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Even simple data structures attract enormous 
complexity when made distributed
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module Counter : sig  
  type t 
  val read : t -> int 
  val add  : t -> int -> t 
  val sub  : t -> int -> t 
end = struct 
  type t = int  
  let read x = x 
  let add x d = x + d 
  let sub x d = x - d 
end

Sequential Counter



• Written in idiomatic style

• Composable
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module Counter : sig  
  type t 
  val read : t -> int 
  val add  : t -> int -> t 
  val sub  : t -> int -> t 
end = struct 
  type t = int  
  let read x = x 
  let add x d = x + d 
  let sub x d = x - d 
end

type counter_list = Counter.t list

Sequential Counter
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  val sub  : t -> int -> t 
  val mult : t -> int -> t 
end = struct 
  type t = int  
  let read x = x 
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Diverges

Addition and multiplication do not commute
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  val read : t -> int 
  val add  : t -> int -> t 
  val sub  : t -> int -> t 
  val mult : t -> int -> t 
end = struct 
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Converges

• Idea: Capture the effect of multiplication through the 
commutative addition operation

• CRDTs
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★ G-counters, PN-counters, OR-Sets, Graphs, Ropes, docs, sheets

★ Simple interface for the clients of CRDTs

9



Convergent Replicated Data Types 
(CRDT)

• CRDT is guaranteed to ensure strong eventual consistency (SEC)

★ G-counters, PN-counters, OR-Sets, Graphs, Ropes, docs, sheets

★ Simple interface for the clients of CRDTs

• Need to reengineer every datatype to ensure SEC 
(commutativity)

★ Do not mirror sequential counter parts => implementation & proof 
burden

★ Do not compose! 

✦ counter set is not a composition of counter and set CRDTs

9



Can we program & reason about replicated data types 
as an extension of their sequential counterparts?



Can we program & reason about replicated data types 
as an extension of their sequential counterparts?

MRDT
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module Counter : sig  
  type t 
  val read : t -> int  
  val add  : t -> int -> t 
  val sub  : t -> int -> t 
  val mult : t -> int -> t 
  val merge : lca:t -> v1:t -> v2:t -> t 
end = struct 
  type t = int  
  let read x = x  
  let add x d = x + d  
  let sub x d = x - d  
  let mult x n = x * n  
  let merge ~lca ~v1 ~v2 =  
    lca + (v1 - lca) + (v2 - lca) 
end
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    lca + (v1 - lca) + (v2 - lca) 
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7

8 21

+1 *3

22 22

22 = 7 + (8-1) + (21 -7)

• 3-way merge function makes the counter suitable for distribution

• Does not appeal to individual operations => independently 
extend data-type 
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Systems ➞ PL

• CRDTs need to take care of 
systems level concerns such as 
message loss, duplication and 
reordering

• 3-way merge is oblivious to these

✦ By leaving those concerns to MRDT 
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Does the 3-way merge idea generalise?

Sort of
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• OR-set — add-wins when there is a concurrent add and remove 
of the same element

Observed-Removed Set

let merge ~lca ~v1 ~v2 =  
  (lca ∩ v1 ∩ v2) (* unmodified elements *) 
  ∪ (v1 - lca) (* added in v1 *) 
  ∪ (v2 - lca) (* added in v2 *)

   { } ∪ ({1} - {1}) ∪ ({ } - {1})

= { } ∪ { } ∪ { }
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Kaki et al. “Mergeable Replicated Data Types”, 
OOPSLA 2019
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• Convergence is not sufficient; Intent is not preserved

• OR-set — add-wins when there is a concurrent add and remove 
of the same element

Observed-Removed Set

let merge ~lca ~v1 ~v2 =  
  (lca ∩ v1 ∩ v2) (* unmodified elements *) 
  ∪ (v1 - lca) (* added in v1 *) 
  ∪ (v2 - lca) (* added in v2 *)

   { } ∪ ({1} - {1}) ∪ ({ } - {1})

= { } ∪ { } ∪ { }

= { } (expected {1})

Kaki et al. “Mergeable Replicated Data Types”, 
OOPSLA 2019
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Concretising Intent
• Intent is a woolly term

★ How can we formalise the intent of operations on a data 
structure?

• We need

★ A formal language to specify the intent of an RDT

★ Mechanization to bridge the air gap between specification 
and implementation due to distributed system complexity
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Peepul — Certified MRDTs
• An F* library implementing and proving MRDTs

★ https://github.com/prismlab/peepul

• Specification language is event-based

★ Burckhardt et al. “Replicated Data Types: Specification, Verification and Optimality”, 
POPL 2014

• Replication-aware simulation to connect specification with implementation

• Composition of MRDTs and their proofs!

• Extracted RDTs are compatible with Irmin — a Git-like distributed 
database
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Fixing OR-Set
• Discriminate duplicate additions by 

associating a unique id

• MRDT implementation
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{ (a,1) }

{ (a,1); 
  (a,2) } { }

{ (a,2) } { (a,2) }

add(a) rem(a)

   { } ∪ ( { (a,1); (a,2) } - { (a,1) }) ∪ ( { } - { (a,1) } )

= { } ∪ { (a,2) } ∪ { }

= { (a,2) }

Unique Lamport Timestamps
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Specifying OR-Set
Abstract state

= { a }

add(a)

add(a) rem(a)

rd

visvis

vis vis

{ (a,1) }

{ (a,1); 
  (a,2) } { }

{ (a,2) } { (a,2) }

add(a) rem(a)



Simulation Relation
• Connects the abstract execution with the concrete state

• For the OR-set,
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to prove 

Operation definition

defined once-and-for-all 

Simulation 
relation

2. Show that the simulation holds for merge

Merge definition

Assume

defined once-and-for-all 
To prove
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{ (a,1) }

{ (a,1); 
  (a,2) } { }

{ (a,2) } { (a,2) }

add(a) rem(a)

Correctness 
argument is tricky
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{ (a,1) }

{ (a,1); 
  (a,2) } { }

{ (a,2) } { (a,2) }

add(a) rem(a)

{ (a,1) }

{ (a,2) } { }

{ (a,2) } { (a,2) }

add(a) rem(a)

Simulation relation is more 
intricate as one would 

expect
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Composing CRDTs is HARD!



Composing IRC-style chat
• Build IRC-style group chat

★ Send and read messages in channels

★ For simplicity, channels and messages cannot be deleted

• Represent application state as a grow-only map with string 
(channel name) keys and mergeable-log as values

• Goal: 

★ map and log proved correct separately

★ Use the proof of underlying RDTs to prove chat application 
correctness

26
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where

set (“general”, append (“hello”))

set (“compiler”, append (“error”))

set (“general”, append (“world”))

vis

vis

get (“general”, rd) 
[“world”; “hello”]
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Generic Map MRDT
Implementation

Simulation Relation

Get applies given operation on the 
value at key k and returns the value

Set is Get + update the map 
with the new state

Merge uses the merge of the 
underlying value type!

Simulation relation appeals to the 
value type’s simulation relation!



• Program state is constructed by instantiating generic map with 
mergeable log

★ The proof of correctness of the chat application directly follows from the 
composition!

29

Composing IRC-style chat
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Mergeable Queues
• Replicated queue with at-least-once dequeue semantics

★ First verified queue RDT!

• Our aim is to have O(1) enqueue and dequeue and O(n) merge
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• Implementation

★ Uses two-list functional queue implementation

✦ amortised O(1) enqueue and dequeue operations

★ Merge uses longest common contiguous subsequence 
algorithm — O(n)
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3. An element that remains untouched in LCA,  A, B 
remains in M

4. Order of pairs of elements in LCA, A, B must be 
preserved in M, if those elements are present in M.

31

M

Implementation far 
removed from the 

specification!
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• Programming and proving with RDTs is complicated due to 
concurrency and the lack of suitable programming abstractions

• MRDTs simplify RDTs by implementing them as extensions of 
sequential data types

★ Reasoning about correctness is still hard

• Peepul is an F* library for certified MRDTs

★ Replication-aware simulation for proving complex MRDTs

★ Complex MRDTs can be constructed and proved using simpler MRDTs

• F* allows us to strike a balance between automated and 
interactive proofs

★ Extract to OCaml and run on Irmin!
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