
Scalable Lightweight Task Management
for MIMD Processors

Daniel G. Waddington, Chen Tian
Computer Science Lab

Samsung R&D Center, San Jose, CA
{d.waddington, tianc}@samsung.com

KC Sivaramakrishnan
Computer Science Department

Purdue University
chandras@cs.purdue.edu

ABSTRACT
Multiple Instruction Multiple Data (MIMD) processors are
becoming increasingly viable for realizing enhanced perfor-
mance in embedded applications, particularly for compute
intensive applications that do not lend themselves to GPU-
like (SIMD) processors. Like their SIMD counterparts, MIMD
architectures demand careful consideration of software archi-
tecture and design. In this paper, we focus on lightweight
task management that is typical of many parallel program-
ming solutions such as OpenMP, Cilk, Intel TBB.
As a representative MIMD embedded processor, we com-

pare the performance and scalability of multiple designs
within the context of a 64-core TILE processor from Tilera
Corp. We present experimental data collected from the mea-
surement of performance for user-level cooperative schedul-
ing that we are developing to support parallel programming
extensions to C/C++. We analyze the performance of well-
understood scheduling schemes, such as multi-queue work-
stealing, as well our own designs that are specifically tai-
lored to the underlying hardware and are also designed to
adapt to changing application requirements that often occur
at runtime.

1. INTRODUCTION
Multiple Instruction Multiple Data (MIMD) designs form

the basis of most non-GPU multicore processors. A typi-
cal MIMD processor is made up of multiple CPU cores that
are arranged on-chip and interconnected using a high-speed
switched network. It may or may not be fully cache coher-
ent. The interconnect serves both core-to-core communica-
tions as well as data transfers between memory controllers
and I/O systems. This hardware design is aimed at sus-
tainable performance as the number of cores scales to tens,
hundreds and even thousands.
This type of architecture requires careful consideration of

software design and implementation with respect to parallel
execution. The conventional approach to building concur-
rent software is through the use of multithreaded program-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

ming APIs such as those found in POSIX-based operating
systems. Nevertheless, multithreaded programming is rela-
tively heavyweight and does not scale well for large numbers
of tasks as complexity becomes difficult to manage. One of
the key reasons for this is that multithreaded programming
APIs provide a very low level of abstraction and put the onus
on the developer to ensure that they are used correctly; a
task that becomes inherently difficult in the manycore arena.

An alternative approach to concurrent software develop-
ment is to use language-level solutions that explicitly pro-
vide support for concurrency. Example languages and exten-
sions include X10 [6], OpenMP [13], Intel’s Cilk and Thread
Building Blocks (TBB) [14].

The focus of this paper is the design and evaluation of
an adaptive task management scheme that reconfigures the
underlying task management queuing scheme in response to
changes in the “pressure” of queues detected through run-
time monitoring. We present experimental results and a
quantitative evaluation of different schemes within the con-
text of the Tilera TILEPro64 MIMD processor.

2. BACKGROUND

2.1 SNAPPLE Language and Runtime
The work discussed in this paper is being carried out

within a broader effort to develop language, run-time and
operating system capabilities for next-generation MIMDmany-
core processors.

As part of our solution, we are currently developing a
C++-based parallel language, compiler and runtime called
SNAPPLE, that provides specific capabilities for real-time
processing and QoS (Quality-of-Service) management. SNAP-
PLE also provides language constructs (augmenting C++)
for lightweight task management and safe data sharing. It
is implemented using the LLNL ROSE compiler [15] as a
source-to-source transformation. SNAPPLE code is com-
piled to C++, which is in turn compiled to the platform
using GNU gcc. Currently SNAPPLE is only supported
in cache-coherent SMP environments. We are exploring the
extension of SNAPPLE technology to non-coherent environ-
ments such as Intel’s Single-chip Cloud Computer (SCC). A
full description of the SNAPPLE language is outside of the
scope of this paper.

Lightweight tasks provide the fundamental means to cre-
ate concurrency in a SNAPPLE program. The basic con-
struct for lightweight tasks is the async–finish block, in-
spired by the X10 programming language [6]. This construct
provides a mechanism for task creation and synchronization,

as well as a scoping mechanism for data sharing/copying.
The following excerpt illustrates the use of these constructs
in a parallel binary tree search:

void search(Tree* node , int v) {
exit_if_so;
if (node ->val == v) {

result = node; /* shared type variable */
terminate;

}
finish {

async { search (node ->left , v); }
async { search (node ->right , v); }

}
}

The async keyword defines a new lightweight task that
can safely execute in parallel with the calling task, as well
as with other async-created tasks. The finish construct de-
fines an implicit barrier whereby the code that follows the
finish block is only executed after all of the tasks spawned
within the finish block run to completion. Lightweight tasks
are transparently mapped to different system threads by the
SNAPPLE runtime. The SNAPPLE compiler builds the
necessary code to create lightweight task objects and sched-
ule them accordingly. System threads, that are bound to
specific cores, service the tasks.
In the current implementation, new stack space is allo-

cated for each newly created lightweight task. To avoid
explosion of memory usage in deeply recursive programs,
SNAPPLE uses a dynamic thresholding technique that lim-
its the memory footprint by resorting to serial execution
(i.e., no tasks are created) when a given memory threshold
is reached.
SNAPPLE also provides primitives for task cancellation.

Exit points designated through exit if so, define a point at
which a task checks (polls) for an exit notification, whilst
terminate notifies all tasks spawned within the same finish
block scope to terminate at the next exit point. Exit noti-
fications are also propagated down into nested async-finish
blocks.
In order to avoid concurrency bugs such as data races

and deadlocks, inter-task data sharing is strictly enforced
through the use of shared memory types, which provide monitor-
like access protection. All access to shared data is implicitly
protected. Multiple shared data instances can be manipu-
lated with atomic sections, which automatically enforce mu-
tual exclusion by implicitly acquiring the necessary locks be-
fore entering the atomic region and releasing on exit. Locks
taken by atomic scetions are automatically sorted in order
to prevent deadlock.
One of the key design features of SNAPPLE and its run-

time is the ability to flexibly change the underlying task
management scheme. Specifically, different queue arrange-
ments and scheduling policies can be easily “plugged in” de-
pending on specific application and platform requirements.
This capability has allowed us to easily explore design trade-
offs with respect to different task management schemes.

2.2 TILE64 MIMD Processor Architecture
We use TILEPro64 64-core MIMD processor in this work.

It is a cost effective platform that delivers high performance
as well as power efficiency. This processor is a 64-way MIMD
design, arranged in an 8x8 grid (see Figure 1). Each core is
32bit VLIW, operating at 866MHz in around a 0.5W power
envelope. The total theoretical maximum throughput is 443
billion operations per second. The TILE processor provides

a user-programmable switched interconnect, as well as fully
cache coherent shared memory. Four separate memory con-
trollers manage a total of 8GB of off-chip DDR2 memory.

The TILEPro64 processor integrates four 64-bit on-chip
DDR2 memory controllers; each controls a separate DRAM
device. Virtual-to-physical address space mappings are con-
figured by the hypervisor. In general, the operating system
attempts to balance accesses by distributing physical mem-
ory allocations across the controllers. The default policy is
to allocate from the controller connected to the respective
quadrant.

The TILEPro64 is a fully cache coherent architecture. Co-
herency is maintain via a dedicated interconnect channel
that supports communications between each tile’s cache en-
gine. Cache lines are “homed” on a specific tile. This is by
default the tile that allocated the page of memory. How-
ever, the TILEPro64 also supports a feature known as hash-
for-home that uses a hash function on the physical address
to govern home tile selection, as well as memory striping
whereby each single page is spread across all four of the
memory controllers. Tiles that have copies of cache lines,
but are not the respective home tiles, are known as “shar-
ing” tiles.

When a tile T accesses data in a cache lineX it first checks
its own local L1 and L2 caches. On a cache miss, or if the
copy has been invalidated, the tile then makes a request to
the home tile, H, for the cache line. Tile H will optionally
load the cache line from main memory and then send the
complete line back to the requesting tile T . Similarly for
writes, the tile T will send write requests to the home tile
H and wait for write acknowledgment once other copies of
the line in sharing tiles are invalidated.

Figure 1: TILEPro64 Architecture

In our prototype architecture, each core runs a single sys-
tem thread, which services lightweight task contexts that
are queued in the system. Each system thread is pinned
down to a specific core by setting the thread’s affinity mask.
Each core is explicitly reserved for the SNAPPLE runtime
by configuring the processor’s hypervisor accordingly. These
reserved cores are not visible to the Linux OS and are not
used to service kernel tasks or interrupts.

2.3 Existing Task Management Schemes
There are a number of ways in which task queues can

be distributed and/or shared across multiple cores/threads.
Common topologies are shown in Figure 2. The most straight-
forward of these to implement in a shared memory MIMD
environment is a single global queue that is shared across
multiple threads running on separate cores (refer to Figure

2a). This scheme has the advantage that there is no over-
head associated with the migration of tasks. In low-load
situations (where load pertains to tasks creation/servicing
volume) this approach works well and minimizes the “cost
of concurrency”. Nevertheless, in heavy load or large num-
bers of cores, the centralized queue can become a point of
contention; intense producer/consumer pressure on a single
queue can result in significant performance degradation.

core core core

(a.) shared global queue

core core core

distribution

(b.) distributed queues

core core core core

distribution

(c) hierarchical queues.

Figure 2: Queuing Topologies

Historically, more attention has been given to distributed
queuing schemes whereby each thread in the system has a
local queue which it services (refer to Figure 2b). Tasks are
load balanced across the queues by task migration either by
being pushed by the task creator (work-sharing) or pulled
by the task consumer (work-stealing). Distributed queuing
schemes help to alleviate pressure on the queues in high-
load situations by reducing producer/consumer contention.
However, overhead is incurred through additional operations
required for load balancing and task migration. They do
lend themselves to distributed memory systems such as those
found in large HPC clusters. It is for this reason that we
believe prior work has focused more on distributed queuing
schemes. From the context of embedded systems and poten-
tially low-load applications they may not be the best choice
for optimal performance.
Queues can also be arranged hierarchically (refer to Fig-

ure 2c) so that stealing is spatially localized among groups
of queues before coarser-grained stealing across higher-level
queues.

3. TASK MANAGEMENT OPTIMIZATION
This section describes our new task management archi-

tectures that are explicitly designed to take advantage of
Tilera-like MIMD processor designs.

3.1 Tasks and Queues
The SNAPPLE runtime manages three kinds of tasks;

asynchronous (A), continuation (C), and yields (Y). A-type
tasks are created for each async construct. C-type tasks are
created when a thread reaches the closing scope of a fin-
ish block and detects that nested asynchronous tasks still
need to be serviced. Finally, Y-type tasks are created in
response to yield operations. We manage these in separate
queues (A,C,Y) to help reduce stalling due to dependen-
cies and also to prioritize between yielded and non-yielded
tasks. A-queues are serviced at the highest priority. Contin-
uations are not placed on the C-queue until they are ready
to execute, that is, all respective asynchronous tasks have
completed.

3.2 Zone Queue Architecture

Controller 0 Controller 1

Controller 3 Controller 2

Zone 0
Queue

Zone 3
Queue

Zone 4
Queue

Zone 1
Queue

work
stealing

Zone 0
Queues

A C Y

Zone 1
Queues

A C Y

Zone 2
Queues

A C Y

Zone 3
Queues

A C Y

(a) Topology (b) Stealing

Figure 3: Memory Zone Queueing

The zone queue scheme arranges task queues according
to memory controller topology and maintains exactly one
set of queues for each memory controller and tile quadrant
(see Figure 3a). Tasks created by a thread executing on a
given tile are placed on the A, C or Y queue for the zone in
which the tile resides. In servicing tasks, a tile first checks
the A queue belonging to the local-zone. If the queue is
empty, then A queues in adjacent zones are checked using a
nearest-neighbor first policy. For example, a tile in zone 0
will first check zone 1 and 3, and then finally zone 2 (refer
to Figure 3b). If all of the A queues are empty, then the
thread will attempt to service C and Y queues respectively.
This scheme also requires that memory allocated by a task
is taken from the nearest memory controller for the quad-
rant. If the local memory banks are fully allocated, then an
adjacent bank can be used.

The zone-queue architecture brings performance benefits
to heavily loaded and data intensive applications (experi-
mental results are given later in Section 4). This approach
localizes cache and memory traffic (including coherency traf-
fic) by reducing the need to communicate across the tile ar-
ray particularly with respect to cache misses passing all the
way through to main memory. Furthermore, it helps to im-
prove cache performance by localizing consumer/producers
and helping to increase the likelihood of cache hits for task
data structures. Task management overhead is also reduced
by limiting the average migration distance of tasks between
cores.

The concept of zone-queuing can be easily extended to
support hierarchical queues that are structured according
to core, memory and cache topologies. For example, the
scheme in Figure 3 could be extended to support hierarchical
queues for 1, 2x2, and 4x4 zone topologies.

3.3 Adaptive Queuing Scheme
As previously discussed, queuing architectures range from

a single coarse-grained shared queue, with no need for work-
stealing, to fine-grained per-core queues coupled with work-
stealing. As discussed previously in Section 2.3, heavy task
loads are better suited to schemes that support multiple
queues and thus relieve pressure on any single queue. Nev-
ertheless, fine-grained queues come at a cost. Checking of
multiple queues and migration of tasks between them all
cost overhead. In light loading situations, coarse-grained
queues can provide efficient task management scheme with
least incurred overhead. If the approach is too fine-grained

however, excessive task migration distance can also impact
performance.
The problem of deciding queue-granularity becomes an

issue of application behavior with respect to task creation,
which of course may potentially change over time. To help
address this problem we introduce an adaptive queuing scheme
that changes the queue arrangement and granularity over
time in response to runtime pressure measurement in the
system.

δp
p

δt
> τ

p

δp
c

δt
< τ

c

G

Z

L

p
re

fe
rr

e
d

Figure 4: Adaptive Scheme States

Our approach is to periodically sample queue pressure and
modify the granularity accordingly. In our current prototype
we adapt between three queue schemes: global (G), zone (Z)
and local (L). Each quadrant can independently transition
between these schemes. Producer pressure, given by

Pproducer =
δpp
δt

(1)

is measured by the number of queue locks that incur at
least one failure (i.e., the queue lock was held by some other
thread). Consumer pressure, given by

Pconsumer =
δpc
δt

(2)

is measured by counting the number of task steals per-
formed by a thread.
The pressure counts are maintained in a global array with

per-thread entries. An “adaptation controller” thread peri-
odically samples the count and triggers any required change
in adaptation scheme. Pressures are compared against pre-
defined threshold values, τp and τc. In the current proto-
type implementation these values are static and are tuned
by hand for a given application. For the tests we used a
threshold value of 16 events per 100 msec sampling period.
In future work we envisage the use of auto-tuning like ap-
proaches to optimization of threshold values.
The adaptive scheme allows independent arrangements for

different zones. For example, tiles in zone 0 may use a global
queue scheme while tiles in zone 1 use a zone queue scheme.
There is always only one global queue and thus any zone
using a G scheme will share the same queue.

4. EXPERIMENTAL RESULTS
This section presents experimental data that quantifies

the benefit of the different task management schemes on the
TILE processor. The objective of our experimentation is
to measure two key aspects of the solution: 1.) The perfor-
mance of the different schemes for different types of process-
ing, and 2.) The scalability of each scheme with respect to
increasing number of cores.
For the experimental results, we used the TILEPro64 pro-

cessor, with Tilera MDE 3.0.alpha2 which includes an early
port of GNU gcc (4.4.3). The system was configured with

Table 1: Benchmark Applications

Name Peak

Cores

Version

fib-30 60 Calculation of the 30th Fibonacci
number.

fft 48 Fast-Fourier Transform
(Cooley-Turkey algorithm).

kronecker 60 Matrix Kronecker product on 2D
32-bit integer matrices; 20K
source elements. Memory caching
turned off.

sort 36 Parallel sort of randomly
(deterministic across runs)
generated 10K integer vector.
Algorithm based on merge of 100
element sorted sublists.

image 32 Image processing (filtering and
segmentation).

indepwork 60 Independent work in the form of
PI calculations.

Zero-Overhead Linux (ZOL) with all but four of the tiles
instantiated in data plane mode making them exempt from
interrupt processing and other OS processing activities.

4.1 Benchmark Performance
We developed six benchmarks applications for the evalu-

ation (refer to Table 1). The benchmarks are representative
of the types of processing that we would expect to see in
our current products. Each benchmark was implemented in
SNAPPLE.

For each experiment, we ran the benchmarks with the
peak number of cores that demonstrated maximum speed-
up across both number of cores and queuing schemes. These
values are given in Table 1. We chose to take this approach
because some of the current benchmark implementations do
not scale to the complete quota of 60 cores. Data was aver-
aged across one hundred separate runs.

For the kronecker matrix multiplication benchmark we
explcitly turned off memory caching. With caching enabled,
we observed severe performance degradation at 30 cores and
beyond. We believe that the cause of this degradation stems
from false-sharing effects; as concurrency increases across
the chip, false-sharing becomes worse.

 0

 5

 10

 15

 20

 25

 30

 10 20 30 40 50 60

N
um

be
r o

f S
am

pl
es

 P
er

 C
or

e

Number of Cores

L1 Read Miss

 0

 5

 10

 15

 20

 25

 30

 10 20 30 40 50 60
Number of Cores

L2 Remote Read Miss

(a) L1 Read Miss (b) L2 Remote Read Miss

Figure 5: Cache Scaling Behavior for the kronecker

Benchmark with Caching On

To support this claim we collected cache events through
the OProfile tool provided with the Tilera development en-
vironment. The cache performance results are shown in Fig-

ure 5. Note that each sample corresponds to 500K L1 misses
in Figure 5a and 50K L2 remote misses Figure 5b. This
data indicates a significant increase in both L1 local and L2
remote read misses (resulting from invalidations by other
cache line copies) which causes a reduction in memory read
performance. We observed very few local L2 read misses in
our experiments.
Finally, we also observed that the “performance gap” be-

tween different scheduling schemes generally increases with
the number of cores. Figure 6 gives scaling data for the
indepwork benchmark. The increasing variation of speedup
across schemes as the number of cores increases is clearly
identifiable.

 0

 10

 20

 30

 40

 50

 60

4 8 16 32 48 60

Sp
e

e
d

u
p

 o
ve

r
Se

ri
al

 E
xe

cu
ti

o
n

Cores

Global

Zone

Local

Adaptive

Figure 6: Performance Scaling of indepwork with Dif-
ferent Queueing Schemes

4.1.1 Performance of Different Queuing Schemes
To measure the performance of different queuing schemes,

measurements were taken for each of the four queuing schemes;
global queue (G), zone-queues (Z), local-queues (L) and
the adaptive scheme (A). Data was normalized against the
global (G) scheme.
The underlying queue implementations for all of the schemes

is based on the lock-free queue scheme developed by Micheal
et al. [11]. This scheme provides concurrent enqueue and
dequeue operations on a FIFO queue through the use of
compare-and-swap (CAS) operations on head and tail point-
ers. We chose the CAS-based lock-free queue even though
the TILEPro64 processors only supports Test-and-Set H/W
instructions; CAS operations are implemented through kernel-
level fast mutexes. Although scaling emulated-CAS to hun-
dreds of cores is possibly questionable, data for 60-cores
shows good scaling of the independent work (indepwork)
benchmark(see Figure 7) - the lock-free queue consistently
outperforms the spinlock protected queue. Furthermore,
the next-generation of TILE processors (the GX-series) are
known to support H/W level CAS.
The experimental data, given in Figure 8, indicates a

mixed result. The zone queuing scheme performed best in
3 out of the 6 tests. This scheme was most effective in
the fft benchmark giving a 4% improvement over the next
best scheme. The adaptive scheme gave a 5% and 2% im-
provement over the next best scheme for the sort and seg-

ment benchmarks respectively. Finally, the global scheme
performed best for the fibonacci benchmark, beating the
next-best scheme by 7%.
On average the worst performing scheme was local queu-

ing - the scheme found in many existing lightweight thread
based technologies such as Cilk [4] and OpenMP [13].

 0

 10

 20

 30

 40

 50

 60

4 8 16 32 48 60

Sp
e

e
d

u
p

 o
ve

r
Se

ri
al

 E
xe

cu
ti

o
n

Cores

TNS−Global-Spinlock-Queue

CAS−Global-Lockfree-Queue

Figure 7: Test-and-set Spinlock Queue vs.
Compare-and-Swap Lock-free Queue

 0.8

 0.9

 1

 1.1

 1.2

 1.3

"t kronecker #b−30 segment indepwork sort

R
e

la
ti

ve
 P

e
rf

o
rm

an
ce

Global

Zone

Local

Adaptive

Figure 8: Benchmark Performance of Different
Queuing Schemes

4.2 Throughput of Different Queuing Schemes
Our final set of experiments examined the throughput

scalability of the different queuing schemes. For this we
chose to use a synthetic benchmark in order to eliminate ef-
fects of inherent serialization in the benchmark application
(as suggested by Amdahl’s law) as well as potentially sig-
nificant degradation caused by data locality and associated
cache behavior as described in section 4.1. The synthetic
benchmark “stress tests” task management and performs no
real work. The test recursively creates tasks that perform
a local-memory arithmetic calculation (∼ 880K cycles). For
this particular experiment, each task is configured to recur-
sively create 10 children to a depth of 6 from the root node.
A total of 2.2M tasks are created; task throughput is calcu-
lated over total execution time.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 10 20 30 40 50 60

Ta
sk

 T
hr

ou
gh

pu
t (

K
ta

sk
s/

se
co

nd
)

Cores

Linear
A
G
Z
L

Figure 9: Scaling of Different Queuing Schemes

The results, given in Figure 9, show that the adaptive
queuing scheme scales marginally better than the other schemes
measured. However, at 60 cores, even this scheme degrades
by 35% with respect to total task throughput, suggesting
that scaling issues still exist. Nevertheless, we do consider
this benchmark to present the extreme case with a high task
throughput not typically found in useful applications.

5. RELATEDWORK
Many of the recent improvements in C/C++ based paral-

lel programming systems have been realized with lightweight
user-level threading such as in Cilk [4], Intel’s TBB [14], and
Apple’s GCD [1]. Most of these use work-stealing across
multiple queues as the basis for their task management. The
earliest implementation of work-stealing at least dates back
to Halstead’s MultiLisp [10] and Mohr et al.’s Lazy task cre-
ation [12]. Since then, the heuristic benefits of work-stealing
with respect to space and communication has been well
studied. Blumofe et al. presented a provably efficient ran-
domized work-stealing algorithm for scheduling fully strict
multithreaded computations [5], which was implemented in
Cilk [8]. X10 work-stealing [2] later extended the Cilk al-
gorithm to support terminally strict computations among
other extensions. Guo et al. [9] introduce a help-first work-
stealing scheduler, with compiler support for async-finish
task parallelism. They present scenarios where help-first
scheduling can yield better results than X10 style work-first
execution.
The alternative to work-stealing is work-sharing, where

whenever a new task is created, it is eagerly moved to an
underutilized processor. Eager et al. [7] argue that work-
sharing outperforms work-stealing at light to moderately
loaded systems and when the cost of sharing is comparable
with the cost of computation. While Guo et al. [9] compare
the work-sharing scheduler in the open source X10 imple-
mentation [3] against their work-stealing policies and show
that work-stealing generally performs better. In our exper-
iments, we observe that work-sharing through global queu-
ing scheme can in fact perform better in certain scenarios.
Thus, we believe that no one scheduling policy can fit all the
requirements.

6. CONCLUSION
Our results show that MIMD architecture-aware zone and

adaptive queuing schemes can bring marginal perform ad-
vantages over the more commonly used local queuing scheme.
Whilst the zone queuing scheme proved to be the best per-
former in the current benchmarks, the adaptive scheme shows
promise for applications that have “stages” of different be-
havior with respect to concurrency and data sharing. Even
though the measured performance advantage of the adaptive
scheme is relatively small in these benchmarks, we believe
that the benefit would increase for more complex applica-
tions and also for applications deployed across a distributed
system context whereby the cost of task migration is very
high.
This work has also provided a better understanding of

building applications that can scale to larger manycore pro-
cessors such as the TILEPro64. There are three key com-
ponents to the successful MIMD application development.
These are, i.) providing easy-to-use programming abstrac-
tions and achieving sufficient degree of task concurrency, ii.)

minimizing contention on shared resources, and iii.) main-
taining shared memory scalability by distributing tasks ac-
cording to spatial locality. Our work thus far has primarily
focused on the first two of these components. The current
implementation of the SNAPPLE compiler does not perform
any “intelligent” arrangement of tasks according to data re-
lationships across lightweight tasks; this is a focus of contin-
uing work.

7. REFERENCES
[1] Grand Central Dispatch (GCD) Reference, May 2010.
[2] S. Agarwal, R. Barik, D. Bonachea, V. Sarkar, R. K.

Shyamasundar, and K. A. Yelick. Deadlock-free
scheduling of x10 computations with bounded
resources. In SPAA, pages 229–240, 2007.

[3] R. Barik, V. Cave, C. Donawa, A. Kielstra,
I. Peshansky, and V. Sarkar. Experiences with an
SMP implementation for X10 based on the Java
Concurrency Utilities. In PMUP, 2006.

[4] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E.
Leiserson, K. H. Randall, and Y. Zhou. Cilk: an
efficient multithreaded runtime system. PPOPP, pages
207–216, 1995.

[5] R. D. Blumofe and C. E. Leiserson. Scheduling
multithreaded computations by work stealing. In
Symposium on Foundations of Computer Science,
pages 356–368, 1994.

[6] P. Charles, C. Grothoff, V. A. Saraswat, C. Donawa,
A. Kielstra, K. Ebcioglu, C. von Praun, and V. Sarkar.
X10: an object-oriented approach to non-uniform
cluster computing. In OOPSLA, pages 519–538, 2005.

[7] D. L. Eager, E. D. Lazowska, and J. Zahorjan. A
comparison of receiver-initiated and sender-initiated
adaptive load sharing. Performance Evaluation,
6(1):53–68, 1986.

[8] M. Frigo, C. E. Leiserson, and K. H. Randall. The
implementation of the cilk-5 multithreaded language.
In PLDI, pages 212–223, 1998.

[9] Y. Guo, R. Barik, R. Raman, and V. Sarkar.
Work-first and help-first scheduling policies for
async-finish task parallelism. In IPDPS, pages 1–12,
2009.

[10] R. H. Halstead, Jr. Implementation of multilisp: Lisp
on a multiprocessor. In Symposium on LISP and
functional programming, pages 9–17, 1984.

[11] M. M. Michael and M. L. Scott. Simple, fast, and
practical non-blocking and blocking concurrent queue
algorithms. In PODC, pages 267–275, 1996.

[12] E. Mohr, D. A. Kranz, R. H. Halstead, and Jr. Lazy
task creation: A technique for increasing the
granularity of parallel programs. IEEE Transactions
on Parallel and Distributed Systems, 2, 1991.

[13] OpenMP Architecture Review Board. Openmp
application program interface, 2008.

[14] C. Pheatt. Intel threading building blocks. J. Comput.
Small Coll., 23:298–298, 2008.

[15] D. J. Quinlan, M. Schordan, B. Philip, and
M. Kowarschik. The specification of source-to-source
transformations for the compile-time optimization of
parallel object-oriented scientific applications. LCPC,
pages 383–394, 2003.

