
KC Sivaramakrishnan Research Statement

Over the last decade, software engineering has seen significant advancements and shifts driven by
technological innovation and changing industry demands. Emerging applications such as internet-
of-things, augmented reality and self-driving vehicles have necessitated moving computation closer
to the data for real-time decision making, while also depending on cloud computing platforms
for AI models used to make those decisions. In order to support these varied applications, the
computing platforms have become heterogeneous, with a mix of CPUs, GPUs and FPGAs, both on
the server and the client sides. The increasing complexity and ubiquity of software systems have
also led to new security and privacy challenges.

As software continues to eat the world1, a growing population of software developers are faced
with the challenge of building correct, secure and scalable software systems that can run on a wide
range of platforms. They must ensure correct application behaviour the in face of asynchrony and
partial failures, ensure absence of security and privacy issues arising anywhere from programming
errors to malicious attacks, all the while providing good scalability as well as minimizing the user’s
perception of latency. This remains an uphill task with current programming language technology.
No wonder then that bugs and exploits evade the programmer during software development and
testing, only to appear in production environments with devastating consequences.

My research goal is to develop programming language abstractions and tools that empower
developers to build secure, scalable and reliable software systems. I believe that mathematically
rigorous functional programming is particularly suited towards this goal. A distinguishing aspect
of my research is that I spend significant effort to make these abstractions and tools available to
practitioners and thereby bridging the gap between research and practice.

1 Previous work
1.1 Concurrency and Parallelism
In my research career so far, I have developed concurrent and parallel programming abstractions
for widely used functional programming language compilers including the MLton Standard ML
compiler [9–12, 14, 15], the Glasgow Haskell Compiler [7] and OCaml [5, 6]. A notable aspect of
these works is that they are implemented in industrial-strength compilers, and some of them are
widely used by practitioners.

During my PhD studies, I led the MultiMLton project, a parallel extension of the MLton Standard
ML compiler, targeted at future many core processors. In MultiMLton, concurrent programs are
organised as a large number of cooperative lightweight threads, that communicate by passing
messages between each other. I developed a novel asynchronous communication abstraction and a
mostly-concurrent garbage collector [11] that allowed MultiMLton to scale to the 864-core Azul
Vega3 machine. MultiMLton’s multicore garbage collector (GC) was designed to minimise inter-core
communication. The key innovation was to trade some of the ample concurrency in the source
language to offset some of the GC costs [10].

MultiMLton was designed not only for traditional cache-coherent multicore machines, but also
to take advantage of exotic architectures that provided fine-grained control over caches. I developed
a port of MultiMLton to the non-cache-coherent Intel Single-chip Cloud Computer (SCC), which
preserved the familiar shared memory parallel programming model [9]. This work took advantage
of MultiMLton’s ability to statically distinguish mutable and immutable data to manage them in
separate cache coherence domains. This work won the Best Paper Award at the Intel Many-
core Architecture Community (MARC) Symposium at RWTH, Aachen, Germany. My work
on MultiMLton was recognised by Purdue University with theMaurice H Halstead award for
outstanding research in software engineering.

1https://a16z.com/why-software-is-eating-the-world/

1

https://a16z.com/why-software-is-eating-the-world/


2 KC Sivaramakrishnan

After my PhD, I joined the University of Cambridge Computer Lab as an 1851 Royal Commission
and Darwin College Research Fellow, where I turned my attention to bring native support for
concurrency and parallelism to the OCaml programming language as part of the Multicore OCaml
project. Despite being one of the most popular functional programming languages, OCaml lacked
support for native concurrency and parallelism. For concurrency, we introduced effect handlers
into the language [6]. Effect handlers are a mechanism for programming with user-defined effects.
Operationally, effect handlers provide a mechanism for structured programming over delimited
continuations. Effect handlers generalise mechanisms such as exceptions, generators, async/await
and lightweight threads, which are provided as primitives by other languages. With the addition of
effect handlers, we are now able to implement these rich mechanisms as libraries with well-defined
semantics for their interactions.

For parallelism, we have rewritten major parts of the runtime system of OCaml to be parallelism
safe, and introduced a new mostly concurrent garbage collector that can scale to 100s of cores [5].
This is design minimises stop-the-world phase where all the cores are stopped running OCaml code
and the garbage collector runs. This is garbage collector is particularly suited for latency-sensitive
programs that OCaml is often used for such as trading systems, user interfaces, and network-facing
micro-services. Programs running on multicore processors also exhibit non-trivial behaviours due
to reordering by modern multi-core hardware and compiler optimisations. We have developed a
novel relaxed memory model for OCaml that offers local reasoning about program fragments unlike
the global reasoning required by Java and C11 memory models [1]. This memory model has been
implemented in the OCaml compiler for all the supported multicore architectures including x86,
ARM, PowerPC and RISC-V.

A major challenge with introducing concurrency and parallelism to a widely used programming
language is the existence millions of lines of legacy code, most of which may remain sequential
forever. We face the challenge of maintaining backwards compatibility–not just in terms of the
language features but also the performance of single-threaded code. We have succeeded in achieving
this goal, and Multicore OCaml project has been merged into the mainstream OCaml compiler and
released as part of OCaml 52. This makes OCaml the first industrial-strength language to support
effect handlers. The work on Multicore OCaml has been recognised with the 2023 SIGPLAN
Programming Languages Software Award and a distinguished paper award at ICFP 2020
for the paper that describes the GC design [5]. I am one of the core maintainers of OCaml, and
continue to contribute to the development and maintenance of the concurrency and parallelism
features.
Multicore OCaml has also had an enormous impact on the wider community. React, the most

widely used JavaScript UI framework in the world introduced a major feature called React Hooks,
which is directly inspired from Multicore OCaml3. WebAssembly (Wasm) is a type-safe, efficient
language for the web, introduced as an alternative to JavaScript. All major browsers now sup-
port Wasm. Wasm is introducing effect handlers for concurrency based on the OCaml design
(WasmFX) [4]. WasmFX brings the benefit of effect handlers to every language that can compile to
Wasm. I continue to participate in the Wasm community group to advance the WasmFX proposal.

1.2 Distribution
As a natural extension of concurrent and parallel programming, I am fascinated with the challenges
with distributed programming. Unlike parallel programming, in loosely-coupled asynchronous
distributed systems (LADS), synchronisation leads to unavailability, and hence, is avoided when
possible. This makes programming LADS challenging. Unfortunately, this has led to centralisation
of Internet services, where a few large corporations provide services to billions of users. The

2https://github.com/ocaml/ocaml/pull/10831
3https://legacy.reactjs.org/docs/hooks-faq.html#what-is-the-prior-art-for-hooks

https://github.com/ocaml/ocaml/pull/10831
https://legacy.reactjs.org/docs/hooks-faq.html#what-is-the-prior-art-for-hooks


Research Statement 3

personal data owned by these large corporations is a major security and privacy concern. In order
to build a resilient and decentralised Internet economy, distributed programming needs to be made
easier to enable building local-first software4.
My research in this area has been focussed on correctly building software that works under

weaker consistency guarantees in LADS. To alleviate the burden of developing correct programs, I
developed Quelea [8], a programming model that associates user programwith declarative contracts
for their consistency expectation. Quelea utilises automated theorem proving tools to automatically
and correctly insert the necessary coordination to ensure that application’s consistency expectations
are preserved.

In order to reason about state changes in LADS, functional programming principles of immutabil-
ity and persistence turn out to be particularly useful. Based on this observation, I have developed
mergeable replicated data types (MRDTs) [2]. MRDTs are based on the principles of distributed
version control systems such as Git where the causal execution history is captured through branches
and merges. A key aspect of MRDTs is that the distribution aspects of the data type are separated
from their sequential behaviour, leading to simpler concurrent reasoning and efficient implemen-
tations. The immutability and persistence also enables verified, correct-by-construction MRDTs
(Peepul) [13]. The MRDTs are implemented and verified using F*, a proof-oriented programming
language. The verified MRDT implementations are extracted to OCaml and are compatible with
Irmin, a Git-like distributed database.

2 Current work
Since moving to IIT Madras and then subsequently leading the technology team at Tarides5, I have
continued the work towards my goal of empowering developers to develop correct, secure and
scalable software, now with a team of research scholars, colleagues at IIT Madras and programming
language experts and engineers at Tarides.

Automated verification of MRDTs. One of the downsides of Peepul work on correct-by-
construction MRDTs is that developer needs to write down a specification for each MRDT along
with a simulation relation that connects the specification with the implementation. The verification
process machine-assisted but is a manual one. This is tedious and error-prone. As a follow up
to the Peepul work, we asked whether we can automate the proof of correctness of MRDTs.
We have managed to do this by couching the correctness argument in linearizability, a well-
understood concurrent programming correctness criterion. Our definition of linearizability ensures
both eventual consistency and full functional correctness, while also allowing a simple specification
framework for conflict resolution in MRDTs. We have successfully applied our approach on a
number of complex MRDT implementations.

Securing the foundations of Unikernels. It is well-understood these days that memory-
unsafe languages such as C and C++ lead to majority of security vulnerabilities in widely-used
software6. This has prompted a major push towards memory-safe languages such as Rust and
OCaml. However, the large legacy code base in unsafe C and C++ will continue to remain even
as new code gets written in memory-safe languages. How can we allow mixed safe and unsafe
language codebases to be secure, especially when unsafe languages can violate safe language
guarantees when combined together in the same application? To this end, we are developing
FIDES, a secure extension of the Shakti RISC-V processor that prevents security exploits in unsafe
code through hardware guards while permitting safe code to run as fast as possible. FIDES also
supports inter-process compartments to enforce isolation between different parts of the application.

4https://www.inkandswitch.com/local-first/
5https://tarides.com
6https://www.cisa.gov/news-events/news/urgent-need-memory-safety-software-products

https://www.inkandswitch.com/local-first/
https://tarides.com
https://www.cisa.gov/news-events/news/urgent-need-memory-safety-software-products


4 KC Sivaramakrishnan

The secure processor is designed to run MirageOS, an OCaml-based library operating system for
constructing Unikernels. The aim is to target critical embedded system applications such as remote
voting machines7 and point-of-sale terminals. In general, I see enormous potential for open-source
secure hardware such as Shakti processors to complement the open-source secure software such as
MirageOS to help build trustworthy systems.

Mechanically verified garbage collectors. In my experience building multiple concurrent
garbage collectors (GC), debugging rare and non-deterministic failures took up significant amount
of development time. Garbage collectors are typically written in memory-unsafe languages where
there is explicit control over low-level memory management facilities. However, bugs in the GCs
can lead to security vulnerabilities in the safe language code. Can we build practical, correct-by-
construction, mechanically verified GCs? To this end, we have built a correct-by-construction
stop-the-world mark-and-sweep GC in the F* programming language and extracted that to C using
the KaRaMel compiler. The GC includes enough features that it can be used as a replacement for the
GC in the OCaml programming language and does not compromise on the performance. The GC
and its proofs of correctness are designed in a modular fashion, and we plan to use this modularity
to extend the GC to support incremental, generational and concurrent garbage collection.
All of the research listed above is being conducted in collaboration with IIT Madras colleagues

and PhD students, and the corresponding papers are under submission.

3 Future work
In the future, I plan to continue to push towards my goal of empowering developers to build correct,
scalable and secure software. I see a number of recent developments that will accelerate the push
towards this goal.

Securing the foundations. Oxidising OCaml project [3] brings Rust-style ownership and
borrowing to OCaml. In particular, it brings the ability to reason about the lifetimes of objects
statically, which turns out to be a useful building block for a variety of features. I plan to explore
possibility of using Oxidising OCaml project to bring effect safety (the ability to statically detect
the absence of a handler for an effect) to effect handlers in OCaml 5, stricter data sharing policies
in FIDES compartments and build better concurrent data structures that can take advantage of the
static knowledge of object sharing between different threads. In addition, commercial processor
manufacturers such as Intel, AMD and ARM have introduced security-oriented features such as
trusted execution environments (Intel SGX, ARM TrustZone), memory encryption (AMD SEV),
memory tagging (ARM PA, ARM MTE) and control-flow integrity (Intel CET, ARM BTI). While
these extensions have been used for C and C++ code, they have not been used extensively for
mixed safe and unsafe language systems. I am keen to explore how language-oriented security
such as using refinement types for information-flow control (IFC) can be profitably combined with
hardware security features to build secure systems.

Trustworthy CodeLLMs. CodeLLMs are specialized language models designed and trained to
understand, generate, and reason about programming code. A major challenge in codeLLMs is to
ensure that the generated code satisfies the programmer’s intent. This is particularly challenging
as the intent keeps evolving as the functional requirements of the software changes. How can
we ensure that the generated code is correct? How can we ensure that the generated code can be
evolved? I believe that lightweight formal method techniques such as static type systems, property-
based testing and example-drive development can be profitably used to capture programmer intent
and to derive the specifications. Once we have the specifications, codeLLMs can themselves be
used to generate the correctness proofs to be machine checked in a proof assistant such as F* or
Coq. Today codeLLMs do quite well on high-resource languages such as Python and JavaScript. If
7https://pib.gov.in/PressReleasePage.aspx?PRID=1887248

https://pib.gov.in/PressReleasePage.aspx?PRID=1887248


Research Statement 5

the current trend in codeLLMs continues, programming languages will cease to be the dominant
interface for programming. I conjecture that, at this point, mathematically rigorous functional
programming languages will be preferred target language for codeLLMs as they are today the
preferred target for proof assistants.

The ideas from functional programming languages are becoming mainstream as they are incor-
porated into mainstream languages. I am fortunate and excited to be at the forefront, driving some
of these changes, as we empower developers to build correct, secure, and scalable software.

References
[1] Stephen Dolan, KC Sivaramakrishnan, and Anil Madhavapeddy. 2018. Bounding data races in space and time. In

Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation (Philadelphia,
PA, USA) (PLDI 2018). Association for Computing Machinery, New York, NY, USA, 242–255. https://doi.org/10.1145/
3192366.3192421

[2] Gowtham Kaki, Swarn Priya, KC Sivaramakrishnan, and Suresh Jagannathan. 2019. Mergeable replicated data types.
Proc. ACM Program. Lang. 3, OOPSLA, Article 154 (oct 2019), 29 pages. https://doi.org/10.1145/3360580

[3] Anton Lorenzen, Leo White, Stephen Dolan, Richard A. Eisenberg, and Sam Lindley. 2024. Oxidising OCaml with
Modal Memory Management. Proc. ACM Program. Lang. 4, ICFP (sep 2024), 30 pages. https://homepages.inf.ed.ac.uk/
slindley/papers/mode-inference-draft-feb2024.pdf

[4] Luna Phipps-Costin, Andreas Rossberg, Arjun Guha, Daan Leijen, Daniel Hillerström, KC Sivaramakrishnan, Matija
Pretnar, and Sam Lindley. 2023. ContinuingWebAssembly with Effect Handlers. Proc. ACM Program. Lang. 7, OOPSLA2,
Article 238 (oct 2023), 26 pages. https://doi.org/10.1145/3622814

[5] KC Sivaramakrishnan, Stephen Dolan, Leo White, Sadiq Jaffer, Tom Kelly, Anmol Sahoo, Sudha Parimala, Atul Dhiman,
and Anil Madhavapeddy. 2020. Retrofitting parallelism onto OCaml. Proc. ACM Program. Lang. 4, ICFP, Article 113
(aug 2020), 30 pages. https://doi.org/10.1145/3408995

[6] KC Sivaramakrishnan, Stephen Dolan, Leo White, Tom Kelly, Sadiq Jaffer, and Anil Madhavapeddy. 2021. Retrofitting
effect handlers onto OCaml. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming
Language Design and Implementation (Virtual, Canada) (PLDI 2021). Association for Computing Machinery, New York,
NY, USA, 206–221. https://doi.org/10.1145/3453483.3454039

[7] KC Sivaramakrishnan, Tim Harris, Simon Marlow, and Simon Peyton Jones. 2016. Composable scheduler activations
for Haskell. Journal of Functional Programming 26 (2016), e9. https://doi.org/10.1017/S0956796816000071

[8] KC Sivaramakrishnan, Gowtham Kaki, and Suresh Jagannathan. 2015. Declarative programming over eventually
consistent data stores. In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and
Implementation (Portland, OR, USA) (PLDI ’15). Association for Computing Machinery, New York, NY, USA, 413–424.
https://doi.org/10.1145/2737924.2737981

[9] KC Sivaramakrishnan, Lukasz Ziarek, and Suresh Jagannathan. 2012. A Coherent and Managed Runtime for ML on
the SCC. In Proceedings of the Many-core Applications Research Community (MARC) Symposium at RWTH Aachen
University. 20–25.

[10] KC Sivaramakrishnan, Lukasz Ziarek, and Suresh Jagannathan. 2012. Eliminating read barriers through procrastination
and cleanliness. In Proceedings of the 2012 International Symposium on Memory Management (Beijing, China) (ISMM
’12). Association for Computing Machinery, New York, NY, USA, 49–60. https://doi.org/10.1145/2258996.2259005

[11] KC Sivaramakrishnan, Lukasz Ziarek, and Suresh Jagannathan. 2014. MultiMLton: A Multicore-aware Runtime for
Standard ML. Journal of Functional Programming (2014).

[12] KC Sivaramakrishnan, Lukasz Ziarek, Raghavendra Prasad, and Suresh Jagannathan. 2010. Lightweight asyn-
chrony using parasitic threads. In Proceedings of the 5th ACM SIGPLAN Workshop on Declarative Aspects of Mul-
ticore Programming (Madrid, Spain) (DAMP ’10). Association for Computing Machinery, New York, NY, USA, 63–72.
https://doi.org/10.1145/1708046.1708059

[13] Vimala Soundarapandian, Adharsh Kamath, Kartik Nagar, and KC Sivaramakrishnan. 2022. Certified mergeable
replicated data types. In Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language
Design and Implementation (San Diego, CA, USA) (PLDI 2022). Association for Computing Machinery, New York, NY,
USA, 332–347. https://doi.org/10.1145/3519939.3523735

[14] Lukasz Ziarek, KC Sivaramakrishnan, and Suresh Jagannathan. 2009. Partial memoization of concurrency and
communication. In Proceedings of the 14th ACM SIGPLAN International Conference on Functional Programming
(Edinburgh, Scotland) (ICFP ’09). Association for Computing Machinery, New York, NY, USA, 161–172. https:
//doi.org/10.1145/1596550.1596575

[15] Lukasz Ziarek, KC Sivaramakrishnan, and Suresh Jagannathan. 2011. Composable asynchronous events. In Proceedings
of the 32nd ACM SIGPLAN Conference on Programming Language Design and Implementation (San Jose, California, USA)
(PLDI ’11). Association for Computing Machinery, New York, NY, USA, 628–639. https://doi.org/10.1145/1993498.
1993572

https://doi.org/10.1145/3192366.3192421
https://doi.org/10.1145/3192366.3192421
https://doi.org/10.1145/3360580
https://homepages.inf.ed.ac.uk/slindley/papers/mode-inference-draft-feb2024.pdf
https://homepages.inf.ed.ac.uk/slindley/papers/mode-inference-draft-feb2024.pdf
https://doi.org/10.1145/3622814
https://doi.org/10.1145/3408995
https://doi.org/10.1145/3453483.3454039
https://doi.org/10.1017/S0956796816000071
https://doi.org/10.1145/2737924.2737981
https://doi.org/10.1145/2258996.2259005
https://doi.org/10.1145/1708046.1708059
https://doi.org/10.1145/3519939.3523735
https://doi.org/10.1145/1596550.1596575
https://doi.org/10.1145/1596550.1596575
https://doi.org/10.1145/1993498.1993572
https://doi.org/10.1145/1993498.1993572

	1 Previous work
	1.1 Concurrency and Parallelism
	1.2 Distribution

	2 Current work
	3 Future work
	References

