
�CML: A Prescription for Safely Relaxing Synchrony

KC Sivaramakrishnan1, Lukasz Ziarek2, and Suresh Jagannathan1

1 Purdue University ({chandras,suresh}@cs.purdue.edu)
2 SUNY Buffalo (lziarek@buffalo.edu)

Abstract. A functional programming discipline, combined with abstractions like
Concurrent ML (CML)’s first-class synchronous events, offers an attractive pro-
gramming model for concurrency. In high-latency distributed environments, like
the cloud, however, the high communication latencies incurred by synchronous
communication can compromise performance. While switching to an explicitly
asynchronous communication model may reclaim some of these costs, program
structure and understanding also becomes more complex. To ease the challenge
of migrating concurrent applications to distributed cloud environments, we have
built an extension of the MultiMLton compiler and runtime that implements CML
communication asynchronously, but guarantees that the resulting execution is
faithful to the synchronous semantics of CML. We formalize the conditions under
which this equivalence holds, and present an implementation that builds a decen-
tralized dependence graph whose structure can be used to check the integrity of an
execution with respect to this equivalence. We integrate a notion of speculation
to allow ill-formed executions to be rolled-back and re-executed, replacing of-
fending asynchronous actions with safe synchronous ones. Several realistic case
studies deployed on the Amazon EC2 cloud infrastructure demonstrate the utility
of our approach.

Keywords: Message-passing, Speculative Execution, Axiomatic Semantics, Cloud Com-
puting

1 Introduction
Concurrent ML [18] (CML) provides an expressive concurrency mechanism through
its use of first-class composable synchronous events. When synchronized, events al-
low threads to communicate data via message-passing over first-class channels. Syn-
chronous communication simplifies program reasoning because every communication
action is also a synchronization point; thus, the continuation of a message-send is guar-
anteed that the data being sent has been successfully transmitted to a receiver. The cost
of synchrony comes at a high price in performance, however; recent proposals there-
fore suggest the use of asynchronous variants of CML’s synchronous events [28] to
overcome this cost. While asynchronous extensions can be used to gain performance,
they sacrifice the simplicity provided by synchronous communication in favor of a more
complex and sophisticated set of primitives.

One way to enhance performance without requiring new additions to CML’s core
set of event combinators is to give the underlying runtime the freedom to allow a sender
to communicate data asynchronously. In this way, the cost of synchronous communi-
cation can be masked by allowing the sender’s continuation to begin execution even

if a matching receiver is not yet available. Because asynchrony is introduced only by
the runtime, applications do not have to be restructured to explicitly account for new
behaviors introduced by this additional concurrency. Thus, we wish to have the runtime
enforce the equivalence: [[send (c, v)]]k ≡ [[asend (c, v)]]k where k is a continuation,
send is CML’s synchronous send operation that communicates value v on channel c,
and asend is an asynchronous variant that buffers v on c and does not synchronize with
matching receiver.

Motivation. To motivate the utility of safe relaxation of synchronous behavior, con-
sider the problem of building a distributed chat application. The application consists of
a number of participants, each of whom can broadcast a message to every other mem-
ber in the group. The invariant that must be observed is that any two messages sent by
a participant must appear in the same order to all members. Moreover, any message
Y broadcast in response to a previously received message X must always appear af-
ter message X to every member. Here, message Y is said to be causally dependent on
message X .

datatype ’a bchan = BCHAN of (’a chan list (* val *) * unit chan list (* ack *))

fun newBChan (n: int) (* number of participants *) =
BCHAN(tabulate(n,fn _ => channel ()), tabulate(n,fn _ => channel ()))

fun bsend (BCHAN (vcList , acList), v: ’a, id: int) : unit =
let

val _ = map (fn vc => if (vc = nth (vcList , id)) then () else send (vc, v))
vcList (* phase 1 -- Value distribution *)

val _ = map (fn ac => if (ac = nth (acList , id)) then () else recv ac)
acList (* phase 2 -- Acknowledgments *)

in ()
end

fun brecv (BCHAN (vcList , acList), id: int) : ’a=
let val v = recv (nth (vcList , id))

val _ = send (nth (acList , id), ())
in v
end

Fig. 1: Synchronous broadcast channel

Building such an application using a centralized server is straightforward, but hin-
ders scalability. In the absence of central mediation, a causal broadcast protocol [2] is
required. One possible encoding of causal broadcast using CML primitives is shown
in Figure 1. A broadcast operation involves two phases. In the first phase, values (i.e.,
messages) are synchronously communicated to all receivers (except to the sender). In
the second phase, the sender simulates a barrier by synchronously receiving acknowl-
edgments from all recipients.

The synchronous nature of the broadcast protocol along with the fact that the ac-
knowledgment phase occurs only after message distribution ensure that no member
can proceed immediately after receiving a message until all other members have also
received the message. This achieves the desired causal ordering between broadcast
messages since every member would have received a message before the subsequent
causally ordered message is generated. We can build a distributed group chat server
using the broadcast channel as shown below.

(* bc is broadcast chan , daemon is spawn as a separate thread *)
fun daemon id = display (brecv (bc , id)); daemon id
fun newMessage (m, id) = display m; bsend (bc , m, id)

Assume that there are n participants in the group, each with a unique identifier
id between 0 and n − 1. Each participant runs a local daemon thread that waits for
incoming messages on the broadcast channel bc . On a reception of a message, the
daemon displays the message and continues waiting. The clients broadcast a message
using newMessage after displaying the message locally. Observe that remote messages
are only displayed after all other participants have also received the message. In a geo-
distributed environment, where the communication latency is very high, this protocol
results in a poor user experience that degrades as the number of participants increases.

Without making wholesale (ideally, zero!) changes to this relatively simple proto-
col implementation, we would like to improve responsiveness, while preserving cor-
rectness. One obvious way of reducing latency overheads is to convert the synchronous
sends in bsend to an asynchronous variant that buffers the message, but does not syn-
chronize with a matching receiver. There are two opportunities where asynchrony could
be introduced, either during value distribution or during acknowledgment reception.
Unfortunately, injecting asynchrony at either point is not guaranteed to preserve causal
ordering on the semantics of the program.

Consider the case where the value is distributed asynchronously. Assume that there
are three participants: p1, p2, and p3. Participant p1 first types message X , which is
seen by p2, who in turn types the message Y after sending an acknowledgment. Since
there is a causal order between the message X and Y, p3 must see X followed by Y. The
key observation is that, due to asynchrony, message X sent by the p1 to p3 might be
in-flight, while the causally dependent message Y sent by p2 reaches p3 out-of-order.
This leads to a violation of the protocol’s invariants. Similarly, it is easy to see that
sending acknowledgments message asynchronously is also incorrect. This would allow
a participant that receives a message to asynchronously send an acknowledgment, and
proceed before all other participants have received the same message. As a result, causal
dependence between messages is lost.

To quantify these issues in a realistic setting, we implemented a group chat simulator
application using a distributed extension of the MultiMLton Standard ML compiler. We
launched three Amazon EC2 instances, each simulating a participant in the group chat
application, with the same communication pattern described in the discussion above. In
order to capture the geo-distributed nature of the application, participants were placed
in three different availability zones – EU West (Ireland), US West (Oregon), and Asia
Pacific (Tokyo), resp.

During each run, p1 broadcasts a message X , followed by p2 broadcasting Y . We
consider the run to be successful if the participant p3 sees the messages X , Y , in that
order. The experiment was repeated for 1K iterations. We record the time between pro-
tocol initiation and the time at which each participant gets the message Y . We consider
the largest of the times across the participants to be the running time. The results are
presented below.

Execution Avg.time (ms) Errors
Sync 1540 0
Unsafe Async 520 7
Safe Async (�CML) 533 0

The Unsafe Async row describes the vari-
ant where both value and acknowledgment
distribution is performed asynchronously; it
is three times as fast as the synchronous vari-
ant. However, over the total set of 1K runs, it
produced seven erroneous executions. The Safe Async row illustrates our implemen-
tation, �CML, that detects erroneous executions on-the-fly and remediates them. The re-
sults indicate that the cost of ensuring safe asynchronous executions is quite low for this
application, incurring only roughly 2.5% overhead above the unsafe version. Thus, in
this application, we can gain the performance benefits and responsiveness of the asyn-
chronous version, while retaining the simplicity of reasoning about program behavior
synchronously.

Contributions. The formalization of well-formed executions, those that are the result
of asynchronous evaluation of CML send operations, but which nonetheless are ob-
servably equivalent to a synchronous execution, and the means by which erroneous
executions can be detected and repaired, form the focus of this paper. Specifically, we
make the following contributions:

– We present the rationale for a relaxed execution model for CML that specifies
the conditions under which a synchronous operation can be safely executed asyn-
chronously. Our model allows applications to program with the simplicity and com-
posability of CML synchronous events, but reap the performance benefits of imple-
menting communication asynchronously.

– We develop an axiomatic formulation of the model that can be used to reason about
correctness in terms of causal dependencies captured by a happens-before relation.

– A distributed implementation, �CML, that treats asynchronous communication as a
form of speculation is described. A mis-speculation, namely one that produces an
execution that could not have been realized using only synchronous communica-
tion can be detected and rolled back, with the offending operation re-executed as a
synchronous action, known to be safe.

– Several case studies on a realistic cloud deployment demonstrate the utility of the
model in improving the performance of CML programs in distributed environments
without requiring any restructuring of application logic to deal with asynchrony.

The paper is organized as follows. In the next section, we present an axiomatic
formalization of our intuition behind a relaxed synchronous execution. Section 3 details
the �CML design and implementation, and discusses the role of speculation to implement
asynchronous communication transparently; a central part of the �CMLarchitecture is a
distributed dependence graph that is used to check the validity of speculative actions,
and facilitate rollback when a mis-speculation occurs. Section 4 presents case studies of
several benchmarks to illustrate the benefit of the model. Related work and conclusions
are given in Sections 5 and 6, respectively.

2 Axiomatic Semantics
We introduce an axiomatic formalization for reasoning about the relaxed behaviors of a
concurrent message-passing programs with dynamic thread creation. Not surprisingly,

our formulation is similar in structure to axiomatic formalizations used to describe, for
example, relaxed memory models [7, 19, 21].

An axiomatic execution is captured by a set of actions performed by each thread
and the relationship between them. These actions abstract the relevant behaviors possi-
ble in a CML execution, relaxed or otherwise. Relation between the actions as a result
of sequential execution, communication, thread creation and thread joins define the de-
pendencies that any sensible execution must respect. A relaxed execution, as a result
of speculation, admits more behaviors than observable under synchronous CML execu-
tion. Therefore, to understand the validity of executions, we define a well-formedness
condition that imposes additional constraints on executions to ensure their observable
effects correspond to correct CML behavior.

We assume a set of T threads, C channels, and V values. The set of actions is
provided below. Superscripts m and n denote a unique identifier for the action.

Actions A := bt (t starts) | et (t ends)
| jmt t′ (t detects t’ has terminated) | fmt t′ (t forks a new t’)
| smt c, v (t sends value v on c) | rmt c (t receives a value v on c)
| pmt v (t outputs an observable value v)

c ∈ C (Channels) t, t′ ∈ T (Threads) v ∈ V (Values) m,n ∈ N (Numbers)

Action bt signals the initiation of a new thread with identifier t; action et indicates
that thread t has terminated. A join action, jmt t

′, defines an action that recognizes the
point where thread t detects that another thread t′ has completed. A thread creation
action, where thread t spawns a thread t′, is given by fmt t

′. Action smt c, v denotes the
communication of data v on channel c by thread t, and rmt c denotes the receipt of data
from channel c. An external action (e.g., printing) that emits value v is denoted as pmt v.
We can generalize these individuals actions into a family of related actions:

Ar = {rmt c | t ∈ T} (Receives) As = {smt c, v | t ∈ T, v ∈ V} (Sends)
Ac = As ∪ Ar (Communication) Ao = {pmt v | t ∈ T, v ∈ V} (Observables)

Notation. We write T (α) to indicate the thread in which action α occurs, and write
V (smt c, v) to extract the value v communicated by a send action. Given a set of actions
A ∈ 2A, Ax = A ∩ Ax, where Ax represents one of the action classes defined above.

Definition 1 (Axiomatic Execution). An axiomatic execution is defined by the tuple
E := 〈P,A,→po,M〉 where:

– P is a program.
– A is a set of actions.
– →po ⊆ A × A is the program order, a disjoint union of the sequential actions of

each thread (which is a total order).
– M ∈ (As ⇀ Ar) ∪ (Ar ⇀ As) is a communication-match function that maps

each send and receive to its matching communication action (i.e, if α = M(α′)
then α′ = M(α)). Moreover, a send and its matching receive must operate on
the same channel and operate in different threads (i.e., if M(smt c, v) = rnt′c

′ or
M(rnt′c

′) = smt c, v then t 6= t′ and c = c′).

Definition 2 (Communication Order). A communication order is established between
matching communication actions. If β = M(α), then α→co β and β →co α.

There is also an obvious ordering on thread creation and execution, as well as the
visibility of thread termination by other threads:

Definition 3 (Thread Dependence). If α = fmt t
′ and β = bt′ or α = et and β = jmt′ t

then α→td β holds.

Definition 4 (Happens-before relation). The happens-before order of an execution
is the transitive closure of the union of program order, thread dependence order, and
actions related by communication and program order:

→hb = (→po ∪ →td ∪
{(α, β) | α→co α

′ ∧ α′ →po β} ∪
{(β, α) | β →po α

′ ∧ α′ →co α})+

For any two actions α, β ∈ A, if α =hb β, then α and β are said to be concurrent
actions. Importantly, our happens-before relation defines a preorder. A preorder is a
reflexive transitive binary relation. Unlike partial orders, preorders are not necessarily
anti-symmetric, i.e. they may contain cycles.

Definition 5 (Happens-before Cycle). A cycle exists in a happens-before relation if
for any two actions α, β and α→hb β →hb α.

(* current thread is t1 *)
val t2 = spawn (fn () =>

recv c2;
print "2";
recv c1)

val t3 = spawn (fn () =>
send(c2 ,v2);
print "3";
recv c2)

val _ = send(c1 ,v1)
val _ = print "1"
val _ = send(c2 ,v2)

(a) A CML program

bt1
po

po

po

po

po

po

po

po

po

po

po

po

po

po

ft1t2

ft1t3

pt11

et1

st1c2, v2

td

td

bt2

rt2c2

pt22

rt2c1

et2

co

co

co

bt3

st3c2, v3

pt33

et3

st1c1, v1
rt3c2

(b) Well-formed execution

bt1
po

po

po

po

po

po

po

po

po

po

po
ft1t2

ft1t3

pt11

et1

st1c2, v2

td

td

bt2

rt2c2

pt22

rt2c1

et2

co

bt3

st3c2, v3

st1c1, v1

co

(c) Ill-formed execution

Fig. 2: A CML program and its potential axiomatic executions.

We provide an example to illustrate these definitions and to gain an insight into erro-
neous executions that manifest as a result of speculative communication. Consider the
example presented in Figure 2 which shows a simple CML program and two possible
executions. The execution in Figure 2b imposes no causal dependence between the ob-
servable actions (i.e., print statements) in t2 or t3; thus, an interleaving derived from this
execution may permute the order in which these statements execute. All interleavings
derivable from this execution correspond to valid CML behavior.

In contrast, the execution depicted in Figure 2c, exhibits a happens-before cycle be-
tween t1 and t2, through a combination of program and communication order edges.
Such cyclic dependences never manifest in any correct CML execution. Cyclic depen-
dences may however manifest when synchronous sends are speculatively discharged
asynchronously. We must therefore strengthen our notion of correct executions to dis-
card those that contain such cycles.

To do so, we first note that the semantics as currently presented is concerned only
with actions that introduce some form of causal dependence either within a thread (via
program order) or across threads (via thread dependence or communication order).
However, a real program also does computation, and reasoning about an execution’s
correctness will require us to specify these actions as well. To facilitate this reasoning,
we abstract the intra-thread semantics, and parameterize our definition of an axiomatic
execution accordingly.
Intra-thread semantics. The intra-thread semantics is abstracted in our formulation
via a labeled transition system. Let Stateintra denote the intra-thread state of a thread;
its specific structure is not interesting for the purposes of the axiomatic definition3. A
labeled transition between intra-thread states is captured by the relation

.
−�⊆ Stateintra × Labelintra × Stateintra

given to each thread t ∈ T. The transition labels are in the set Labelintra = (A \ Ar) ∪
(Ar×V)∪{τ}. Thus, a thread can either take a global action step (e.g., creating another
thread, performing a send action, ending a thread, etc.), execute a silent thread-local
computation (denoted by label τ), or execute a receive action that receives the value
associated with the label. The requirements on the intra-thread semantics are:

–
.
−� can only relate states belonging to the same thread.

– there is an initial state READY: no transition leads to it, and a thread t steps from it
if and only if it emits a begin action bt.

– there is a final state DONE: a thread leads to it if and only if it emits an end action
et and no transition leads from it.

Definition 6 (Intra-trace). Let tr = α be a sequence of actions in set A, and M be
a communication match function on A. Given a thread t ∈ T in a program P, tr is
a valid intra-trace for t if there exists a set of states {δ0, δ1, . . .}, and a set of labels
l = {l0, l1, . . .} such that:

– for all αi ∈ α, T (a) = t
– δ0 is the initial state READY

– for all 0 ≤ i, δi
li−� δi+1

– the projection β of l to non-silent labels is such that βi = (αi, V (M(αi))) if αi ∈
Ar, or βi = αi otherwise.

We write InTrP[t] set of such pairs (tr,M) for P.

3 The concrete instantiation of the intra-thread state, and an operational semantics for the lan-
guage are given in a technical report, available from: http://multimlton.cs.purdue.
edu/mML/rx-cml.html

http://multimlton.cs.purdue.edu/mML/rx-cml.html
http://multimlton.cs.purdue.edu/mML/rx-cml.html

Definition 7 (Well-formed Execution). An execution E := 〈P,A,→po,M〉 is well-
formed if the following conditions hold:

1. Intra-thread consistency: for all threads t ∈ T, ([→po]t,M) ∈ InTrP[t]
2. Happens-before correctness: The happens-before relation→hb constructed fromE

has no cycles.
3. Observable correctness: Given α ∈ Ao and β ∈ Ac if β →hb α then there exists
β′ ∈ Ac s.t. M(β) = β′.

For an axiomatic execution E := 〈P,A,→po,M〉 to be well-formed, the actions,
program order relation, and the communication match function must have been obtained
from a valid execution of the program P as given by the intra-thread semantics defined
above (1). As we noted in our discussion of Figure 2, no valid execution of a CML
program may involve a cyclic dependence between actions; such dependencies can only
occur because of speculatively performing what is presumed to be a synchronous send
operation (2).

Finally, although the relaxed execution might speculate, i.e., have a send operation
transparently execute asynchronously, the observable behavior of such an execution
should mirror some valid non-speculative execution, i.e., an execution in which the
send action was, in fact, performed synchronously. We limit the scope of speculative
actions by requiring that they complete (i.e., have a matching recipient) before an ob-
servable action is performed (3). Conversely, this allows communication actions not
preceding an observable action to be speculated upon. Concretely, a send not preceding
an externally visibile action can be discharged asynchronously. The match and validity
of the send needs to be checked only before discharging the next such action. This is
the key idea behind our speculative execution framework.

Safety. An axiomatic execution represents a set of interleavings, each interleaving
defining a specific total order that is consistent with the partial order defined by the exe-
cution4. The well-formedness conditions of an axiomatic execution implies that any ob-
servable behavior of an interleaving induced from it must correspond to a synchronous
CML execution. The following two definitions formalize this intuition.

Definition 8 (Observable dependencies). In a well-formed axiomatic execution E :=
〈P,A,→po,M〉, the observable dependencies Aod is the set of actions that precedes
(under→hb) some observable action, i.e., Aod = {α | α ∈ A, β ∈ Ao, α→hb β}.

Definition 9 (CML Execution). Given a well-formed axiomatic execution

E := 〈P,A,→po,M〉

, the pair (E,→to) is said to be in CML(P) if →to is a total order on Aod and →to is
consistent with→hb.

In the above definition, an interleaving represented by →to is only possible since
the axiomatic execution is well-formed, and thereby does not contain a happens-before
cycle.

4 Two ordering relations P and Q are said to be consistent if ∀x, y,¬(xPy ∧ yQx).

Lemma 1. If a total order →to is consistent with →hb, then →hb does not contain a
cycle involving actions in Aod.

Next, we show that a well-formed axiomatic execution respects the safety property
of non-speculative execution of a CML program. When a CML program evaluates non-
speculatively, a thread performing a communication action is blocked until a matching
communication action is available. Hence, if (〈P,A,→po,M〉,→to) ∈ CML(P), and a
communication action α on a thread t is followed by an action β on the same thread,
then it must be the case that there is a matching action α′ = M(α) that happened before
β in→to. This is captured in the following theorem.

Theorem 1. Given a CML execution (E,→to) ∈ CML(P), ∀α, β such thatα ∈ Ac, T (α) =
T (β), α→to β, there exists an action α′ = M(α) such that α′ →to β.

Proof. Let E := 〈P,A,→po,M〉. First, we show that α′ ∈ A. Since α→to β, α ∈ Aod,
by Definition 9. By Definition 8, there exists some γ ∈ Ao such that α →hb γ. Since
E is well-formed and α →hb γ, by Definition 7, α′ = M(α) ∈ A. Next, we show
that α′ ∈ Aod. By Definitions 2 and 4, α′ →co α →hb γ implies α′ →hb γ. Hence,
α′ ∈ Aod, and is related by→to. Finally, since T (α) = T (β) and α →to β, α →po β.
And, α′ →co α→po β implies α′ →hb β. By Lemma 1 and Definition 9, α′ →to β.

3 Implementation
The axiomatic semantics provides a declarative way of reasoning about correct CML
executions. In particular, a well-formed execution does not have a happens-before cycle.
In practice, the speculative execution framework needs to perform this check on-the-fly.
Since we are free to discharge synchronous sends asynchronously (speculatively), we
need to build the relations necessary to check the integrity of the interleaving as the
program executes.

To do so, we construct a dependence graph that captures the dependencies described
by an axiomatic execution, and ensure the graph has no cycles. If a cycle is detected,
we rollback the effects induced by the offending speculative action, and re-execute it
as a normal synchronous operation. The context of our investigation is a distributed
implementation of CML called �CML(RELAXED CML)5 built on top of the MultiMLton
SML compiler and runtime [15]. We have extended MultiMLton with the infrastructure
necessary for distributed execution.

3.1 System Architecture
An �CML application consists of multiple instances, each of which runs the same Mul-
tiMLton executable. These instances might run on the same node, on different nodes
within the same datacenter, or on nodes found in different data centers. Each instance
has a scheduler which preemptively multiplexes execution of user-level CML threads
over multiple cores. We use the ZeroMQ messaging library [26] as the transport layer
over which the �CML channel communication is implemented. In addition to providing
reliable and efficient point-to-point communication, ZeroMQ also provides the ability
to construct higher-level multicast patterns. In particular, we leverage ZeroMQ’s pub-
lish/subscribe support to implement CML’s first-class channel based communication.

5 http://multimlton.cs.purdue.edu/mML/rx-cml.html

http://multimlton.cs.purdue.edu/mML/rx-cml.html

The fact that every instance in an �CML application runs the same program, in addi-
tion to the property that CML channels are strongly-typed, allows us to provide typesafe
serialization of immutable values as well as functions closures. Serializing mutable ref-
erences is disallowed, and an exception is raised if the value being serialized refers to
a mutable object. To safely refer to the same channel object across multiple instances,
channel creation is parameterized with an identity string. Channels created with the
same identity string refer to the same channel object across all instances in the �CML

application. Channels are first-class citizens and can be sent as messages over other
channels to construct complex communication protocols.

3.2 Communication Manager
Each �CML instance runs a single communication manager thread, which maintains
globally consistent replica of the CML channels utilized by its constituent CML threads.
The protocol for a single CML communication is illustrated in Figure 3. Since CML
channel might potentially be shared among multiple threads across different instances,
communication matches are determined dynamically. In general, it is not possible to
determine the matching thread and its instance while initiating the communication ac-
tion. Hence, whenever a thread intends to send or receive a value on the channel, its
intention (along with a value in the case of a send operation), is broadcast to every other
�CML instance. Importantly, the application thread performing the send does not block
and speculatively continues execution.

send (c,v)

recv (c)join

Instance 1 Instance 2 Instance 3

broadcast
match

c [v] c [v]

c [v]c []

c [v]

c []

broadcast
send

c []c [] c []

Fig. 3: Communication manager
behavior during a send and its
matching receive.

Subsequently, an application thread that per-
forms a receive on this channel consumes the send
action, sends a join message to the sender thread’s
instance, and proceeds immediately. In particu-
lar, receiver thread does not block to determine
if the send action was concurrently consumed by
a thread in another instance. This corresponds to
speculating on the communication match, which
will succeed in the absence of concurrent receives
for the same send action. On receiving the join
message, a match message is broadcast to every
instance, sealing the match. Those instances that
speculatively matched with the send, except the
one indicated in the match message, treat their re-
ceive action as a mis-speculation. Other instances that have not matched with this par-
ticular send remove the send action from the corresponding local channel replica.

3.3 Speculative Execution
Aborting a mis-speculation requires restoring the computation to a previously known
consistent state. Achieving this entails rolling back all threads that communicated with
the offending action, transitively. In this regard, stabilizers [27] provide a suitable ab-
straction for restoring consistent checkpoints in message-passing programs. A stabi-
lizer builds a dependence graph that takes into account intra-thread program order and
inter-thread communication dependence. However, the implementation reported in [27]
assumes a centralized structure, and a global barrier that stops all execution while a

checkpoint is restored; neither condition is reasonable in a high-latency, distributed en-
vironment.

Replicated dependence graph. Instead, �CML exploits the broadcast nature of the
match message (Section 3.2) to incrementally construct a globally-consistent replica of
the dependence graph at every instance. The nodes in the dependence graph correspond
to the actions in the axiomatic definition. Thread spawn and join actions are broadcast
to allow other instances to add necessary nodes and edges. Maintaining a replica of the
dependence graph at each replica allows ill-formed executions to be detected locally
and remediated.

Well-formedness check. To ensure observable behavior of an �CML program to its syn-
chronous equivalent, the compiler automatically inserts a well-formedness check before
observable actions in the program. �CML treats system calls, access to mutable refer-
ences, and foreign function calls as observable actions. On reaching a well-formedness
check, a cycle-detector is invoked which checks for cycles in the dependence graph
leading up to this point. If the execution is well-formed (no cycles in the dependence
graph), then the observable action is performed. Since there is no need to check for well-
formedness of this fragment again, the verified dependence graph fragment is garbage
collected on all instances.

Checkpoint. After a well-formedness check, the state of the current thread is consis-
tent. Hence, right before the next (speculative) communication action, we checkpoint
the current thread by saving its current continuation. This ensures that the observable
actions performed after the well-formedness check are not re-executed if the thread
happens to rollback. In addition, this checkpointing scheme allows multiple observ-
able actions to be performed between a well-formedness check and the subsequent
checkpoint. Unlike Stabilizers [27], every thread in an �CML application has exactly one
saved checkpoint continuation during the execution. Moreover, �CML checkpointing is
un-coordinated [10], and does not require that all the threads that transitively interacted
capture their checkpoint together, which would be unreasonable in geo-distributed ap-
plication.

Remediation. If the well-formedness check does report a cycle, then all threads that
have transitively observed the mis-speculation are rolled back. The protocol roughly
follows the same structure described in [27], but is asynchronous and does not involve a
global barrier. The recovery process is a combination of checkpoint (saved continuation)
and log-based (dependence graph) rollback and recovery [10]. Every mis-speculated
thread is eventually restored to a consistent state by replacing its current continuation
with its saved continuation, which was captured in a consistent state.

Recall that �CML automatically captures a checkpoint, and only stores a single check-
point per thread. As a result, rolling back to a checkpoint might entail re-executing, in
addition to mis-speculated communication actions, correct speculative communications
as well (i.e., communication actions that are not reachable from a cycle in the depen-
dence graph). Thus, after the saved continuation is restored, correct speculative actions
are replayed from the dependence graph, while mis-speculations are discharged non-
speculatively (i.e., synchronously). This strategy ensures progress. Finally, we leverage
ZeroMQ’s guarantee on FIFO ordered delivery of messages to ensure that messages
in-flight during the remediation process are properly accounted for.

3.4 Handling full CML
Our discussion so far has been limited to primitive send and recv operations. �CML

also supports base events, wrap, guard, and choice combinators. The wrap and guard

combinators construct a complex event from a simpler event by suffixing and prefix-
ing computations, resp. Evaluation of such a complex event is effectively the same as
performing a sequence of actions encapsulated by the event. From the perspective of
reasoning about well-formed executions, wrap and guard are purely syntactic addi-
tions.

Choices are more intriguing. The choose combinator operates over a list of events,
which when discharged, non-deterministically picks one of the enabled events. If none
of the choices are already enabled, one could imagine speculatively discharging ev-
ery event in a choice, picking one of the enabled events, terminating other events and
rolling back the appropriate threads. However, in practice, such a solution would lead to
large number of mis-speculations. Hence, �CML discharges choices non-speculatively.
In order to avoid spurious invocations, negative acknowledgment events (withNack)
are enabled only after the selection to which they belong is part of a successful well-
formedness check.

3.5 Extensions
Our presentation so far has been restricted to speculating only on synchronous sends.
Speculation on receives is, in general, not possible since the continuation might depend
on the value received. However, if the receive is on a unit channel, speculation has a
sensible interpretation. The well-formedness check only needs to ensure that the receive
action has been paired up, along with the usual well-formedness checks. Speculating
on these kinds of receive actions, which essentially serve as synchronization barriers,
is useful, especially during a broadcast operation of the kind described in Figure 1 for
receiving acknowledgments.

4 Case Studies
4.1 Online Transaction Processing

Our first case study considers a CML implementation of an online transaction pro-
cessing (OLTP) system. Resources are modeled as actors that communicate to clients
via message-passing, each protected by a lock server. A transaction can span multiple
resources, and is implemented pessimistically. Hence, a transaction must all relevant
locks before starting its computation. We can use our relaxed execution semantics to al-
low transactions to effectively execute optimistically, identifying and remediating con-
flicting transactions post facto; the key idea is to model conflicting transactions as an
ill-formed execution. We implement each lock server as a single CML thread, whose
kernel is:

fun lockServer (lockChan: unit chan) (unlockChan: unit chan) =
(recv lockChan; recv unlockChan; lockServer lockChan unlockChan)

which protects a single resource by ensuring atomic access. It is up to the application
to ensure that the lock servers are correctly used, and when obtaining multiple locks,
locks are sorted to avoid deadlocks.

In the absence of contention, the involvement of the lock server adds unnecessary
overhead. By communicating with lockChan asynchronously, we can allow the client
(the thread performing the transaction), to concurrently proceed with obtaining other
locks or executing the transaction. However, the transactional guarantees are lost in
this case. Under �CML such serializability violation shows up as a cycle in the happens-
before dependence graph. �CML rejects such executions, causing the transaction to abort,
and re-execute non-speculatively.

For our evaluation, we implemented a distributed version of this program (vacation)
taken from the STAMP benchmark suite [4]. To adapt the benchmark for a distributed
environment, we partitioned resources into 16 shards, each protected by a lock server.
The workload was setup for moderate contention, and each transaction involves 10 op-
erations. The shards were spread across 16 EC2 M1 large instances within the same
EC2 availability zone. The clients were instantiated from all of the different regions
on M1 small instances to simulate the latencies involved in a real web-application. A
benchmark run involved 10K transactions, spread equally across all of the available
clients. Each benchmark run was repeated 5 times.

0 10 20 30 40 50
Clients

24

25

26

27

28

29

210

T
im

e
 (

S
e
cs

)

Rx

Sync

Fig. 4: Performance comparison
on distributed vacation (OLTP)
benchmark. Lower is better.

The performance results are presented in the
Figure 4. The number of clients concurrently is-
suing transaction requests was increased from 1
to 48. �CML is the speculative version, while Sync
is the synchronous, non-speculative variant. The
1-client Sync version took 1220 seconds to com-
plete. For comparison, we extended the original
C version with a similar shared distribution struc-
ture. This run was 1.3× faster than the CML base-
line. The benchmark execution under �CML scales
much better than the Sync version due to opti-
mistic transactions. With 48 clients, �CML version
was 5.8× faster than then Sync version. Under
�CML, the number of transaction conflicts does increase with the number of clients. With
48 clients, 9% of the transactions executed under �CML were tagged as conflicting and
re-executed non-speculatively. This does not, however, adversely affect scalability.

4.2 Collaborative Editing

Our next case study is a real-time, decentralized collaborative editing tool. Typically,
such commercial offerings such as Google Docs, Apache Wave, EtherPad, etc,utilize a
centralized server to coordinate between the authors. Not only does the server eventu-
ally become a bottleneck, but service providers also need to store a copy of the docu-
ment, along with other personal information, which is undesirable. We consider a fully
decentralized solution, in which authors works on a local copy of the shared document
for responsiveness, with updates from other authors added incrementally to the working
copy. Although replicas are allowed to diverge, they are expected to converge eventu-
ally. This convergence is achieved through operational transformation [22]. Dealing
with operational transformation in the absence of a centralized server is tricky [16], and
commercial collaborative editing services like Google Wave impose additional restric-

tions with respect to the frequency of remote updates [24] in order to build a tractable
implementation.

We simplify the design by performing causal atomic broadcast when sending up-
dates to the replicas. Causal atomic broadcast ensures that the updates are applied on
all replicas in the same global order, providing a semblance of a single centralized
server. Implemented naı̈vely, i.e., performing the broadcast synchronously, however, is
an expensive operation, requiring coordination among all replicas for every broadcast
operation compromising responsiveness. Our relaxed execution model overcomes this
inefficiency. The key advantage of our system is that the causal atomic broadcast is
performed speculatively, allowing client threads to remain responsive.

We use a collaborative editing benchmark generator described in [14] to generate
a random trace of operations, based on parameters such as trace length, percentage of
insertions, deletions, number of replicas, local operation delay, etc. Our benchmarking
trace contains 30K operations, 85%(15%) of which are insertions(deletions), and 20%
of which are concurrent operations. We insert a 25 ms delay between two consecutive
local operations to simulate user-interaction. Updates from each replica is causal atomi-
cally broadcasted every 250 ms. Each replica is represented by a �CML instance placed in
widely distributed Amazon EC2 availability zones chosen to capture the geo-distributed
nature of collaborative editing. The average inter-instance latency was 173 ms, with a
standard deviation of 71.5. Results are reported as the average of five runs.

2 3 4 5 6
Authors

0

1

2

3

4

5

6

7

T
im

e
 (

X
 1

0
0

0
 S

e
cs

) Rx

Sync

Fig. 5: Performance comparison on
collaborative editing benchmark.
Lower is better.

We consider the time taken by a collaborative
editing session to be the time between the first
operation generation and the completion of the
last broadcast operation, at which point the doc-
uments at every replica would have converged.
Figure 5 shows results with respect to total run-
ning time. Sync represents an ordinary CML exe-
cution, while �CML represents our new implemen-
tation. With 2-authors, �CML version took 485 sec-
onds to complete, and was 37% faster than the
synchronous version. As we increase the number
of concurrent authors, the number of communi-
cation actions per broadcast operation increases.
Hence, we expect the benchmark run to take longer to complete. The non-speculative
version scales poorly due to the increasing number of synchronizations involved in the
broadcast operations. Indeed, Sync is 7.6× slower than �CML when there are six concur-
rent authors. Not surprisingly, �CML also takes longer to complete a run as we increase
the number of concurrent authors. This is because of increasing communication actions
per broadcast as well as increase in mis-speculations. However, with six authors, it only
takes 1.67× longer to complete the session when compared to having just two authors,
and illustrates the utility of speculative communication.

5 Related Work
Causal-ordering of messages is considered an important building block [2] for dis-
tributed applications. Similar to our formulation, Charron-Bost et al. [5] develop an
axiomatic formulation for causal-ordered communication primitives, although their fo-

cus is on characterizing communication behavior and verifying communication proto-
cols, rather than latency hiding. Speculative execution has been shown to be beneficial
in other circumstances under high latency environments such as distributed file sys-
tems [17], asynchronous virtual machine replication [6], state machine replication [25],
deadlock detection [13] etc., although we are unaware of other attempts to use it for
transparently converting synchronous operations to asynchronous ones.

Besides Erlang [1], there are also several distributed implementations of functional
languages that have been proposed [23, 20]. More recently, Cloud Haskell [11] has been
proposed for developing distributed Haskell programs. While all these systems deal
with issues such as type-safe serialization and fault tolerance central to any distributed
language, �CML’s focus is on enforcing equivalence between synchronous and asyn-
chronous evaluation. The formalization used to establish this equivalence is inspired by
work in language and hardware memory models [21, 7, 3]. These efforts, however, are
primarily concerned with visibility of shared-memory updates, rather than correctness
of relaxed message-passing behavior. Thus, while language memory models [3, 7] are
useful in reasoning about compiler optimizations, our relaxed communication model
reasons about safe asynchronous manifestations of synchronous protocols.

Transactional events(TE) [8, 9] combine first-class synchronous events with an all-
or-nothing semantics. They are strictly more expressive than CML, although such ex-
pressivity comes at the price of an expensive runtime search procedure to find a satisfi-
able schedule. Communicating memory transactions (CMT) [12] also uses speculation
to allow asynchronous message-passing communication between shared-memory trans-
actions, although CMT does not enforce any equivalence with a synchronous execution.
Instead, mis-speculations only arise because of a serializability violation on memory.

6 Conclusions and Future Work
CML provides a simple, expressive, and composable set of synchronous event com-
binators that facilitate concurrent programming, albeit at the price of performance,
especially in high-latency environments. This paper shows how to regain this perfor-
mance by transparently implementing synchronous operations asynchronously, effec-
tively treating them as speculative actions. We formalize the conditions under which
such a transformation is sound, and describe a distributed implementation of CML
called �CML that incorporates these ideas. Our reported case studies illustrate the ben-
efits of our approach, and provide evidence that �CML is a basis upon which we can
build clean, robust, and efficient distributed CML programs. An important area of fu-
ture work is the integration of fault tolerance into the system. Note that the state of a
failed instance can be recovered from the dependence graph (which includes all saved
continuations), enabling the use of checkpoint restoration and replay as a feasible re-
sponse mechanism to node failures.

References

[1] Armstrong, J., Virding, R., Wikström, C., Williams, M.: Concurrent Programming in Erlang
(2nd ed.) (1996)

[2] Birman, K.P., Joseph, T.A.: Reliable Communication in the Presence of Failures. ACM
Trans. Comput. Syst. 5(1), 47–76 (Jan 1987)

[3] Boehm, H.J., Adve, S.V.: Foundations of the C++ Concurrency Memory Model. In: PLDI.
pp. 68–78 (2008)

[4] Cao Minh, C., Chung, J., Kozyrakis, C., Olukotun, K.: STAMP: Stanford transactional ap-
plications for multi-processing. In: IISWC (2008)

[5] Charron-Bost, B., Mattern, F., Tel, G.: Synchronous, Asynchronous, and Causally Ordered
Communication. Distrib. Comput. 9(4), 173–191 (1996)

[6] Cully, B., Lefebvre, G., Meyer, D., Feeley, M., Hutchinson, N., Warfield, A.: Remus: High
Availability via Asynchronous Virtual Machine Replication. In: NSDI. pp. 161–174 (2008)

[7] Demange, D., Laporte, V., Zhao, L., Jagannathan, S., Pichardie, D., Vitek, J.: Plan B: A
Buffered Memory Model for Java. In: POPL. pp. 329–342 (2013)

[8] Donnelly, K., Fluet, M.: Transactional Events. In: ICFP. pp. 124–135 (2006)
[9] Effinger-Dean, L., Kehrt, M., Grossman, D.: Transactional Events for ML. In: ICFP. pp.

103–114 (2008)
[10] Elnozahy, E.N.M., Alvisi, L., Wang, Y.M., Johnson, D.B.: A survey of rollback-recovery

protocols in message-passing systems. ACM Comput. Surv. 34(3), 375–408 (Sep 2002)
[11] Epstein, J., Black, A.P., Peyton-Jones, S.: Towards Haskell in the Cloud. In: Haskell Sym-

posium. pp. 118–129 (2011)
[12] Lesani, M., Palsberg, J.: Communicating Memory Transactions. In: PPoPP. pp. 157–168

(2011)
[13] Li, T., Ellis, C.S., Lebeck, A.R., Sorin, D.J.: Pulse: A Dynamic Deadlock Detection Mech-

anism Using Speculative Execution. In: USENIX ATC. p. 3144 (2005)
[14] Martin, S., Ahmed-Nacer, M., Urso, P.: Controlled Conflict Resolution for Replicated Doc-

uments. In: CollaborateCom. pp. 471–480 (2012)
[15] MultiMLton: MLton for Scalable Multicore Architectures (2013), http://multimlton.

cs.purdue.edu
[16] Nichols, D.A., Curtis, P., Dixon, M., Lamping, J.: High-latency, Low-bandwidth Window-

ing in the Jupiter Collaboration System. In: UIST. pp. 111–120 (1995)
[17] Nightingale, E.B., Chen, P.M., Flinn, J.: Speculative Execution in a Distributed File System.

In: SOSP. pp. 191–205 (2005)
[18] Reppy, J.: Concurrent Programming in ML. Cambridge University Press (2007)
[19] Sarkar, S., Sewell, P., Nardelli, F.Z., Owens, S., Ridge, T., Braibant, T., Myreen, M.O.,

Alglave, J.: The Semantics of x86-CC Multiprocessor Machine Code. In: POPL. pp. 379–
391 (2009)

[20] Sewell, P., Leifer, J.J., Wansbrough, K., Nardelli, F.Z., Allen-Williams, M., Habouzit, P.,
Vafeiadis, V.: Acute: High-level Programming Language Design for Distributed Computa-
tion. J. Funct. Program. 17(4-5), 547–612 (2007)

[21] Sewell, P., Sarkar, S., Owens, S., Nardelli, F.Z., Myreen, M.O.: x86-TSO: A Rigorous and
Usable Programmer’s Model for x86 Multiprocessors. Commun. ACM 53(7), 89–97 (Jul
2010)

[22] Suleiman, M., Cart, M., Ferrié, J.: Serialization of Concurrent Operations in a Distributed
Collaborative Environment. In: GROUP. pp. 435–445 (1997)

[23] Wakita, K., Asano, T., Sassa, M.: D’Caml: Native Support for Distributed ML Programming
in Heterogeneous Environment. In: Euro-Par. pp. 914–924 (1999)

[24] Wang, D., Mah, A., Lassen, S.: Operational Transformation (2010), http://www.

waveprotocol.org/whitepapers/operational-transform
[25] Wester, B., Cowling, J.A., Nightingale, E.B., Chen, P.M., Flinn, J., Liskov, B.: Tolerating

Latency in Replicated State Machines Through Client Speculation. In: NSDI. pp. 245–260
(2009)

[26] ZeroMQ: The Intelligent Transport Layer (2013), http://www.zeromq.org
[27] Ziarek, L., Jagannathan, S.: Lightweight Checkpointing for Concurrent ML. Journal of

Functional Programming 20(2), 137–173 (2010)
[28] Ziarek, L., Sivaramakrishnan, K., Jagannathan, S.: Composable Asynchronous Events. In:

PLDI. pp. 628–639 (2011)

http://multimlton.cs.purdue.edu
http://multimlton.cs.purdue.edu
http://www.waveprotocol.org/whitepapers/operational-transform
http://www.waveprotocol.org/whitepapers/operational-transform
http://www.zeromq.org

	CML: A Prescription for Safely Relaxing Synchrony

