
Effect Handlers in
Multicore OCaml

Daniel Hillerström, Daan Leijen, Sam Lindley, Matija
Pretnar, Andreas Rossberg, KC Sivaramakrishnan

Effect Handlers
• Multicore OCaml is an OCaml extension with native support

for concurrency and shared-memory parallelism

✦ Concurrency expressed through effect handlers

✦ Will land upstream in Q2 2021

Effect Handlers
• Multicore OCaml is an OCaml extension with native support

for concurrency and shared-memory parallelism

✦ Concurrency expressed through effect handlers

✦ Will land upstream in Q2 2021

effect E : string

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E k ->
 print_string "1 ";
 continue k "2 ";
 print_string “4 "

Effect Handlers
• Multicore OCaml is an OCaml extension with native support

for concurrency and shared-memory parallelism

✦ Concurrency expressed through effect handlers

✦ Will land upstream in Q2 2021

effect E : string

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E k ->
 print_string "1 ";
 continue k "2 ";
 print_string “4 "

effect declaration

Effect Handlers
• Multicore OCaml is an OCaml extension with native support

for concurrency and shared-memory parallelism

✦ Concurrency expressed through effect handlers

✦ Will land upstream in Q2 2021

effect E : string

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E k ->
 print_string "1 ";
 continue k "2 ";
 print_string “4 "

computation

effect declaration

Effect Handlers
• Multicore OCaml is an OCaml extension with native support

for concurrency and shared-memory parallelism

✦ Concurrency expressed through effect handlers

✦ Will land upstream in Q2 2021

effect E : string

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E k ->
 print_string "1 ";
 continue k "2 ";
 print_string “4 "

computation

handler

effect declaration

Effect Handlers
• Multicore OCaml is an OCaml extension with native support

for concurrency and shared-memory parallelism

✦ Concurrency expressed through effect handlers

✦ Will land upstream in Q2 2021

effect E : string

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E k ->
 print_string "1 ";
 continue k "2 ";
 print_string “4 "

computation

handler

suspends current
computation

effect declaration

Effect Handlers
• Multicore OCaml is an OCaml extension with native support

for concurrency and shared-memory parallelism

✦ Concurrency expressed through effect handlers

✦ Will land upstream in Q2 2021

effect E : string

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E k ->
 print_string "1 ";
 continue k "2 ";
 print_string “4 "

computation

handler

delimited continuation

suspends current
computation

effect declaration

Effect Handlers
• Multicore OCaml is an OCaml extension with native support

for concurrency and shared-memory parallelism

✦ Concurrency expressed through effect handlers

✦ Will land upstream in Q2 2021

effect E : string

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E k ->
 print_string "1 ";
 continue k "2 ";
 print_string “4 "

computation

handler

delimited continuation

suspends current
computation

resume suspended
computation

effect declaration

Compilation

effect E : string

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E k ->
 print_string "1 ";
 continue k "2 ";
 print_string “4 "

pc
main

sp

Compilation

effect E : string

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E k ->
 print_string "1 ";
 continue k "2 ";
 print_string “4 "

pc

main

sp

comp

Compilation

effect E : string

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E k ->
 print_string "1 ";
 continue k "2 ";
 print_string “4 "

pc

main
sp

parent

comp

comp

Compilation

effect E : string

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E k ->
 print_string "1 ";
 continue k "2 ";
 print_string “4 "

pc

main

sp

parent

0

comp

comp

Compilation

effect E : string

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E k ->
 print_string "1 ";
 continue k "2 ";
 print_string “4 "

pc

main

sp

parent

0

comp

comp

Compilation

effect E : string

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E k ->
 print_string "1 ";
 continue k "2 ";
 print_string “4 "

pc

main

sp k

0

comp

comp

Compilation

effect E : string

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E k ->
 print_string "1 ";
 continue k "2 ";
 print_string “4 "

pc

main

sp k

0

comp

comp

Compilation

effect E : string

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E k ->
 print_string "1 ";
 continue k "2 ";
 print_string “4 "

pc

main

sp k

0 1

comp

comp

Compilation

effect E : string

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E k ->
 print_string "1 ";
 continue k "2 ";
 print_string “4 "

pc

main

sp k

0 1

comp

comp

Compilation

effect E : string

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E k ->
 print_string "1 ";
 continue k "2 ";
 print_string “4 "

pc

main

sp

k

parent

0 1

comp

comp

Compilation

effect E : string

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E k ->
 print_string "1 ";
 continue k "2 ";
 print_string “4 "

pc
main

sp

k

parent

0 1 2

Compilation

effect E : string

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E k ->
 print_string "1 ";
 continue k "2 ";
 print_string “4 " pc

main

sp k

0 1 2 3

Compilation

effect E : string

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E k ->
 print_string "1 ";
 continue k "2 ";
 print_string “4 "

pc

main

sp k

0 1 2 3 4

effect A : unit
effect B : unit

let baz () =
 perform A

let bar () =
 try
 baz ()
 with effect B k ->
 continue k ()

let foo () =
 try
 bar ()
 with effect A k ->
 continue k ()

Handlers can be nested

foo bar baz

sp

parent
parent

pc

effect A : unit
effect B : unit

let baz () =
 perform A

let bar () =
 try
 baz ()
 with effect B k ->
 continue k ()

let foo () =
 try
 bar ()
 with effect A k ->
 continue k ()

Handlers can be nested

foo bar baz

sp

parent
parent

pc

effect A : unit
effect B : unit

let baz () =
 perform A

let bar () =
 try
 baz ()
 with effect B k ->
 continue k ()

let foo () =
 try
 bar ()
 with effect A k ->
 continue k ()

Handlers can be nested

foo bar baz

sp

parent

pc k

effect A : unit
effect B : unit

let baz () =
 perform A

let bar () =
 try
 baz ()
 with effect B k ->
 continue k ()

let foo () =
 try
 bar ()
 with effect A k ->
 continue k ()

Handlers can be nested

foo bar baz

sp

parent

pc k

• Linear search through handlers

• Handler stacks shallow in practice

Deep-dive into perform

Deep-dive into perform
• Full power of pattern matching for matching effects

✦ Tag test + branching is compiled to a function

Deep-dive into perform
• Full power of pattern matching for matching effects

✦ Tag test + branching is compiled to a function

https://github.com/ocaml-multicore/ocaml-multicore/blob/parallel_minor_gc/runtime/amd64.S#L865

https://github.com/ocaml-multicore/ocaml-multicore/blob/parallel_minor_gc/runtime/amd64.S#L865

Performance
• Intel(R) Xeon(R) Gold 5120 CPU @ 2.20GHz

✦ For reference, memory read latency is 90 ns (local NUMA node) and 145
ns (remote NUMA node)

Performance
• Intel(R) Xeon(R) Gold 5120 CPU @ 2.20GHz

✦ For reference, memory read latency is 90 ns (local NUMA node) and 145
ns (remote NUMA node)

let foo () =
 (* a *)
 try
 (* b *)
 perform E
 (* d *)
 with effect E k ->
 (* c *)
 continue k ()
 (* e *)

Performance
• Intel(R) Xeon(R) Gold 5120 CPU @ 2.20GHz

✦ For reference, memory read latency is 90 ns (local NUMA node) and 145
ns (remote NUMA node)

let foo () =
 (* a *)
 try
 (* b *)
 perform E
 (* d *)
 with effect E k ->
 (* c *)
 continue k ()
 (* e *)

Instruction
Sequence

a to b

b to c

c to d

d to e

Significance

Create a new stack &

run the computation

Performing & handling an effect

Resuming a continuation

Returning from a computation &
free the stack

• Each of the instruction sequences involves a stack switch

Performance
• Intel(R) Xeon(R) Gold 5120 CPU @ 2.20GHz

✦ For reference, memory read latency is 90 ns (local NUMA node) and 145
ns (remote NUMA node)

let foo () =
 (* a *)
 try
 (* b *)
 perform E
 (* d *)
 with effect E k ->
 (* c *)
 continue k ()
 (* e *)

Instruction
Sequence

a to b

b to c

c to d

d to e

Significance

Create a new stack &

run the computation

Performing & handling an effect

Resuming a continuation

Returning from a computation &
free the stack

Time (ns)

2479

122

189

155

• Each of the instruction sequences involves a stack switch

Performance: Generators

Performance: Generators
• Traverse a complete binary-tree of depth 25

Performance: Generators
• Traverse a complete binary-tree of depth 25

• Iterator — idiomatic recursive traversal

Performance: Generators
• Traverse a complete binary-tree of depth 25

• Iterator — idiomatic recursive traversal

• Generator — next() function to consume elements on-demand

✦ Hand-written generator (hw-generator)

✤ CPS translation + defunctionalization to remove intermediate closure allocation

✦ Generator using effect handlers (eh-generator)

✤ 2 * (225 - 1) + 2 = 226 stack switches

Performance: Generators
• Traverse a complete binary-tree of depth 25

• Iterator — idiomatic recursive traversal

• Generator — next() function to consume elements on-demand

✦ Hand-written generator (hw-generator)

✤ CPS translation + defunctionalization to remove intermediate closure allocation

✦ Generator using effect handlers (eh-generator)

✤ 2 * (225 - 1) + 2 = 226 stack switches

Variant Time (milliseconds)

Iterator (baseline) 202

hw-generator 761 (3.76x)

eh-generator 1879 (9.30x)

Multicore OCaml

Performance: Generators
• Traverse a complete binary-tree of depth 25

• Iterator — idiomatic recursive traversal

• Generator — next() function to consume elements on-demand

✦ Hand-written generator (hw-generator)

✤ CPS translation + defunctionalization to remove intermediate closure allocation

✦ Generator using effect handlers (eh-generator)

✤ 2 * (225 - 1) + 2 = 226 stack switches

Variant Time (milliseconds)

Iterator (baseline) 202

hw-generator 761 (3.76x)

eh-generator 1879 (9.30x)

Variant Time (milliseconds)

Iterator (baseline) 492

generator 43842 (89.1x)

Multicore OCaml nodejs 14.07

Performance: WebServer
• Effect handlers for asynchronous I/O

• Variants

✦ Go + net/http

✦ OCaml + http/af + Async (explicit callbacks)

✦ OCaml + http/af + Effect handlers

• Latency measured using wrk2

Performance: WebServer
• Effect handlers for asynchronous I/O

• Variants

✦ Go + net/http

✦ OCaml + http/af + Async (explicit callbacks)

✦ OCaml + http/af + Effect handlers

• Latency measured using wrk2

Thank you!
• Multicore OCaml

✦ https://github.com/ocaml-multicore/ocaml-multicore

• A collection of effect handlers examples

✦ https://github.com/ocaml-multicore/effects-examples

• JS generator example

✦ https://github.com/kayceesrk/wasmfx/tree/master/cg_4_aug_20

https://github.com/ocaml-multicore/ocaml-multicore
https://github.com/ocaml-multicore/effects-examples
https://github.com/kayceesrk/wasmfx/tree/master/cg_4_aug_20

