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Abstract
Programmers regularly use distributed version control systems (DVCS) such as Git to facilitate
collaborative software development. The primary purpose of a DVCS is to maintain integrity of
source code in the presence of concurrent, possibly conflicting edits from collaborators. In addition to
safely merging concurrent non-conflicting edits, a DVCS extensively tracks source code provenance
to help programmers contextualize and resolve conflicts. Provenance also facilitates debugging by
letting programmers see diffs between versions and quickly find those edits that introduced the
offending conflict (e.g., via git blame).

In this paper, we posit that analogous workflows to collaborative software development also arise
in distributed software execution; we argue that the characteristics that make a DVCS an ideal fit
for the former also make it an ideal fit for the latter. Building on this observation, we propose a
distributed programming model, called carmot that views distributed shared state as an entity
evolving in time, manifested as a sequence of persistent versions, and relies on an explicitly defined
merge semantics to reconcile concurrent conflicting versions. We show examples demonstrating how
carmot simplifies distributed programming, while also enabling novel workflows integral to modern
applications such as blockchains. We also describe a prototype implementation of carmot that we
use to evaluate its practicality.
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8:2 Version Control Is for Your Data Too

1 Introduction

Building distributed applications is hard. The crux of the problem is the management
of concurrent updates to distributed shared state that maintain user-level invariants and
properties. The problem is especially pronounced in the context of modern data-intensive
applications, which replicate large amounts of data across geographically diverse locations
to enable trust decentralization, guarantee low latency access to state, and provide high
availability even in the face of node and network failures. In general, these systems allow
each replica instance of a distributed application to concurrently accept updates to shared
data, which could potentially conflict with other updates, and consequently violate data
integrity. In addition, transient faults in the underlying network, such as network partitions,
message reorderings etc., can yield counter-intuitive anomalous executions that are hard
to predict and even harder to preempt [9, 25, 15]. While conventional concurrency control
criteria, such as linearizability and serializability, are designed to preclude such executions,
applications are reluctant to impose them given their prohibitive cost in a distributed
setting (an observation succinctly captured in the CAP theorem [12]). Instead, applications
mostly operate within the weak guarantees provided by an asynchronous state replication
model, occasionally resorting to stronger forms of concurrency control for “risky” operations,
using ad hoc and error-prone reasoning to distinguish between them. Another available
alternative is to restructure applications around a library of distributed data structures that
are carefully designed by experts and proven to be correct under an asynchronous distributed
setting1. Such re-engineering, however, may not always be feasible since applications often
use bespoke data structures to serve specific needs. Consequently, the cognitive overhead in
building distributed applications remains high, limiting program development to distributed
system experts.

It may therefore come as a surprise to note that programmers, as humans, are exposed to
the complex realities of distributed computing almost on a daily basis, and they seem to be
doing just fine. Almost all programmers these days use some form of a distributed version
control system (DVCS), such as Git or Mercurial, and when doing so, emulate the logic of a
distributed application consciously or otherwise. A DVCS lets a programmer safely merge
concurrent versions of source code created by her collaborators working independently and
concurrently, fork-off her own branch from any existing version to work in isolation, group
together multiple related changes as a single commit to be pushed to a remote, look at the
provenance information to understand how the code has evolved across multiple versions, and
track which collaborator is responsible for which piece of code. The overwhelming adoption
of DVCS as a paradigm for distributed and collaborative software development is indicative
of the utility of the model it supports. Much of its attractiveness stems from the intuitive
mental picture it offers the developer to reason about the integrity of source code as it evolves
in the face of concurrent modifications.

In this paper, we ask whether the benefits of DVCS can be transplanted to manage data
in addition to source code. In particular, we propose the thesis that building safe distributed
applications would be dramatically simpler if concurrent conflicting updates to application
state are explicitly recognized and resolved, rather than preempted. Supporting this thesis
requires addressing a number of challenging questions: (a) How can the provenance of data
be systematically exploited to automate the resolution of merge conflicts? (b) Would the

1 Analogous, for example, to carefully designed lock-free data structures in a concurrent programming
language [24, 13].
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module Counter : sig
type t
val zero: t
val add: int -> t -> t
val sub: int -> t -> t
val read: t -> int

end = struct
type t = int
let zero = 0
let add x v = v + x
let sub x v = v - x
let read v = v

end

(a) Counter data type in OCaml.
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(b) Counter merge visualized.

Figure 1 The Counter example.

ability to fork-off a version of the state, and group together multiple changes to the state as a
single commit give useful transactional semantics? (c) Can we generate sufficiently high-level
provenance data to serve as a transaction ledger and satisfy the auditing requirements of
emerging applications such as those built on distributed blockchains ledgers? It is to explore
the answers to these questions that we conceived carmot- a distributed programming model
build around the same concepts as distributed version control systems.

At the core of carmot is the principle that any data structure that ascribes a well-defined
merge semantics to merge its concurrent versions becomes a distributed data structure. Our
experience with DVCS informs us that provenance information greatly helps in contextualizing
merges and resolving conflicts. True to that spirit, carmot allows a data structure to define
a merge semantics for its concurrent versions in the context of their lowest common ancestor
(LCA) version, resulting in a three-way merge. Thus, any ordinary data structure equipped
with a three-way merge function becomes eligible to be a distributed data structure. As
we describe in Sec. 2, the simplicity of this criterion lets us build bespoke distributed data
structures and develop applications around such data structures with a relative ease. We
subsequently demonstrate how carmot can build on the branch-and-merge model of DVCS
to define a transactional semantics with a well-defined isolation model at no additional cost.
Lastly, we show that extensive provenance tracking, similar to a DVCS, helps carmot
naturally express blockchain applications, which otherwise have to rely and specialized
shim layer, such as the Hyperledger Fabric [2]. However, all the aforementioned benefits
would amount to naught if carmot as a programming model cannot be realized in an
asynchronous distributed setting. In Sec. 3 we describe a prototype implementation of
carmot that sits atop Git that can actually run carmot distributed applications seamlessly
with low overheads.

2 An Overview of Programming with Version Controlled Data

2.1 Version Control-Inspired Replication
Fig. 1a shows a simple counter data type in OCaml that admits additions and subtractions.
Suppose Alice wants to use the counter in a distributed setting, meaning she wants to replicate
the counter state across various machines, allow the state to be updated concurrently on each
replica, and let the updates be propagated asynchronously to other (remote) replicas. One
way she could achieve this is by maintaining a log of operations performed at each replica,
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8:4 Version Control Is for Your Data Too

periodically flushing the log to other replicas either on demand or by default. A replica
receiving a remote operation has to apply it on the local state to keep it consistent with the
remote state. Operations may be received and applied at different replicas in different orders,
but since additions and subtractions commute, the resultant counter state would eventually
guaranteed to be the same on all the replicas. Indeed, this is how asynchronous replication
is often implemented in distributed applications [11, 23, 22, 16, 25].

An alternative take on replication would be one where Alice views the counter state as
data being managed by a version control system, and sees various replicas as her collaborators
creating concurrent versions of the counter state. In order to fetch her collaborators’ updates,
she would then be obligated to write a merge function that reconciles concurrent versions of
the counter in the context of their lowest common ancestor (LCA). An example merge scenario
is shown in Fig. 1b, where counter versions (with values) 7 and 4 have evolved concurrently
from the original version 5. Alice could observe that the concurrent versions represent an
addition of 2 and a subtraction of 1 on the ancestor state, and hence may choose to reconcile
them as a single operation performing an addition of 1 on 5, to compute the merged version
as 6. Alice’s merge logic could be generalized as the following merge function:

let merge lca v1 v2 =
lca + (v1 - lca) + (v2 - lca)

Indeed, such merge function is what carmot requires to promote a counter data type to the
status of a distributed data type.

The version control-inspired view of replication really stands out when Alice decides
to add a mult operation to multiply the value of the counter. Perhaps Alice wants to use
the counter to count the account balance in a banking application, and she needs mult to
compute the interest on the balance. She defines mult straightforwardly:

let mult x v = x * v

The mult operation serves Alice well as long as she uses her counters on a single machine.
In a distributed setting however, under the conventional model of replication, Alice may
see unexpected results as mult doesn’t commute with add and sub, thus yielding different
counter states on different machines. In other words, Alice’s counter implementation, which
is still correct in a single machine setting, is no longer correct in a distributed setting. She
is now forced to abandon her recent additions to Counter, and restructure her banking
application to express interest addition in different terms, perhaps using add to specify the
increase in balance. Version control-based replication on the other hand lets Alice continue
using her latest counter implementation (with mult) in a distributed setting as the counter’s
merge semantics already capture the effect of interest computation in terms of an increase
in balance.

2.2 Application-specific Bespoke Merges
We provide further motivation using a more colorful data type - a pixel. We might write a
pixel data type in OCaml as a triple with three fields (Fig. 2a), each standing for a red, blue
and green color components respectively (following the rgb coloring scheme). Pixel supports
a single operation - set_color that sets the color of the pixel to the given rgb values. A
get_color function returns the color triple of the pixel.

Alice originally defined the pixel data type to use in her drawing board application she
calls Canvas. She now wants to add collaborative drawing features to Canvas, and hence is
interested in replicating the state of a pixel. Following the conventional model of replication,
Alice sets up the pixel data type to asynchronously propagate set_color operations across
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module Pixel: sig
type t
val white: t
val set_color : (int*int*int) -> t -> t
val get_color : t -> (int*int*int)

end = struct
type t = {r:int; g:int; b:int}
let white= {r=255; g=255; b=255}
let set_color (x,y,z) _ = {r=x;g=y;b=z}
let get_color {r;g;b} = (r,g,b)

end

(a) A Pixel data type in OCaml.
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(b) Pixel merge visualized.

Figure 2 The Pixel example.

let merge lca ({r=r1;g=g1;b=b1} as v1) ({r=r2;g=g2;b=b2} as v2) =
let mix (x,y) = min (x+y) 255 in
if lca = v1 then v2
else if lca = v2 then v1
else {r=mix(r1 ,r2); g=mix(g1 ,g2); b=mix(b1 ,b2)}

Figure 3 Pixel merge function.

replicas, but quickly discovers that this leads to diverging pixel states across replicas. For
instance, when Bob colors the pixel green on one replica, and Alice colors it red on a different
replica, each’s set_color operation may overwrite the other’s on the remote replica, leading
to diverging states. Unfortunately, unlike the previous example, Alice doesn’t know how to
redefine the set_color operation or restructure the Canvas application to solve the problem
of diverging states. Nor can she find an appropriate consistency model [9, 26] weaker than
linearizability that preempts such anomalous executions even if it comes at some expense.
Alice is therefore stuck.

With version control-based replication, however, Alice starts with the assumption that
her collaborators could create concurrent versions of the pixel state, and specifies the logic to
merge such versions under the context of their LCA version (Fig. 3). She could, for example,
reconcile the concurrent updates to the pixel color by using an additive color mixing scheme
to mix the colors (Fig. 2b). When there are no concurrent updates, i.e., when at least one of
the two versions is same as the ancestor version (thus causally preceding the other version),
the successor version trivially becomes the result of the merge.

2.3 Transactional Semantics
Because version control-based replication lets Alice promote her pixel type to a distributed
data type, she moves ahead with the development of her collaborative drawing app - Canvas.
She defines a canvas type as a two-dimensional composition of pixels:

type canvas = Pixel.t list list

Alice initially emulates free-hand drawing by coloring individual pixels via Pixel.set_color,
but soon realizes that it would be nice to have a few basic shapes, such as a circle or a
rectangle, that she could draw in a single stroke. The functionality requires several pixels
to be colored atomically and in isolation; atomically because Alice’s collaborators should
only see her draw a full circle or a rectangle rather than coloring an assortment of pixels,
and isolation because Alice would like to draw the circle completely before she deals with

SNAPL 2019



8:6 Version Control Is for Your Data Too

conflicting writes from her collaborators2. In other words, the application needs transactional
semantics. With version control-based replication , Alice gets that for free. An atomic action,
such as drawing a basic shape, can be performed on Alice’s local version of canvas as a series
of set_color operations on pixels making up the basic shape. Only the resulting canvas
version is committed and pushed to Alice’s collaborators, effectively enforcing the atomicity
of writes. Furthermore, Alice wouldn’t “pull” her collaborator’s updates while her basic
shape is in progress, thus guaranteeing the isolation of basic shape drawing operation.

2.4 Distributed Ledger
An important benefit of the carmot programming model is its inherent support for proven-
ance. Such support is critical in applications where some form of consensus is required. In
this applications, divergent states found on different replicas can be merged to a convergent
(consensus) value based on application semantics, A particularly noteworthy instance of such
applications is a distributed ledger.

As typically conceived, a distributed ledger is a safety-critical distributed data type
that requires every node to maintain an untamperable ledger of operations that were ever
performed on the shared state it represents. The ledger is colloquially called a blockchain
due to its organization in terms of a sequence of blocks, where each block refers to its
predecessor in the sequence. The untamperability of blocks is ensured by making the blocks
content-addressable, i.e., by making the address of the block depend on its contents (e.g.,
an address could be the block’s SHA1 hash as explained in the following section). Thus,
tampering with a block results in the construction of a new block with a different address that
does not belong to the chain, hence leaving the chain unchanged. Provenance information
available to programmers in a version control-based replication model allows us to build
untamperable distributed ledgers (blockchains) effortlessly, as we shall demonstrate through
an extensive example.

2.4.1 Blockchain Preliminaries
At a high level, a blockchain represents a distributed bank-like application involving multiple
peers, each maintaining a replica of a shared ledger of transactions. The ledger represents
some form of consensus among the peers about the set of valid transactions performed
thus far (since the beginning of time), and their relative order. Note that the distributed
ledger is the only source of truth in a blockchain application; all relevant information (e.g.,
the account balances (in a banking application) is computed by reading the contents of
the ledger. A transaction in a blockchain application transfers something of value between
anonymous users. The thing of value could be a Bitcoin, but we simply refer to it as money
in this discussion. If a transaction makes its way into the ledger, it is said to have been
confirmed, meaning that there is a consensus that the transaction is valid, i.e., it does not
engage in illegitimate behaviors, such as double spending available money. A transaction,
when submitted, is initially unconfirmed, and the application maintains a set of such yet-
unconfirmed transactions, which is also replicated across peers. Simply put, the task of a peer
is to pick a yet-unconfirmed transaction, validate it, and if it is deemed to be valid, confirm
it by adding to the distributed ledger. However, doing so in an uncontrolled fashion in a

2 Alice could, for example, define a merge function for canvas that removes or retains an entire basic shape
in case of a conflicting write. For pixels not part of a basic shape, she could default to the Pixel.merge
function.
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type txn = { timestamp : float;
sender : pub_key ;
receiver : pub_key ;
amount : int}

type block = {txns: txn set;
timestamp : float;
proof:int64}

type t = {txns: txn set;
chain: block list}

Figure 4 Blockchain type definitions in OCaml.

large system of peers (e.g., Bitcoin) leads to the divergence of the ledger state across replicas,
resulting in a disagreement among peers about the contents of the ledger, and the consequent
confirmation of invalid transactions. To prevent this, blockchain applications define a soft
consensus protocol that limits the rate at which transactions can be appended to the ledger,
and specifies how to resolve conflicts in case there are competing versions of the ledger.
Most public blockchains, such as Bitcoin and Ethereum, employ proof-of-work as the rate
limiting mechanism, where a peer has to solve a computationally hard problem to earn the
right to append to the ledger (and a financial reward for mining the solution). The solution
to this hard problem is also appended to the ledger to let other peers verify the solution.
Unlike computing proof-of-work, verification is expected to be easy, i.e., the computational
problem should ideally be NP-complete. In practice, various kinds of problems are used,
whose description is out of scope for this paper. The problem we choose for this example is
explained below. To ameliorate transaction confirmation latency, a peer which earns the right
to append to the ledger is allowed to append a block of transactions, confirming them all in a
single action. The new block links to the previous block, thus making the ledger a blockchain.

Note that proof-of-work is only a rate limiting mechanism; it makes concurrent appends
to the ledger unlikely, but not impossible. Occasionally, when two peers simultaneously
compute a proof-of-work, they both append their respective blocks to the ledger, resulting
in a fork. Peers aware of only one of the two forked versions continue to mine and append
blocks to their respective versions. At some point, if a peer becomes aware of two competing
versions, it chooses one version over the other based on a predefined set of heuristics. For
instance, if there are two competing chains of Bitcoin ledgers, then the longer chain is chosen
as it represents more work confirming large number of transactions than the shorter one.
The transactions of the shorter chain that do not belong to the longer chain are re-added to
the pool of unconfirmed transactions and need to be confirmed again by a mining peer3.

2.4.2 A Blockchain Application in OCaml
Having introduced a blockchain’s conceptual underpinnings, we now describe how we can
support its necessary functionality in a version control-based programming model. Fig. 4
shows the type definitions needed to build a simple blockchain application in OCaml. A
transaction is simply a record documenting the transfer of a given amount of money from
a sender to a receiver, both identified only by their public key. As mentioned earlier, a
blockchain ledger is a chain of blocks, where each block consists of a set of transactions being
confirmed, and a proof-of-work justifying the block’s presence in the chain. Application
state is defined via type t, which is a record containing a set txns of as-of-yet-unconfirmed
transactions, and a list of blocks named chain, which is the blockchain.

3 It is thus possible for a confirmed transaction to become unconfirmed again. Bitcoin therefore defines
number of confirmations of a transaction based on how many blocks deep the transaction is inside the
ledger. The greater the number of confirmations, the deeper the transaction sits inside the ledger, and
the less likely it is to become unconfirmed again.
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let mine_block my_key t =
let valid_txns =

filter_valid_txns t.txns in
let last_block = hd t.chain in
let last_proof =

last_block .proof in
let proof = proof_of_work

last_proof in
let ts = gettimeofday () in
let reward_txn =

{ timestamp =ts;
sender = genesis_key ;
receiver = my_key ;
amount =25;} in

let block =
{txns=Set.add reward_txn

valid_txns ;
timestamp =ts;
proof=proof} in

let txns ’ = Set.diff t.txns
valid_txns in

let chain ’ = block ::t.chain in
{txns=txns ’; chain=chain ’}

let valid_txn chain txn = ...

let filter_valid_txns =
Set. filter

( valid_txn t.chain)

let valid_proof last_proof proof =
let str1 = Int64. to_string

last_proof in
let str2 = Int64. to_string

proof in
let str = str1^str2 in
let hex = SHA1. to_hex @@

SHA1. digest_string str in
String .sub hex 0 3 = "000"

let proof_of_work last_proof =
let rec loop_iter i =

if i >= Int64. max_int
then failwith "No proof!"
else

if valid_proof last_proof i
then i
else loop_iter (i + 1) in

loop_iter 0

Figure 5 mine_block - a function that creates a new block, mines a proof-of-work, and adds it
to the chain. Other relevant functions are also shown.

Operations can be defined that map one application state to another. The new_txn
operation, for instance, creates a new transaction with the given user keys and the amount,
and adds it to the pool of unconfirmed transactions. Its type is as shown below:

val new_txn : pub_key -> pub_key -> int -> t -> t

The second, and most important operation, is mine_block that composes a new block
using the available pool of unconfirmed transactions, mines a proof-of-work, and adds the
block to the chain. Fig. 5 shows the (abridged) code. The function first filters the set of
valid transactions from the available pool of unconfirmed transactions using the function
filter_valid_txns (shown on the right), which in turn uses valid_txn predicate of type
shown below (definition elided in Fig. 5):

val valid_txn : block list -> txn -> bool

Given a blockchain ledger and a transaction, the function returns true if and only if the
transaction is legitimate under the ledger, i.e., if and only if the account balance of the
sender, computed from the ledger, is enough to carry out the transaction. Once the set of
valid transactions is computed, mine_block proceeds to confirm them by computing the
proof-of-work necessary to create a new block. In this example, we define proof-of-work as a
solution to pi+1 in the following equation, where pi denotes the proof-of-work of the previous
block (last_block.proof in Fig. 5), and · denotes the (string) concatenation operation:

sha1(pi · pi+1) < 2148

The function valid_proof implements the above check in a slightly different form, given
a pi+1 (proof) and pi (last_proof). Instead of checking if the hash is less than 2148, it
checks if the leading 3 hex digits of the 40-digit SHA1 hash are zero. Given that it is in
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let merge old v1 v2 =
let oldc = old.chain in
let v1c = v1.chain in
let v2c = v2.chain in
let x = valid_extension

oldc v1c in
let y = valid_extension

oldc v2c in
match x,y with
| None , Some new2 -> v2
| Some _, None -> v1
| Some _, Some _

when v1=v2 -> v1
| Some _, Some new2

when len v1c > len v2c ->
add (union new2 v2.txns) ~to:v1

| Some new1 , Some _
when len v1c < len v2c ->
add (union new1 v1.txns) ~to:v2

| Some new1 , Some new2 ->
let add_prf a b = a+b.proof in
let prf_sum1 =

fold_left add_prf 0 new1 in
let prf_sum2 =

fold_left add_prf 0 new2 in
if prf_sum1 > prf_sum2
then add (union new2 v2.txns)

~to:v1
else add (union new1 v1.txns)

~to:v1
| None , None -> error ()

let valid_extension oldc newc =
try

let newbs = get_prefix newc
~ suffix :oldc in

let _ = fold_right
(fun b chain ->

if valid_block chain b
then b:: chain
else raise Invalid_arg )

newbs oldc in
Some newbs

with Invalid_arg _ -> None

let rec get_prefix v ~ suffix :s =
match v with
| v when v = s -> []
| x::xs when xs = s -> [x]
| x::xs -> x::( get_prefix xs s)
| [] -> raise ( Invalid_arg )

let add (txns:txn set) ~to:t =
Set.fold

(fun txn t’ ->
let chn = t’. chain
if confirmed_txn chn txn
then t’
else {t’ with txns=

Set.add txn t’. txns })
txns t

let confirmed_txn chain txn = ...

Figure 6 merge function for a blockchain. Other relevant functions also shown.

general impossible to invert a SHA1 hash in polynomial time, we solve the above equation by
painstakingly iterating through all possible values of pi+1, which in this case is every 64-bit
integer, until we find the solution. The corresponding logic is implemented by the function
proof_of_work.

Once the proof-of-work is computed, mine_block has everything it needs to compose a
new block and add it to the chain. To incentivize mining, blockchain protocols allow mining
peers to add a special transaction rewarding themselves a fixed pre-determined value. The
reward_txn in Fig. 5 denotes such a transaction, which uses a special “genesis user” as the
source of such rewards. The transaction is added to the set of valid transactions, following
which the new block is composed and added to the chain. The transactions that could not
be validated (txns’) are left in the pool of unconfirmed transactions.

Beyond new_txn and mine_block, a third init operation need also be defined to initialize
the blockchain with a special “genesis block” that bootstraps the ledger with initial money
(subsequent to genesis, the only way to add money to the system is through mining rewards).
We elide discussion of init to focus on other aspects relevant to this paper.

2.4.3 Merge function
Blockchain applications are, by definition, distributed with the state of the ledger replicated
across all the participating peers. To make our blockchain application distributed under a
version control-based replication model, we provide a three-way merge function that merges
the competing versions of blockchains given their provenance information in form of their
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8:10 Version Control Is for Your Data Too

lowest common ancestor (LCA) version. Fig. 6 shows the merge function. The merge strategy
is based on the heuristic employed in Bitcoin to pick the longest valid chain among the
competing chains. The merge function first checks that the two competing chains are indeed
valid chains through the function valid_extension. The function ensures that the old chain
(the LCA) is a suffix of the competing chain newc, and that each block in the newly added
prefix is valid. Validity of a block is checked through the predicate valid_block (not shown),
which in turn checks the valid_txn predicate for each transaction in the block. The valid
prefix is then returned. If the chain newc is not a valid extension of the LCA, then None is
returned. Note that valid_prefix uses the get_prefix function on lists (definition shown),
which compares the lists for structural equality (e.g., v = s). While determining structural
equality is in general expensive, it can be resolved in constant time for versions obtained
through carmot; we elaborate on this point in Sec. 3.

A notable aspect of valid_extension is that it uses provenance information available as
the LCA version to determine if the chain has been tampered with. If the new version has
tampered with the chain, for example, by sliding a new transaction in to an older block, then
the LCA version oldc is no longer the suffix of the new version, leading valid_extension
to return None.

In the merge function, if valid_extension returns None for one of the two chains, then
the other (valid) chain is returned as the result of the merge. If both chains are valid but
are not equal, then the longer one is picked. In such case, the transactions newly confirmed
in the shorted chain are no longer considered confirmed, and need to be re-added to the
unconfirmed pool (along with the transactions in the unconfirmed pool accompanying the
shorter chain). This is done via the add function (shown) that adds the new transactions
from the shorter chain and the corresponding unconfirmed pool, that are not confirmed by
the longer chain, to the unconfirmed pool accompanying the longer chain. The predicate
confirmed_txn (definition elided) returns true if and only if the transaction txn is listed
in the chain chain. If both the competing chains are of equal length, then merge picks the
chain whose extension w.r.t oldc was “harder” to compute, where hardness is assumed to be
proportional to the value of the proof. Finally, if both chains are invalid, then merge throws
an error, but this case never occurs in practice as one the two chains is a local chain which is
guaranteed to be valid by mine_block.

We have thus far presented various examples of how version control-based replication lets
one build non-trivial distributed applications by defining merge semantics in the convenient
form of a three-way merge function. To make such applications operational, however, we
need a programming interface that lets developers take advantage of the version control
model to define and compose distributed computations around applications. carmot is such
a programming model, whose details are presented in the next section.

3 Realizing The CARMOT Programming Model

We have realized the carmot programming model on top a basic Git programming abstraction
in OCaml [21]. In the following, we discuss the salient aspects of carmot’s implementation,
describe the API it exposes, and demonstrate how one can use carmot to orchestrate
complex distributed computations.

3.1 Content Addressability & Sharing
One of the key aspects of carmot is its reliance on a content-addressable file system/memory
to store arbitrary objects. We call it the carmot store. Like any other store, carmot lets
one write an object, or a collection of linked objects to the store. However, unlike other stores,
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1 i i+1 n

write(i)

1 i i+1 n

(a) List.

insert

(b) Tree.

Figure 7 Linked data structures composed of content-addressable objects.

the address of an object in carmot store is its own SHA1 hash, which means mutating the
object results in a new (version of) object being written to the store at a different address.
This property lets carmot store multiple versions of linked data structures succinctly by
sharing common objects, while simultaneously highlighting the diff between such versions.
Fig. 7 illustrates.

Fig. 7a shows a linked list structure laid out on a content-addressable store. Each node is
an object that stores some data and a link to the next object in the list, which is simply the
latter’s hash. For instance, a list object (call it A) could like the following:

{data = 24;
next = "2 aae6c35c94fcfb415dbe95f408b9ce91ee846ed "}

The value “2aa. . .6ed” is the SHA1 hash of the next object (call it B) in the list. If, for
some reason, B’s data is mutated, its hash value changes, making it necessary to update
A’s next field, which changing A’s hash, and the update cascades. This scenario is depicted
in Fig. 7a, where updating the i’th node in the list effectively creates a new version of the
list with new objects for nodes 1 through i. The two versions of the list however share the
common suffix containing nodes i + 1 through n. The diff and sharing between the two
versions is thus clearly highlighted in this representation. Fig. 7b describes similar scenario
for a tree structure, where inserting an element creates a new version of the tree that only
slightly differs from the previous version in the store (The diff is highlighted). Such succinct
representation of diff, and its easy computation, lets carmot efficiently support replicated
data structures over a network. Moreover, content addressability lets carmot support
constant-time structural equality checks by simply comparing hashes instead of iterating
through data structures.

Readers familiar with functional programming may find Fig. 7 reminiscent of the persist-
ence and sharing aspects of functional data structures. Indeed, hash-linked data structures
(as described above) and functional data structures are similar in that respect. However, one
notable difference is that the sharing in hash-linked data structures is based on the primitive
notion of common content, rather than data dependence, or other similar programmatic
notions. Thus, one could create OCaml lists [3;2;1] and [4;2;1] independent of one
another, whereas they share nothing on the OCaml heap, they nonetheless share the objects
corresponding to the common suffix [2;1] on a content-addressable store. This property is
crucially relied on by carmot to support distributed applications composed of high-level
(OCaml) data structures, as described below.

3.2 The CARMOT API
carmot hides the full complexity of a version control system behind a monadic abstraction
called a Versioned State (VST), and exposes just the right level of detail for programmers
to reap the benefits of version control-based replication. The API comprising the carmot
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module type VST = sig
type (’a, ’b) t
val return : ’b -> (’a, ’b) t
val bind : (’a, ’b) t -> (’b -> (’a, ’c) t) -> (’a, ’c) t
val get_current_version : unit -> (’a, ’a) t
val with_init_version_do : ’a -> (’a, ’b) t -> ’b
val with_forked_version_do : string -> (’a,’b) t -> ’b
val fork_version : ( string -> (’a,’b) t) -> (’a, string ) t
val sync_next_version : ’a -> string list -> (’a, ’a) t

end

Figure 8 The carmot API.

programming model is shown in Fig. 8. The VST monad couches a versioned state of type
’a. For instance, ’a can be a Counter.t, a Pixel.t, or even a composite data type such
as Counter.t list. The representation of these types in the underlying carmot store is
as described in the previous section, and not exposed by the VST interface. Instead the
interface orchestrates computations around the versioned state, translating between the
high-level and low-level representations as needed. Computations on the monad read the
latest version, commit a new version, or pull and merge concurrent versions. The type
(’a, ’b) t represents a monadic computation on the version state ’a that returns a result
of type ’b. Operation get_current_version returns the high-level representation of the
latest version of the state behind the monad. A programmer can initiate a computation
against an explicitly provided initial version of the state using with_init_version_do API.
Alternatively, computation can be run against an initial version forked from a remote using
with_forked_version_do API. The string argument to the API is the URL of the remote.
To fork off a new version of the state and run a (local) concurrent computation against
it, VST provides the fork_version API. The argument to the function is the computation
to run concurrently. The computation can expect the URL of the parent to be given as
a string argument. The return value of fork_version is also a URL string that identifies
the fork in the same terms as a remote. The underlying thread library is LWT [27]. Lastly,
sync_next_version API (simply called sync) does two things. First, it commits the given
’a argument as the new local version. Next, it pulls the latest versions from the given list of
remotes (string list), and successively merges them to the latest local version, creating a
later version each time. The latest version at the end of the merge sequence is returned. Note
that if some of the remotes are unreachable during the operation, they are merely skipped.
Consequently, sync is only guaranteed to sync with a subset of replicas. Functions return
and bind are the usual monadic glue. Following the convention, we use the infix operator
�= to denote bind.

3.3 CARMOT Examples
To understand how the carmot API helps orchestrate distributed computations, let us
reconsider the Canvas drawing application from the earlier section. Say Alice finished building
Canvas, and would now like to use it to collaborate with her friends Bob and Cheryl. She
could do that conveniently via the carmot API. A sample drawing session between the
three collaborators is shown in Fig. 10 A possible execution of the session is visualized in
Fig. 9. Assume that Alice starts her session on a 5 × 5 blank canvas, as shown below:

with_init_version_do ( Canvas . new_blank 5 5) alice_f
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Figure 9 Collaborative drawing session visualized.

Bob and Cheryl, on the other hand, start their sessions with a version forked from Alice’s
initial version as shown below (Bob’s shown; Cheryl’s is similar):

with_forked_version_do "alice" bob_f

Assume Canvas.new_blank returns a blank canvas of a given dimension, and the function
Canvas.draw_line draws a line between the given pair of points (and returns the new
canvas). Alice starts by reading the current version of the canvas, which is blank. Alice
draws a red horizontal line from (0, 0) (top-left) to (4, 0) (top-right) using Canvas.draw_line.
Meanwhile, Bob draws a green vertical line from (0, 0) to (0, 4), and Cheryl draws a similar
line from (4, 0) to (4, 4). All three of them call sync to commit their latest versions (C ′

0).
While any partial ordering of concurrent syncs is valid, we consider a linear order where
Cheryl’s sync happens first, followed by Bob’s and then Alice’s. Cheryl’s sync does not
find any concurrent versions, hence installs the proposed version (C ′

0) as the next version at
Cheryl’s end. Bob’s sync finds Cheryl’s C ′

0 as a concurrent version, and merges it with its
proposal to produce the next version C1. Next, Alice’s sync finds Cheryl’s C ′

0 and Bob’s C1
as concurrent versions, and merges them successively with Alice’s latest version creating new
versions V1 and C1. The latest version C1 is returned. Next, Alice draws a red horizontal
line from (0, 4) to (4, 4), and commits the version C ′

1 via sync. Since there are no concurrent
versions, C ′

1 becomes the latest version on Alice’s end. The subsequent sync operations from
Bob and Cheryl simply install Alice’s C ′

1 as the latest version.
Computations at Blockchain peers can be similarly defined using the carmot API. The

peer that initiates the blockchain with a genesis block (using the init function of blockchain)
also starts the computation using carmot’s with_init_version_do (let init_user_url
stand for the initializing peer’s public key):

with_init_version_do
{txns=Set.empty; chain=init init_user_pkey }
( peer_f init_user_pkey )

Other peers start their computations by forking off the init user (let peer_key denote the
peer’s public key):

with_forked_version_do init_user_url ( peer_f peer_key )
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let alice_f : ( Canvas .t,unit) VST.t =
get_current_version () >>= fun c0 ->
let c0 ’ = Canvas . draw_line c0

{x=0;y=0} {x=4;y=0} in
sync_next_version c0 ’

["bob"; " cheryl "] >>= fun c1 ->
let c1 ’ = Canvas . draw_line c1

{x=0;y=4} {x=4;y=4} in
sync_next_version c1 ’

["bob"; " cheryl "] >>= fun c2 ->
return ()

let bob_f : ( Canvas .t,unit) VST.t =
get_current_version () >>= fun c0 ->
let c0 ’ = Canvas . draw_line c0

{x=0;y=0} {x=0;y=4} in
sync_next_version c0 ’

["alice"; " cheryl "] >>= fun c1 ->
sync_next_version c1

["alice"; " cheryl "] >>= fun c2 ->
return ()

let cheryl_f : ( Canvas .t,unit) VST.t =
get_current_version () >>= fun c0 ->
let c0 ’ = Canvas . draw_line c0

{x=4;y=0} {x=4;y=0} in
sync_next_version c0 ’

["alice"; "bob"] >>= fun c1 ->
sync_next_version c1

["alice"; "bob"] >>= fun c2 ->
return ()

Figure 10 A collaborative drawing session between Alice, Bob, and Cheryl via the Canvas app.

Once initiated, the computation that runs on each peer is the same, and is defined by the
peer_f function. Each peer runs in an eternal loop, concurrently serving new transactions
and mining blocks, and periodically synchronizing with other (available) peers. operation.
A illustrative definition of peer_f is shown in Fig. 11. The peer initially forks two threads
- one for mining new blocks (miner_f) and other to serve incoming transaction requests
(server_f). Next, it enters a loop where it first synchronizes with the local miner and
server threads, and then synchronizes with other peers in the blockchain network, thereby
acting as a mediator between its miner and server, and also between the local threads and
remote peers. The loop repeats every 5ms. The lift_lwt API, which was not listed in
Fig. 8, is a helper function that lets an LWT computation [27] be treated as a carmot
computation. The mining thread (miner_f) repeatedly mines a new block and synchronizes
with the parent. Similarly, the server thread (server_f) repeatedly reads a new transaction
request (blocking until one is available), creates and adds a new transaction to the pool of
unconfirmed transactions, and subsequently synchronizes with the parent. This computation
is repeated on every peer, and all such peers together makeup the blockchain network.

4 Related Work

Our idea of versioning state bears resemblance to Concurrent Revisions [7], a programming
abstraction that provides deterministic concurrent execution. The idea of using revisions as a
means to programming eventually consistent distributed systems was further developed in [8].
The carmot programming model, however, differs from a concurrent revisions model because
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let rec miner_f peer_key parent_url =
get_current_version () >>= fun t ->
let t’ = mine_block peer_key t in
sync_next_version t’ [ parent_url ] >>= fun _ ->
miner_f peer_key parent_url

let rec server_f parent_url =
get_current_version () >>= fun t ->
get_txn_request () >>= fun req ->
let t’ = new_txn req.s_key req.r_key req.amt t in
sync_next_version t’ [ parent_url ] >>= fun _ ->
server_f parent_url

let peer_f peer_key =
fork_version ( miner_f peer_key ) >>= fun miner_url ->
fork_version server_f >>= fun server_url ->
let rec loop () =

get_current_version () -> fun t ->
sync_next_version t [ miner_url ; server_url ] -> fun t’ ->
sync_next_version t’ peer_urls
lift_lwt ( Lwt_unix .sleep 0.005) >>= fun _ ->
loop () in

loop ()

Figure 11 Computation at a blockchain peer expressed using carmot API.

it imposes no distinction between servers, machines that hold global state, and clients, devices
that operate on local, potentially stale, data. Any computation executing in a distributed
environment is free to fork new versions, and synchronize against other replicated state, i.e.,
the operation is fully decentralized, which lets carmot express unconventional applications
such as Blockchains. Just as significantly, carmot allows applications to customize join
semantics with programmable merge operations. Indeed, the integration of a version-based
mechanism within OCaml allows a degree of type safety, composability, and profitable use of
polymorphism not available in related systems.

[10] also presents an operational model of a replicated data store that is based on the
abstract system model presented in [9]; their design is similar to the model described
in [25]. In both approaches, coordination among replicas involves transmitting operations
on replicated objects that are performed locally on each replica. In contrast, carmot
allows programmers to use familiar state-based and functional abstractions when developing
distributed applications.

Modern distributed systems are often equipped with only parsimonious data models (e.g.,
key-value model) and poorly understood low-level consistency guarantees that complicate
program reasoning, and make it hard to enforce application integrity. Some authors [4] have
demonstrated that it is possible to bolt on high-level consistency guarantees (e.g., causal
consistency) [20, 6] as a shim layer service over existing stores without losing availability.
Version control-based replication model in carmot is causally consistent by construction,
and does not require any additional reasoning about consistency on behalf of programmers.

A number of verification techniques, programming abstractions, and tools have been
proposed to reason about program behavior in a geo-replicated weakly consistent environment.
These techniques treat replicated storage as a black box with a fixed pre-defined consistency
model [3, 1, 14, 18, 19, 5]. On the other hand, compositional proof techniques and mechanized
verification frameworks have been developed to rigorously reason about various components
of a distributed data store [28, 17]. carmot seeks to provide a rich high-level programming
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model, built on rigorous foundations, that can facilitate program reasoning and verification.
An important by-product of the programming model is that it does not require algorithmic
restructuring to transplant a sequential or concurrent program to a distributed, replicated
setting; the only additional burden imposed on the developer is the need to provide a merge
operator, a function that can be often easily written for many common data types.

carmot shares some resemblance to conflict-free replicated data types (CRDT) [24].
CRDTs define abstract data types such as counters, sets, etc., with commutative operations
such that the state of the data type always converges. Unlike CRDTs, the operations on data
types in carmot need not commute and the reconciliation protocol is defined by user-defined
merge functions. carmot uses 3-way merges using the lowest common ancestor, which is
critical for all of our user-defined merges. However, CRDTs do not have the benefit of lowest
common ancestor for merges and are only presented with the two concurrent versions. If a
3-way merge is desired, then the causal history has to be explicitly encoded in the data type.
As a result, constructing even simple data types like counters are more complicated using
CRDTs [24] compared to their implementation in carmot.

carmot uses 3-way merges using the lowest common ancestor, which is critical for all of
our user-defined merges. However, CRDTs do not have the benefit of lowest common ancestor
for merges and are only presented with the two concurrent versions. If a 3-way merge is
desired, then the causal history has to be explicitly encoded in the data type. As a result,
constructing even simple data types like counters are more complicated using CRDTs [24]
compared to their implementation in carmot. CRDTs also tend to be implemented directly
over the network protocols. Hence, low-level concerns such as duplicate delivery, lost messages,
message reordering are explicitly handled in the data type definition. Such low-level details
are abstracted away by carmot, which relies on the version control backend to implement a
high-level branch-consistent distributed store that handles fault tolerance and network errors
behind the screens.
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