
Lock-free programming for the masses

KC Sivaramakrishnan
University of Cambridge

�éo Laurent
ENS de Lyon

E�cient concurrent programming libraries are essential for tak-
ing advantage of �ne-grained parallelism on multicore hardware.
We present reagents, a composable, lock-free concurrency library
for expressing �ne-grained parallel programs onMulticore OCaml.
Reagents o�er a high-level DSL for experts to specify e�cient con-
currency libraries, but also allows the consumers of the libraries to
extend them further without knowing the details of the underlying
implementation.

1 Motivation

Designing and implementing scalable concurrency libraries
is an enormous undertaking. Decades of research and
industrial e�ort has led to state-of-the-art concurrency li-
braries such as java.util.concurrent (JUC) for the JVM and
System.Collections.Concurrent (SCC) for the .NET frame-
work. �ese libraries are o�en written by experts and have sub-
tle invariants, which makes them hard to maintain and improve.
Moreover, it is hard for the library user to safely combine multi-
ple atomic operations. For example, while JUC and SCC provide
atomic operations on stacks and queues, such atomic operations
cannot be combined into larger atomic operations. On the other
hand so�ware transactional memory (STM) o�ers composabil-
ity, but STM based data structures are generally less e�cient than
their lock-free counterparts.

Turon et al. [6] introduced reagents, an expressive and com-
posable library which retains the performance and scalability of
lock-free programming. Reagents allow isolated atomic updates
to shared state, as well as message passing communication over
channels. Furthermore, reagents provide a set of combinators
for sequential composition à la STM, parallel composition à la
Join calculus [2], and selective communication à la Concurrent
ML [4], while being lock-free.

2 Combinators

�e basic reagents combinators are presented in Figure 1. A
reagent value with type ('a,'b)t represents an atomic transac-
tion that takes an input of type 'a and returns a value of type 'b.
�e basic atomic operations are exchanging message on an end-
point of a channel through swap and updating a shared reference
through upd. �e swap operation blocks the calling thread until
a matching swap operation is available on the dual endpoint.

�e atomic reference update operation upd, takes a function
which is applied to the current value of the reference (of type 'a)

type ('a,'b) t

(* channel communication *)
val swap : ('a,'b) endpoint -> ('a,'b) reagent

(* shared memory *)
val upd : 'a ref -> ('a -> 'b -> ('a * 'c) option)

-> ('b,'c) reagent

(* composition *)
val (>>>) : ('a,'b) t -> ('b,'c) t -> ('a,'c) t
val (<*>) : ('a,'b) t -> ('a,'c) t -> ('a,'b * 'c) t
val (<+>) : ('a,'b) t -> ('a,'b) t -> ('a,'b) t

Figure 1: Basic reagents combinators

and the input value (of type 'b), and is expected to return an op-
tional pair of the new value for the reference and a return value
(of type 'c). Importantly, if the update function returns None,
then the invoking thread blocks until the reference is updated.
Reagent implementation takes care of the blocking and signalling
necessary for thread wake up.

�emost important feature of reagents is that it allows compo-
sition of reagent transactions in sequence >>> and in parallel <*>,
and also to selectively choose one of the available operations <+>.
Importantly, these combinators being arrows [3], enable impor-
tant optimisations that cover the common case and help reagents
achieve performance commensurate to hand-written implemen-
tations. Reagents library also exposes monadic combinators for
convenience, at the cost of forgoing optimisation opportunities.

3 Treiber stack

�e following is a reagent implementation of theTreiber lock-free
stack [5].

module R = Reagent

module Treiber_stack : sig
type 'a t
val create : unit -> 'a t
val push : 'a t -> ('a, unit) R.t
val pop : 'a t -> (unit , 'a) R.t
val try_pop : 'a t -> (unit , 'a option) R.t

end = struct
type 'a t = 'a list R.ref

let create () = R.ref []

let push r x =
R.upd r (fun xs x -> Some (x::xs ,()))

let try_pop r = R.upd r (fun l () ->
match l with

1



| [] -> Some ([], None)
| x::xs -> Some (xs, Some x))

let pop r = Ref.upd r (fun l () ->
match l with
| [] -> None
| x::xs -> Some (xs,x))

end

Weutilise a shared reference of type 'a list ref to represent the
stack and use the upd operation to perform atomic operations on
the stack. �e important take away from this snippet is that the
code is no more complicated than a sequential stack implemen-
tation. he logic for backo�, retry, blocking and signalling are hid-
den behind the reagents implementation. In particular, the pop
operation blocks the calling thread until the stack is non-empty.
T�us, the experts can write e�cient concurrency libraries us-
ing reagents while preserving readability (and as a consequence
maintainability) of code.

Furthermore, since the stack interface is exposed as reagents,
the individual operations can be further composed. For example,
given two Treiber stacks s1 and s2, pop s1 >>> push s2 trans-
fers elements atomically between the stacks, pop s1 <*> pop s2

consumes elements atomically from both of the stacks, and pop

s1 <+> pop s2 consumes an element from either of the stacks.
Importantly, the composition preserves the optimisations and
blocking/signalling behaviours. �us, reagents allow users of the
library to arbitrarily combine and extend the functionality with-
out knowing about the underlying implementation.

4 Implementation

�e key idea behind the implementation is that the reagent trans-
action executes in two phases. �e �rst phase involves collect-
ing all the compare-and-swap (CAS) operations necessary for the
transaction, and the second phase is invoking a k-CAS opera-
tion (emulated in so�ware). �e failure to gather all the avail-
able CASes constitutes a permanent failure, causing the thread to
explore other alternatives in the case of a selective communica-
tion or block otherwise. �e failure in the second phase means
that there is active interference from other concurrent threads, in
which case the transaction is retried.

Performance of the Reagents depends critically on having �ne-
grained control over threads and schedulers for implementing
backo� loops, blocking and signalling. However, one of the main
ideas of multicore OCaml is not to bake in the thread scheduler
into the compiler but rather describe them as libraries. To this
end, the reagents library is functorized over the following generic
scheduler interface:

module type Scheduler = sig
type 'a cont (* continuation *)
effect Suspend : ('a cont -> 'a option) -> 'a
effect Resume : 'a cont * 'a -> unit

end

�e interface itself only describes the scheduler’s e�ects, whose
behaviour is de�ned by the handlers [1]. perform (Suspend f)

applies f to the current continuation, and allows the Reagent li-
brary to stash the thread on the unavailable resource’s wait queue.

�e return type of f is an option to handle the case when the
resource might have become available while suspending. If f
returns None, then the control returns to the scheduler. Once
the resource becomes available, the reagent library performs the
Resume e�ect to resume the suspended thread.

Using the reagents library, we have implemented a collec-
tion of composable concurrent data and synchronization struc-
tures such as stacks, queues, sets, hash tables, countdown latches,
reader-writer locks, condition variables, exchangers, atomic
counters, etc. 1

5 Limitations and Future Work

Reagents are less expressive than STM which provides serializ-
ability. But in return, Reagents provide stronger progress guarat-
nee (lock-freedom) over STM (obstruction-freedom). A reagent
transaction operating more than once on the same memory lo-
cation will fail at runtime. Abstractly, this behaviour is disal-
lowed since it cannot be represented as a k-CAS operation. Due
to this restriction, the transaction pop s1 >>> push s1 always
fails, and prohibits important patterns such as atomically push-
ing or popping multiple values from the same stack. We are ex-
tending the original reagent semantics to relax this invariant. As
a result, reagents will have snapshot isolation semantics. While
this is weaker than serializability semantics o�ered by the STM,
we will retain the bene�t of lock-freedom.

References
[1] S. Dolan, L. White, K. Sivaramakrishnan, J. Yallop, and A. Mad-

havapeddy. E�ective concurrency through algebraic e�ects. In
OCaml Users and Developers Workshop, 2015.

[2] C. Fournet and G. Gonthier. �e Join Calculus: A Language for Dis-
tributed Mobile Programming. In Applied Semantics. 2002.

[3] J. Hughes. Programming with arrows. In Advanced Functional Pro-
gramming. 2004.

[4] J. Reppy, C. V. Russo, and Y. Xiao. Parallel Concurrent ML. In ICFP,
2009.

[5] R. K. Treiber. Systems programming: Coping with parallelism. IBM
Almaden Research Center, 1986.

[6] A. Turon. Reagents: Expressing and Composing Fine-grained Con-
currency. In PLDI, 2012.

1https://github.com/ocamllabs/reagents

2


