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• Linear search through handlers

• Handler stacks shallow in practice
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Deep-dive into perform
• Full power of pattern matching for matching effects

✦ Tag test + branching is compiled to a function

https://github.com/ocaml-multicore/ocaml-multicore/blob/parallel_minor_gc/runtime/amd64.S#L865

https://github.com/ocaml-multicore/ocaml-multicore/blob/parallel_minor_gc/runtime/amd64.S#L865
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let foo () =                                                                      
   (* a *)                                                                        
  try                                                                             
    (* b *)                                                                       
    perform E                                                                    
    (* d *)                                                                       
  with effect E k ->                                                              
    (* c *)                                                                       
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Instruction 
Sequence

a to b 

b to c 

c to d 

d to e 

Significance

Create a new stack & 

run the computation

Performing & handling an effect

Resuming a continuation

Returning from a computation & 
free the stack

Time (ns)

2479

122

189

155

• Each of the instruction sequences involves a stack switch
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Performance: Generators
• Traverse a complete binary-tree of depth 25

• Iterator — idiomatic recursive traversal

• Generator — next() function to consume elements on-demand

✦ Hand-written generator (hw-generator)

✤ CPS translation + defunctionalization to remove intermediate closure allocation

✦ Generator using effect handlers (eh-generator) 

✤ 2 * (225 - 1)  + 2 = 226 stack switches

Variant Time (milliseconds)

Iterator (baseline) 202

hw-generator 761 (3.76x)

eh-generator 1879 (9.30x)

Variant Time (milliseconds)

Iterator (baseline) 492

generator 43842 (89.1x)

Multicore OCaml nodejs 14.07  
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Thank you!
• Multicore OCaml

✦ https://github.com/ocaml-multicore/ocaml-multicore

• A collection of effect handlers examples

✦ https://github.com/ocaml-multicore/effects-examples

• JS generator example

✦ https://github.com/kayceesrk/wasmfx/tree/master/cg_4_aug_20

https://github.com/ocaml-multicore/ocaml-multicore
https://github.com/ocaml-multicore/effects-examples
https://github.com/kayceesrk/wasmfx/tree/master/cg_4_aug_20

