reasoning it found a violation of one-to-many

referential integrity invariant (Broker LLN COUNT(Trade)) in TPC-E. The fix, again, is to strengthen
the transaction’s consistency level to PSI.

Q9 was also able to perform the reasoning in the opposite direction, i.e., it was able to discover
that certain transactions need not be atomic when we made atomicity optional for transactions.
Instead, Q9 suggested weaker alternatives to atomicity that are nonetheless safe in that context.
For instance, consider txn_new_tweet transaction in Twissandra, which adds a new tweet to the
Tweet table, and then adds the corresponding tweet id to a subset of objects in the Timeline
table. Without atomicity (ATOM), the transaction (temporarily) violates the referential integrity
between timelines and tweets if the latter write to Timeline is applied before the former write to
Tweet, and the intermediate state becomes visible to an operation. While atomicity is sufficient to
restore the safety, it is however not necessary; Q9 discovers that the anomaly can be preempted
by executing the transaction under Monotonic Writes consistency model, which is weaker than
atomicity, and is cheaper on some systems [Terry et al. 1994, 1995]. Similar deductions were made
for txn_bid_for_item transaction in RUBIS.

Table 3 shows various statistics quantifying the cost and efficacy of bounded verification. The
table demonstrates Q9 was able to successfully find a number of anomalies for each application. The
fact that anomalies were found in TPC-C and TPC-E might be surprising, considering that these
benchmarks were well-studied. Clearly, as our experiments demonstrate, migration of concurrent
applications to replicated environments is error-prone without tool support of the kind that Q9
provides.

The main takeaway from Table 3 is that all the anomalies were found within a small k bound,
the maximum being 10 for TPC-C and TPC-E. The time that Q9 took to discover an anomaly is
also reasonable, with the worst case being around 2 minutes for an anomaly in TPC-E. To test the
limits of bounded verification through symbolic execution, we ran Q9 overnight (6-8 hours) on
select (typically the most complex) transactions from each application and noted the maximum k
for which it was able to verify the transaction (for TPC-C and TPC-E, we were able to verify all
transactions). The maximum k thus found is listed against each application in Table 3. As shown,
we were able to verify k-safety of some applications to k values that are significantly higher than
the k values at which anomalies were discovered. Taken together, these statistics vindicate Q9’s
approach of using symbolic execution-driven bounded verification to discover anomalies in real
distributed applications.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 164. Publication date: November 2018.

164:23

7.2 Validation Experiments

Since Q9 does bounded verification, we validate the consistency assignments discovered by Q9 by
testing the applications on a distributed database. Our goal is two-fold. First, we would like to check
if the consistency assignments discovered by Q9 through bounded verification are indeed sufficient
to avert anomalies in the general case. And second, we would like to ascertain that any weaker
consistency assignment invariably leads to the anomalies discovered by Q9 during verification; i.e.,
there are no false positives.

Our experimental setup consists of a distributed database equipped with RDT operations, with
support for various consistency levels for operations and transactions. The distributed database
itself is implemented as a shim layer on top of Cassandra [Lakshman and Malik 2010] in the same
vein as [Bailis et al. 2013; Sivaramakrishnan et al. 2015]. We instantiated 2 replicas within the same
data center with a inter-replica latency of 5ms, and 16 clients in total performing transactions.
In order to tease out the anomalies that arise due to the asynchronous nature of the distributed
database, we induced the shim layer to drop 50% of the effects transmitted over the network between
the replicas. The replicas perform retransmission of the dropped effects until all the effects are
received everywhere. Consequently, every replica receives every effect eventually, but the effects
may be applied out of order.

We evaluated the TPC-C benchmark, where each client simulates the workflow for purchasing by
performing a series of NEW-ORDER, PAYMENT and DELIVERY transactions. We call one such sequence
of three transactions as a purchase. First, we ran the TPC-C workload with Q9 recommended
consistency levels. We observed no anomalies for 1000 purchases per client. On the other hand,
running the NEW-ORDER transaction at a level weaker than PSI consistency level (i.e., with only
atomicity (ATOM)) led to anomalies; there were multiple orders with the same id, thus violating
the safety requirement of TPC-C. The results demonstrate that Q9 is effective at finding appro-
priate consistency configuration: no anomalies were observed at the recommended consistency
configuration, while any weaker configuration leads to manifestation of anomalies.

8 RELATED WORK

CRDTs [Shapiro et al. 2011c] define abstract data types such as counters, sets, etc., with commutative
operations such that the state of the data type always converges. This property makes them
especially attractive as a basis for dealing with replication in highly-available distributed systems.
However, reasoning over CRDTs can be difficult, and the nuances of their implementations relate
poorly to understanding if and how they might preserve high-level application invariants.
[Burckhardt et al. 2015] presents an operational model of a replicated data store that is based on the
abstract system model presented in [Burckhardt et al. 2014]. As with our system model, coordination
among replicas involves transmitting operations on replicated objects that are performed locally
on each replica. The verification strategy given in [Burckhardt et al. 2014] is based on a replication-
aware simulation argument that does not have an obvious automation pathway. [Sivaramakrishnan
et al. 2015] describes an automated verification strategy for replicated data types that requires
programmers to write low-level (axiomatic) contracts that capture desired consistency properties in
terms of visibility and happens-before relations, but which does not consider how these contracts
relate to higher-level application-specific invariants. [Gotsman et al. 2016] addresses this issue by
developing a rely-guarantee methodology and proof rule that can establish whether a particular
choice of consistency guarantees for various operations on a replicated database is enough to ensure
preservation of a given data integrity invariant. [Kaki et al. 2017] develops a similar framework for
reasoning about weak isolation [Bailis et al. 2014, 2015], a variant of weak consistency. Ivy [Padon

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 164. Publication date: November 2018.

164:24 Gowtham Kaki, Kapil Earanky, KC Sivaramakrishnan, and Suresh Jagannathan

et al. 2016] is a tool for verifying the correctness of distributed protocols as sophisticated as
Paxos [Padon et al. 2017b].

These efforts require support from developers who must either write detailed contracts [Sivara-
makrishnan et al. 2015], define deep specifications within a mechanized theorem prover [Lesani
et al. 2016; Wilcox et al. 2015], state and prove various kinds of local and global assertions within
the context of a program logic [Gotsman et al. 2016], and/or fix counterexamples that prevent
inductive generalization [Padon et al. 2016]. Given such input, these approaches are capable of
addressing important verification challenges in realistic distributed systems. The work presented
here contrasts significantly from these other efforts because it demands no additional effort from the
programmer other than a specification of a safety property. While Q9 cannot provide the same level
of guarantees that full verification can, empirical evidence suggests that it nonetheless provides a
high degree of utility, effectively serving as a principled anomaly detection tool for geo-replicated
distributed programs, with minimal overhead demanded of the developer.

Context-bounded model-checking [Musuvathi and Qadeer 2007; Musuvathi et al. 2008], a bounded
verification technique comparable to ours but for shared memory, critically assumes SC semantics,
making it ineffective in discovering any of the anomalies discussed in Table 2.

Some of the challenges faced in reasoning about replicated data types explored here are remi-
niscent of issues that arise in reasoning about weak memory systems. However, the differences
between weak memory and weak consistency are sufficiently significant that reasoning techniques
possible in the former are difficult to transparently migrate to the latter. In particular, weak memory
models usually guarantee coherence (total ordering) of writes to a single location, a property not
feasible under weak consistency since it requires global coordination [Bailis et al. 2014]; reads in
a single thread witness a monotonically progressing state under weak memory, but the same is
not guaranteed under weak consistency; and, formalizations of the former reason over memory
operations (reads and writes), whereas our formalization reasons at the level of abstract atomic
effects (e.g., Deposit). This generalization allows us to scale the reasoning beyond litmus tests [Al-
glave et al. 2010; Bornholt and Torlak 2017] to real programs. Finally, repair mechanisms for weak
memory are defined in terms of fences - low-level architecture-dependent artifacts that "flush”
the local state. In contrast, the repair mechanisms for weak consistency are defined in terms of
fine-grained high-level consistency models (Table 1) expressed in terms of causality, ordering, and
visibility relations over groups of related objects. Collectively, these differences make reasonsing
techniques proposed for weak (shared) memory ineffective in reasoning about weak (distributed)
consistency, and mandate new formalizations of the kind proposed in this paper.

Representative examples of testing and checking frameworks for distributed systems include
MaceMC[Killian et al. 2007] a model-checker that discovers liveness bugs in distributed programs,
and [Jepsen 2018], a random testing tool that checks partition tolerance of NoSQL distributed
database systems with varying consistency levels to enable high-availability. Q9 differs from these
systems in significant ways: among other things, MaceMC does not consider safety issues related
to replication, while Jepsen is purely a dynamic analysis that does not leverage semantic properties
of the application in searching for faulty executions.

Finally, there has been a vast body of work produced over the years that explore the use of
symbolic execution as a means for more effective testing and bug-finding [Cadar and Sen 2013].
Surprisingly, we are unaware of any effort in this space that examines the applicability of symbolic
execution to the problem of anomaly detection for highly-available geo-replicated distributed
applications, a class of programs that are becoming increasingly important and pervasive.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 164. Publication date: November 2018.

164:25

9 CONCLUSION

This paper presents a programming model and symbolic analysis framework for detecting anomalies
(i.e., executions that violate an application invariant) in distributed programs built using replicated
data types. Our approach leverages a bounded symbolic execution technique that explores a state
space of a distributed execution. The Q9 symbolic execution engine undertakes this exploration
constrained by a bound on the number of concurrent effects, outstanding (symbolic) updates to
a state that have not been applied on all replicas. Our experimental results demonstrate that this
strategy is very effective, capable of identifying and repairing subtle safety violations over a range
of well-studied applications.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their careful scrutiny and insightful comments. This
material is based upon work supported by the National Science Foundation under under Grant No.
CCF-SHF 1717741 and the Air Force Research Lab under Grant No. FA8750-17-1-0006.

REFERENCES

Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell. 2010. Fences in Weak Memory Models. In Proceedings of the
22Nd International Conference on Computer Aided Verification (CAV’10). Springer-Verlag, Berlin, Heidelberg, 258-272.
https://doi.org/10.1007/978-3-642-14295-6_25

Peter Alvaro, Peter Bailis, Neil Conway, and Joseph M. Hellerstein. 2013. Consistency Without Borders. In Proceedings
of the 4th Annual Symposium on Cloud Computing (SOCC ’13). ACM, New York, NY, USA, Article 23, 10 pages. https:
//doi.org/10.1145/2523616.2523632

Peter Bailis, Alan Fekete, Michael J. Franklin, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica. 2014. Coordination Avoidance
in Database Systems. Proc. VLDB Endow. 8, 3 (Nov. 2014), 185-196. https://doi.org/10.14778/2735508.2735509

Peter Bailis, Alan Fekete, Michael J. Franklin, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica. 2015. Feral Concurrency
Control: An Empirical Investigation of Modern Application Integrity. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data (SIGMOD °15). ACM, New York, NY, USA, 1327-1342. https://doi.org/10.1145/2723372.
2737784

P Bailis and A Ghodsi. 2013. Eventual consistency Today: Limitations, Extensions, and Beyond. Commun. ACM (2013).

Peter Bailis, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica. 2013. Bolt-on Causal Consistency. In Proceedings of the
2013 ACM SIGMOD International Conference on Management of Data (SIGMOD °13). ACM, New York, NY, USA, 761-772.
https://doi.org/10.1145/2463676.2465279

Peter Bailis, Shivaram Venkataraman, Michael]J. Franklin, Joseph M. Hellerstein, and Ion Stoica. 2012. Probabilistically
Bounded Staleness for Practical Partial Quorums. Proc. VLDB Endow. 5, 8 (April 2012), 776-787. https://doi.org/10.14778/
2212351.2212359

Valter Balegas, Nuno Preguica, Rodrigo Rodrigues, Sérgio Duarte, Carla Ferreira, Mahsa Najafzadeh, and Marc Shapiro. 2015.
Putting the Consistency back into Eventual Consistency. In Proceedings of the Tenth European Conference on Computer
System (EuroSys ’15). Bordeaux, France. http://lip6.fr/Marc.Shapiro/papers/putting-consistency-back-EuroSys-2015.pdf

James Bornholt and Emina Torlak. 2017. Synthesizing Memory Models from Framework Sketches and Litmus Tests. In
Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2017).
ACM, New York, NY, USA, 467-481. https://doi.org/10.1145/3062341.3062353

Ahmed Bouajjani, Constantin Enea, Rachid Guerraoui, and Jad Hamza. 2017. On Verifying Causal Consistency. In Proceedings
of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages (POPL 2017). ACM, New York, NY, USA,
626-638. https://doi.org/10.1145/3009837.3009888

Eric Brewer. 2000. Towards Robust Distributed Systems (Invited Talk). (2000).

Lucas Brutschy, Dimitar Dimitrov, Peter Miiller, and Martin Vechev. 2017. Serializability for Eventual Consistency: Criterion,
Analysis, and Applications. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages
(POPL 2017). ACM, New York, NY, USA, 458-472. https://doi.org/10.1145/3009837.3009895

Sebastian Burckhardt, Alexey Gotsman, Hongseok Yang, and Marek Zawirski. 2014. Replicated Data Types: Specification,
Verification, Optimality. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL °14). ACM, New York, NY, USA, 271-284. https://doi.org/10.1145/2535838.2535848

Sebastian Burckhardt, Daan Leijen, Jonathan Protzenko, and Manuel Fahndrich. 2015. Global Sequence Protocol: A Robust
Abstraction for Replicated Shared State. In Proceedings of the 29th European Conference on Object-Oriented Programming
(ECOOP ’15). Prague, Czech Republic. http://research.microsoft.com/pubs/240462/gsp-tr-2015-2.pdf

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 164. Publication date: November 2018.

https://doi.org/10.1007/978-3-642-14295-6_25
https://doi.org/10.1145/2523616.2523632
https://doi.org/10.1145/2523616.2523632
https://doi.org/10.14778/2735508.2735509
https://doi.org/10.1145/2723372.2737784
https://doi.org/10.1145/2723372.2737784
https://doi.org/10.1145/2463676.2465279
https://doi.org/10.14778/2212351.2212359
https://doi.org/10.14778/2212351.2212359
http://lip6.fr/Marc.Shapiro/papers/putting-consistency-back-EuroSys-2015.pdf
https://doi.org/10.1145/3062341.3062353
https://doi.org/10.1145/3009837.3009888
https://doi.org/10.1145/3009837.3009895
https://doi.org/10.1145/2535838.2535848
http://research.microsoft.com/pubs/240462/gsp-tr-2015-2.pdf

164:26 Gowtham Kaki, Kapil Earanky, KC Sivaramakrishnan, and Suresh Jagannathan

Cristian Cadar and Koushik Sen. 2013. Symbolic Execution for Software Testing: Three Decades Later. Commun. ACM 56, 2
(Feb. 2013), 82-90. https://doi.org/10.1145/2408776.2408795

Seth Gilbert and Nancy Lynch. 2002. Brewer’s Conjecture and the Feasibility of Consistent, Available, Partition-tolerant
Web Services. SIGACT News 33, 2 (June 2002), 51-59. https://doi.org/10.1145/564585.564601

Alexey Gotsman, Hongseok Yang, Carla Ferreira, Mahsa Najafzadeh, and Marc Shapiro. 2016. ’Cause I'm Strong Enough:
Reasoning About Consistency Choices in Distributed Systems. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL 2016). ACM, New York, NY, USA, 371-384. https://doi.org/10.
1145/2837614.2837625

Shachar Itzhaky, Anindya Banerjee, Neil Immerman, Ori Lahav, Aleksandar Nanevski, and Mooly Sagiv. 2014. Modular
Reasoning About Heap Paths via Effectively Propositional Formulas. In Proceedings of the 41st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL °14). ACM, New York, NY, USA, 385-396. https://doi.org/10.
1145/2535838.2535854

Jepsen 2018. (2018). https://jepsen.io/

Gowtham Kaki, Kartik Nagar, Mahsa Najafzadeh, and Suresh Jagannathan. 2017. Alone Together: Compositional Reasoning
and Inference for Weak Isolation. Proc. ACM Program. Lang. 2, POPL, Article 27 (Dec. 2017), 34 pages. https://doi.org/10.
1145/3158115

Charles Killian, James W. Anderson, Ranjit Jhala, and Amin Vahdat. 2007. Life, Death, and the Critical Transition: Finding
Liveness Bugs in Systems Code. In Proceedings of the 4th USENIX Conference on Networked Systems Design &
Implementation (NSDI'07). USENIX Association, Berkeley, CA, USA, 18-18. http://dl.acm.org/citation.cfm?id=1973430.
1973448

Avinash Lakshman and Prashant Malik. 2010. Cassandra: A Decentralized Structured Storage System. SIGOPS Operating
Systems Review 44, 2 (April 2010), 35-40. https://doi.org/10.1145/1773912.1773922

Mohsen Lesani, Christian J. Bell, and Adam Chlipala. 2016. Chapar: Certified Causally Consistent Distributed Key-value
Stores. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL ’16). ACM, New York, NY, USA, 357-370. https://doi.org/10.1145/2837614.2837622

Madanlal Musuvathi and Shaz Qadeer. 2007. Iterative Context Bounding for Systematic Testing of Multithreaded Programs.
In Proceedings of the 28th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI "07).
ACM, New York, NY, USA, 446-455. https://doi.org/10.1145/1250734.1250785

Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gerard Basler, Piramanayagam Arumuga Nainar, and Iulian Neamtiu.
2008. Finding and Reproducing Heisenbugs in Concurrent Programs. In Proceedings of the 8th USENIX Conference
on Operating Systems Design and Implementation (OSDI'08). USENIX Association, Berkeley, CA, USA, 267-280. http:
//dl.acm.org/citation.cfm?id=1855741.1855760

Oded Padon, Jochen Hoenicke, Giuliano Losa, Andreas Podelski, Mooly Sagiv, and Sharon Shoham. 2017a. Reducing
Liveness to Safety in First-order Logic. Proc. ACM Program. Lang. 2, POPL, Article 26 (Dec. 2017), 33 pages. https:
//doi.org/10.1145/3158114

Oded Padon, Giuliano Losa, Mooly Sagiv, and Sharon Shoham. 2017b. Paxos Made EPR: Decidable Reasoning About
Distributed Protocols. Proc. ACM Program. Lang. 1, OOPSLA, Article 108 (Oct. 2017), 31 pages. https://doi.org/10.1145/
3140568

Oded Padon, Kenneth L. McMillan, Aurojit Panda, Mooly Sagiv, and Sharon Shoham. 2016. Ivy: Safety Verification by
Interactive Generalization. In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI °16). ACM, New York, NY, USA, 614-630. https://doi.org/10.1145/2908080.2908118

Riak 2018. (2018). docs.basho.com/riak/kv/2.2.3/ Riak NoSQL Database.

RUBIS 2014. Rice University Bidding System. (2014). http://rubis.ow2.org/ Accessed: 2014-11-4 13:21:00.

M. Shapiro, A. Bieniusa, N. Preguica, V. Balegas, and C. Meiklejohn. 2018. Just-Right Consistency: Reconciling Availability
and Safety. (Jan. 2018). ArXiv e-prints.

Marc Shapiro, Nuno Preguica, Carlos Baquero, and Marek Zawirski. 2011a. Conflict-free Replicated Data Types. In Proceedings
of the 13th International Conference on Stabilization, Safety, and Security of Distributed Systems (S55°11). Springer-Verlag,
Berlin, Heidelberg, 386—400. http://dl.acm.org/citation.cfm?id=2050613.2050642

Marc Shapiro, Nuno Preguica, Carlos Baquero, and Marek Zawirski. 2011b. Conlflict-Free Replicated Data Types. In
Stabilization, Safety, and Security of Distributed Systems, Xavier Défago, Franck Petit, and Vincent Villain (Eds.). Lecture
Notes in Computer Science, Vol. 6976. Springer Berlin Heidelberg, 386-400. https://doi.org/10.1007/978-3-642-24550-3_29

Marc Shapiro, Nuno Preguica, Carlos Baquero, and Marek Zawirski. 2011c. Conflict-Free Replicated Data Types. In
Stabilization, Safety, and Security of Distributed Systems, Xavier Défago, Franck Petit, and Vincent Villain (Eds.). Lecture
Notes in Computer Science, Vol. 6976. Springer Berlin Heidelberg, 386-400. https://doi.org/10.1007/978-3-642-24550-3_29

KC Sivaramakrishnan, Gowtham Kaki, and Suresh Jagannathan. 2015. Declarative Programming over Eventually Consistent
Data Stores. In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI 2015). ACM, New York, NY, USA, 413-424. https://doi.org/10.1145/2737924.2737981

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 164. Publication date: November 2018.

https://doi.org/10.1145/2408776.2408795
https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/2837614.2837625
https://doi.org/10.1145/2837614.2837625
https://doi.org/10.1145/2535838.2535854
https://doi.org/10.1145/2535838.2535854
https://jepsen.io/
https://doi.org/10.1145/3158115
https://doi.org/10.1145/3158115
http://dl.acm.org/citation.cfm?id=1973430.1973448
http://dl.acm.org/citation.cfm?id=1973430.1973448
https://doi.org/10.1145/1773912.1773922
https://doi.org/10.1145/2837614.2837622
https://doi.org/10.1145/1250734.1250785
http://dl.acm.org/citation.cfm?id=1855741.1855760
http://dl.acm.org/citation.cfm?id=1855741.1855760
https://doi.org/10.1145/3158114
https://doi.org/10.1145/3158114
https://doi.org/10.1145/3140568
https://doi.org/10.1145/3140568
https://doi.org/10.1145/2908080.2908118
docs.basho.com/riak/kv/2.2.3/
http://rubis.ow2.org/
http://dl.acm.org/citation.cfm?id=2050613.2050642
https://doi.org/10.1007/978-3-642-24550-3_29
https://doi.org/10.1007/978-3-642-24550-3_29
https://doi.org/10.1145/2737924.2737981

164:27

Swaminathan Sivasubramanian. 2012. Amazon dynamoDB: A Seamlessly Scalable Non-relational Database Service. In
Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data (SIGMOD ’12). ACM, New York,
NY, USA, 729-730. https://doi.org/10.1145/2213836.2213945

Yair Sovran, Russell Power, Marcos K. Aguilera, and Jinyang Li. 2011. Transactional Storage for Geo-replicated Systems. In
Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles (SOSP 11). ACM, New York, NY, USA,
385-400. https://doi.org/10.1145/2043556.2043592

Douglas B. Terry, Alan J. Demers, Karin Petersen, Mike Spreitzer, Marvin Theimer, and Brent W. Welch. 1994. Session
Guarantees for Weakly Consistent Replicated Data. In Proceedings of the Third International Conference on Parallel and
Distributed Information Systems (PDIS ’94). IEEE Computer Society, Washington, DC, USA, 140-149. http://dl.acm.org/
citation.cfm?id=645792.668302

D. B. Terry, M. M. Theimer, Karin Petersen, A. J. Demers, M. J. Spreitzer, and C. H. Hauser. 1995. Managing Update Conflicts
in Bayou, a Weakly Connected Replicated Storage System. In Proceedings of the Fifteenth ACM Symposium on Operating
Systems Principles (SOSP *95). ACM, New York, NY, USA, 172-182. https://doi.org/10.1145/224056.224070

TPC 2018. (2018). http://www.tpc.org/information/benchmarks.asp TPC Benchmarks.

Twissandra 2014. Twitter clone on Cassandra. (2014). http://twissandra.com/ Accessed: 2014-11-4 13:21:00.

Paolo Viotti and Marko Vukolic. 2015. Consistency in Non-Transactional Distributed Storage Systems. CoRR abs/1512.00168
(2015). http://arxiv.org/abs/1512.00168

Voldemort 2009. (2009). http://www.project-voldemort.com/voldemort/design.html Voldemort Distributed Database.

James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi Wang, Michael D. Ernst, and Thomas Anderson.
2015. Verdi: A Framework for Implementing and Formally Verifying Distributed Systems. In Proceedings of the 36th
ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI °15). ACM, New York, NY, USA,
357-368. https://doi.org/10.1145/2737924.2737958

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 164. Publication date: November 2018.

https://doi.org/10.1145/2213836.2213945
https://doi.org/10.1145/2043556.2043592
http://dl.acm.org/citation.cfm?id=645792.668302
http://dl.acm.org/citation.cfm?id=645792.668302
https://doi.org/10.1145/224056.224070
http://www.tpc.org/information/benchmarks.asp
http://twissandra.com/
http://arxiv.org/abs/1512.00168
http://www.project-voldemort.com/voldemort/design.html
https://doi.org/10.1145/2737924.2737958

	Abstract
	1 Introduction
	2 Replicated State Anomalies: The Motivation for Verification
	3 The Q9 Programming Framework
	3.1 Explicit Effect Representation

	4 System Model
	5 The Q9 Verification Engine
	5.1 Core Calculus
	5.2 Abstract Relations
	5.3 Symbolic Execution
	5.4 Automated Repair

	6 Transactions
	7 Implementation and Evaluation
	7.1 Verification Experiments
	7.2 Validation Experiments

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

