# Certified Mergeable Replicated Data Types 

"KC" Sivaramakrishnan
joint work with
Vimala Soundarapandian, Adharsh Kamath and Kartik Nagar


## Tarides

## - VISA <br> ebay <br> f <br> YouTube <br> WETFIXX <br> HSBC



## VISA <br> You Tube <br> HSBC



## VISA <br> YouITube <br> WETFIXX <br> HSBC




- Serializability
- Linearizability


## Even simple data structures attract enormous complexity when made distributed

Lindsey Kuper
@lindsey
"Oh, you wanted to *increment a counter*?! Good luck with that!" -- the distributed systems literature

12:25 AM • Mar 10, 2015 • Twitter Web Client

375 Retweets 18 Quote Tweets 614 Likes

## Sequential Counter

```
module Counter : sig
    type t
    val read : t -> int
    val add : t -> int -> t
    val sub : t -> int -> t
end = struct
    type t = int
    let read x = x
    let add x d = x + d
    let sub x d = x - d
end
```


## Sequential Counter

```
module Counter : sig
    type t
    val read : t -> int
    val add : t -> int -> t
    val sub : t -> int -> t
end = struct
    type t = int
    let read x = x
    let add x d = x + d
    let sub x d = x - d
end
```

- Written in idiomatic style
- Composable

```
type counter_list = Counter.t list
```


## Replicated Counter



- Idea: Apply the local operations at all replicas


## Replicated Counter



- Idea: Apply the local operations at all replicas

```
module Counter : sig
    type t
    val read : t -> int
    val add : t -> int -> t
        val sub : t -> int -> t
        val mult : t -> int -> t
end = struct
        type t = int
        let read x = x
        let add x d = x + d
        let sub x d = x - d
        let mult x n = x * n
end
```

```
module Counter : sig
    type t
    val read : t -> int
    val add : t -> int -> t
        val sub : t -> int -> t
        val mult : t -> int -> t
end = struct
        type t = int
        let read x = x
        let add x d = x + d
        let sub x d = x - d
        let mult x n = x * n
end
```

```
module Counter : sig
    type t
    val read : t -> int
    val add : t -> int -> t
    val sub : t -> int -> t
    val mult : t -> int -> t
end = struct
    type t = int
    let read x = x
    let add x d = x + d
    let sub x d = x - d
    let mult x n = x * n
end
```

```
module Counter : sig
    type t
    val read : t -> int
    val add : t -> int -> t
    val sub : t -> int -> t
    val mult : t -> int -> t
end = struct
    type t = int
    let read x = x
    let add x d = x + d
    let sub x d = x - d
    let mult x n = x * n
end
```



```
module Counter : sig
    type t
    val read : t -> int
    val add : t -> int -> t
    val sub : t -> int -> t
    val mult : t -> int -> t
end = struct
    type t = int
    let read x = x
    let add x d = x + d
    let sub x d = x - d
    let mult x n = x * n
end
```



```
module Counter : sig
    type t
    val read : t -> int
    val add : t -> int -> t
    val sub : t -> int -> t
    val mult : t -> int -> t
end = struct
        type t = int
        let read x = x
        let add x d = x + d
        let sub x d = x - d
        let mult x n = x * n
    end
```



```
module Counter : sig
    type t
    val read : t -> int
    val add : t -> int -> t
    val sub : t -> int -> t
    val mult : t -> int -> t
end = struct
        type t = int
        let read x = x
        let add x d = x + d
        let sub x d = x - d
        let mult x n = x * n
    end
```



Diverges

```
module Counter : sig
    type t
    val read : t -> int
    val add : t -> int -> t
    val sub : t -> int -> t
    val mult : t -> int -> t
end = struct
    type t = int
    let read x = x
    let add x d = x + d
    let sub x d = x - d
    let mult x n = x * n
end
```



Diverges

Addition and multiplication do not commute

```
module Counter : sig
    type t
    val read : t -> int
    val add : t -> int -> t
        val sub : t -> int -> t
        val mult : t -> int -> t
end = struct
        type t = int
        let read x = x
        let add x d = x + d
        let sub x d = x - d
        let mult x n = x * n
end
```

```
module Counter : sig
    type t
    val read : t -> int
    val add : t -> int -> t
    val sub : t -> int -> t
    val mult : t -> int -> t
end = struct
    type t = int
    let read x = x
    let add x d = x + d
    let sub x d = x - d
    let mult x n = x * n
end
```

- Idea: Capture the effect of multiplication through the commutative addition operation

```
module Counter : sig
    type t
    val read : t -> int
    val add : t -> int -> t
    val sub : t -> int -> t
    val mult : t -> int -> t
end = struct
    type t = int
    let read x = x
    let add x d = x + d
    let sub x d = x - d
    let mult x n = x * n
end
```

- Idea: Capture the effect of multiplication through the commutative addition operation

```
module Counter : sig
    type t
    val read : t -> int
    val add : t -> int -> t
    val sub : t -> int -> t
    val mult : t -> int -> t
end = struct
    type t = int
    let read x = x
    let add x d = x + d
    let sub x d = x - d
    let mult x n = x * n
end
```

- Idea: Capture the effect of multiplication through the commutative addition operation

```
module Counter : sig
    type t
    val read : t -> int
    val add : t -> int -> t
    val sub : t -> int -> t
    val mult : t -> int -> t
end = struct
    type t = int
    let read x = x
    let add x d = x + d
    let sub x d = x - d
    let mult x n = x * n
end
```

- Idea: Capture the effect of multiplication through the commutative addition operation

```
module Counter : sig
    type t
    val read : t -> int
    val add : t -> int -> t
    val sub : t -> int -> t
    val mult : t -> int -> t
end = struct
    type t = int
    let read x = x
    let add x d = x + d
    let sub x d = x - d
    let mult x n = x * n
end
```



- Idea: Capture the effect of multiplication through the commutative addition operation

```
module Counter : sig
    type t
    val read : t -> int
    val add : t -> int -> t
    val sub : t -> int -> t
    val mult : t -> int -> t
end = struct
    type t = int
    let read x = x
    let add x d = x + d
    let sub x d = x - d
    let mult x n = x * n
end
```



- Idea: Capture the effect of multiplication through the commutative addition operation

```
module Counter : sig
    type t
    val read : t -> int
    val add : t -> int -> t
    val sub : t -> int -> t
    val mult : t -> int -> t
end = struct
    type t = int
    let read x = x
    let add x d = x + d
    let sub x d = x - d
    let mult x n = x * n
end
```



- Idea: Capture the effect of multiplication through the commutative addition operation

```
module Counter : sig
    type t
    val read : t -> int
    val add : t -> int -> t
    val sub : t -> int -> t
    val mult : t -> int -> t
end = struct
    type t = int
    let read x = x
    let add x d = x + d
    let sub x d = x - d
    let mult x n = x * n
end
```



- Idea: Capture the effect of multiplication through the commutative addition operation
- CRDTs


## Convergent Replicated Data Types (CRDT)

# Convergent Replicated Data Types (CRDT) 

- CRDT is guaranteed to ensure strong eventual consistency (SEC) $\star$ G-counters, PN-counters, OR-Sets, Graphs, Ropes, docs, sheets
$\star$ Simple interface for the clients of CRDTs


## Convergent Replicated Data Types (CRDT)

- CRDT is guaranteed to ensure strong eventual consistency (SEC)
$\star$ G-counters, PN-counters, OR-Sets, Graphs, Ropes, docs, sheets
$\star$ Simple interface for the clients of CRDTs
- Need to reengineer every datatype to ensure SEC (commutativity)
« Do not mirror sequential counter parts => implementation \& proof burden
$\star$ Do not compose!
+ counter set is not a composition of counter and set CRDTs

Can we program \& reason about replicated data types as an extension of their sequential counterparts?

Can we program \& reason about replicated data types as an extension of their sequential counterparts?

## MRDT

```
module Counter : sig
    type t
    val read : t -> int
    val add : t -> int -> t
    val sub : t \(->\) int \(->\) t
    val mult : t -> int -> t
    val merge : lca:t -> v1:t -> v2:t -> t
end \(=\) struct
    type \(\mathrm{t}=\mathrm{int}\)
    let read \(x=x\)
    let add \(\mathrm{x} \mathbf{d}=\mathrm{x}+\mathrm{d}\)
    let sub \(x d=x-d\)
    let mult \(\mathrm{x} \mathrm{n}=\mathrm{x} * \mathrm{n}\)
    let merge ~lca ~v1 ~v2 =
        lca + (v1 - lca) + (v2 - lca)
end
```

```
module Counter : sig
    type t
    val read : t -> int
    val add : t -> int -> t
    val sub : t -> int \(->\) t
    val mult : t -> int -> t
    val merge : lca:t -> v1:t -> v2:t -> t
end \(=\) struct
    type \(\mathrm{t}=\) int
    let read \(x=x\)
    let add \(\mathrm{x} \mathbf{d}=\mathrm{x}+\mathrm{d}\)
    let sub \(x d=x-d\)
    let mult \(\mathrm{x} \mathrm{n}=\mathrm{x} * \mathrm{n}\)
    let merge ~lca ~v1 ~v2 =
        lca + (v1 - lca) + (v2 - lca)
end
```

```
module Counter : sig
    type t
    val read : t -> int
    val add : t -> int -> t
    val sub : t \(->\) int \(->\) t
    val mult : t -> int -> t
    val merge : lca:t -> v1:t -> v2:t -> t
end \(=\) struct
    type \(\mathrm{t}=\mathrm{int}\)
    let read \(x=x\)
    let add \(\mathrm{x} \mathbf{d}=\mathrm{x}+\mathrm{d}\)
    let sub \(x d=x-d\)
    let mult \(\mathrm{x} \mathrm{n}=\mathrm{x} * \mathrm{n}\)
    let merge \(\sim l c a \sim v 1 \sim v 2=\)
        lca + (v1 - lca) + (v2 - lca)
end
```

```
module Counter : sig
    type t
    val read : t -> int
    val add : t -> int -> t
    val sub : t -> int \(->\) t
    val mult : t -> int -> t
    val merge : lca:t -> v1:t -> v2:t -> t
end \(=\) struct
    type \(\mathrm{t}=\mathrm{int}\)
    let read \(x=x\)
    let add x d \(=\mathrm{x}+\mathrm{d}\)
    let sub \(x d=x-d\)
    let mult \(\mathrm{x} \mathrm{n}=\mathrm{x} * \mathrm{n}\)
    let merge \(\sim l c a \sim v 1 \sim v 2=\)
        lca + (v1 - lca) + (v2 - lca)
end
```

    8
    ```
module Counter : sig
    type t
    val read : t -> int
    val add : t -> int -> t
    val sub : t -> int \(->\) t
    val mult : t -> int -> t
    val merge : lca:t -> v1:t -> v2:t -> t
end = struct
    type t = int
    let read \(x=x\)
    let add x d \(=\mathrm{x}+\mathrm{d}\)
    let sub \(x\) d \(=x-d\)
    let mult \(\mathrm{x} \mathrm{n}=\mathrm{x} * \mathrm{n}\)
    let merge ~lca ~v1 ~v2 =
        lca + (v1 - lca) + (v2 - lca)
end
```



```
module Counter : sig
    type t
    val read : t -> int
    val add : t -> int -> t
    val sub : t -> int -> t
    val mult : t -> int -> t
    val merge : lca:t -> v1:t -> v2:t -> t
end = struct
    type t = int
    let read x = x
    let add x d = x + d
    let sub x d = x - d
    let mult x n = x * n
    let merge ~lca ~v1 ~v2 =
        lca + (v1 - lca) + (v2 - lca)
end
```



```
module Counter : sig
    type t
    val read : t -> int
    val add : t -> int -> t
    val sub : t -> int \(->\) t
    val mult : t -> int -> t
    val merge : lca:t -> v1:t -> v2:t -> t
end = struct
    type t = int
    let read \(\mathrm{x}=\mathrm{x}\)
    let add x d \(=\mathrm{x}+\mathrm{d}\)
    let sub \(x\) d \(=x-d\)
    let mult \(\mathrm{x} \mathrm{n}=\mathrm{x}\) * n
    let merge ~lca ~v1 ~v2 =
end
```

    \(22=7+(8-1)+(21-7)\)
    
$22=7+(8-1)+(21-7)$

```
module Counter : sig
    type t
    val read : t -> int
    val add : t -> int -> t
    val sub : t -> int -> t
    val mult : t -> int -> t
    val merge : lca:t -> v1:t -> v2:t -> t
end = struct
    type t = int
    let read x = x
    let add x d = x + d
    let sub x d = x - d
    let mult x n = x * n
    let merge ~lca ~v1 ~v2 =
        lca + (v1 - lca) + (v2 - lca)
end
```


$22=7+(8-1)+(21-7)$

```
end
```

- 3-way merge function makes the counter suitable for distribution

```
module Counter : sig
    type t
    val read : t -> int
    val add : t -> int -> t
    val sub : t -> int -> t
    val mult : t -> int -> t
    val merge : lca:t -> v1:t -> v2:t -> t
end = struct
    type t = int
    let read x = x
    let add x d = x + d
    let sub x d = x - d
    let mult x n = x * n
    let merge ~lca ~v1 ~v2 =
        lca + (v1 - lca) + (v2 - lca)
end
```



$$
22=7+(8-1)+(21-7)
$$

```
end
```

- 3-way merge function makes the counter suitable for distribution
- Does not appeal to individual operations => independently extend data-type

Systems $\rightarrow$ PL

## Systems $\rightarrow$ PL

- CRDTs need to take care of systems level concerns such as
message loss, duplication and reordering


## Systems $\rightarrow$ PL

- CRDTs need to take care of systems level concerns such as message loss, duplication and reordering
- 3-way merge is oblivious to these
- By leaving those concerns to MRDT middleware


## Systems $\rightarrow$ PL

- CRDTs need to take care of systems level concerns such as message loss, duplication and reordering
- 3-way merge is oblivious to these
- By leaving those concerns to MRDT middleware



## Systems $\rightarrow$ PL

- CRDTs need to take care of systems level concerns such as message loss, duplication and reordering
- 3-way merge is oblivious to these
- By leaving those concerns to MRDT middleware



## Systems $\rightarrow$ PL

- CRDTs need to take care of systems level concerns such as message loss, duplication and reordering
- 3-way merge is oblivious to these
+ By leaving those concerns to MRDT middleware

$22=21+(21-21)+(22-21)$

Does the 3-way merge idea generalise?

Does the 3-way merge idea generalise?

## Sort of

## Observed-Removed Set

## Observed-Removed Set

- OR-set - add-wins when there is a concurrent add and remove of the same element


## Observed-Removed Set

- OR-set - add-wins when there is a concurrent add and remove of the same element

```
let merge ~lca ~v1 ~v2 =
    (lca n v1 n v2) (* unmodified elements *)
    u (v1 - lca) (* added in v1 *)
    u (v2 - lca) (* added in v2 *)
```

Kaki et al."Mergeable Replicated Data Types", OOPSLA 2019

## Observed-Removed Set

- OR-set — add-wins when there is a concurrent add and remove of the same element

```
let merge ~lca ~v1 ~v2 =
    (lca n v1 n v2) (* unmodified elements *)
    u (v1 - lca) (* added in v1 *)
    u (v2 - lca) (* added in v2 *)
```

Kaki et al."Mergeable Replicated Data Types", OOPSLA 2019

## Observed-Removed Set

- OR-set — add-wins when there is a concurrent add and remove of the same element

```
let merge ~lca ~v1 ~v2 =
    (lca n v1 n v2) (* unmodified elements *)
    u (v1 - lca) (* added in v1 *)
    u (v2 - lca) (* added in v2 *)
Kaki et al."Mergeable Replicated Data Types", OOPSLA 2019
```



## Observed-Removed Set

- OR-set - add-wins when there is a concurrent add and remove of the same element

```
let merge ~lca ~v1 ~v2 =
    (lca n v1 n v2) (* unmodified elements *)
    u (v1 - lca) (* added in v1 *)
    u (v2 - lca) (* added in v2 *)
Kaki et al."Mergeable Replicated Data Types", OOPSLA 2019
```



## Observed-Removed Set

- OR-set — add-wins when there is a concurrent add and remove of the same element

```
let merge ~lca ~v1 ~v2 =
    (lca n v1 n v2) (* unmodified elements *)
    u (v1 - lca) (* added in v1 *)
    u (v2 - lca) (* added in v2 *)
```

Kaki et al."Mergeable Replicated Data Types", OOPSLA 2019


## Observed-Removed Set

- OR-set — add-wins when there is a concurrent add and remove of the same element

```
let merge ~lca ~v1 ~v2 =
    (lca n v1 n v2) (* unmodified elements *)
    u (v1 - lca) (* added in v1 *)
    u (v2 - lca) (* added in v2 *)
Kaki et al."Mergeable Replicated Data Types", OOPSLA 2019
```



- Convergence is not sufficient; Intent is not preserved


## Concretising Intent

- Intent is a woolly term
* How can we formalise the intent of operations on a data structure?



## Concretising Intent

- Intent is a woolly term
$\star$ How can we formalise the intent of operations on a data structure?
- We need
* A formal language to specify the intent of an RDT
* Mechanization to bridge the air gap between specification and implementation due to distributed system complexity


## Peepul — Certified MRDTs



## Peepul — Certified MRDTs

- An $\mathrm{F}^{*}$ library implementing and proving MRDTs
* https://github.com/prismlab/peepul


## Peepul — Certified MRDTs

- An $\mathrm{F}^{*}$ library implementing and proving MRDTs
^ https://github.com/prismlab/peepul
- Specification language is event-based

$\star$ Burckhardt et al."Replicated Data Types: Specification,Verification and Optimality", POPL 2014


## Peepul — Certified MRDTs

- An $F^{*}$ library implementing and proving MRDTs
* https://github.com/prismlab/peepul
- Specification language is event-based

^ Burckhardt et al."Replicated Data Types: Specification,Verification and Optimality", POPL 2014
- Replication-aware simulation to connect specification with implementation


## Peepul - Certified MRDTs

- An $F^{*}$ library implementing and proving MRDTs
* https://github.com/prismlab/peepul
- Specification language is event-based

* Burckhardt et al."Replicated Data Types: Specification,Verification and Optimality", POPL 2014
- Replication-aware simulation to connect specification with implementation
- Composition of MRDTs and their proofs!


## Peepul - Certified MRDTs

- An $\mathrm{F}^{*}$ library implementing and proving MRDTs
* https://github.com/prismlab/peepul
- Specification language is event-based

^ Burckhardt et al."Replicated Data Types: Specification,Verification and Optimality", POPL 2014
- Replication-aware simulation to connect specification with implementation
- Composition of MRDTs and their proofs!
- Extracted RDTs are compatible with Irmin - a Git-like distributed database


## Fixing OR-Set

- Discriminate duplicate additions by associating a unique id


## Fixing OR-Set

- Discriminate duplicate additions by associating a unique id

$$
\{(a, 1)\}
$$

## Fixing OR-Set

- Discriminate duplicate additions by associating a unique id



## Fixing OR-Set

- Discriminate duplicate additions by associating a unique id



## Fixing OR-Set

- Discriminate duplicate additions by associating a unique id

$$
\begin{aligned}
& \} \cup(\{(\mathrm{a}, 1) ;(\mathrm{a}, 2)\}-\{(\mathrm{a}, 1)\}) \cup(\}-\{(\mathrm{a}, 1)\}) \\
= & \} \cup\{(\mathrm{a}, 2)\} \cup\} \\
= & \{(\mathrm{a}, 2)\}
\end{aligned}
$$



## Fixing OR-Set

- Discriminate duplicate additions by associating a unique id

$$
\begin{aligned}
& \} \cup(\{(\mathrm{a}, 1) ;(\mathrm{a}, 2)\}-\{(\mathrm{a}, 1)\}) \cup(\}-\{(\mathrm{a}, 1)\}) \\
= & \} \cup\{(\mathrm{a}, 2)\} \cup\} \\
= & \{(\mathrm{a}, 2)\}
\end{aligned}
$$

- MRDT implementation

$$
D_{\tau}=\left(\Sigma, \sigma_{0}, \text { do, merge }\right)
$$



## Fixing OR-Set

- Discriminate duplicate additions by associating a unique id
$\} \cup(\{(a, 1) ;(a, 2)\}-\{(a, 1)\}) \cup(\}-\{(a, 1)\})$
$=\{ \} \cup\{(a, 2)\} \cup\{ \}$
$=\{(\mathrm{a}, \mathrm{z})\}$
- MRDT implementation

$$
D_{\tau}=\left(\Sigma, \sigma_{0}, \text { do, merge }\right)
$$

```
1: \Sigma=\mathcal{P}(\mathbb{N}\times\mathbb{N})
2:}\mp@subsup{\sigma}{0}{}={
3: do(rd,\sigma,t)=(\sigma,{a|(a,t)\in\sigma})
4: do(add(a), \sigma,t)=(\sigma\cup{(a,t)}, \perp)
5: do(remove (a), \sigma,t)=({e\in\sigma|fst(e)\not=a},\perp)
6: merge}(\mp@subsup{\sigma}{lca}{},\mp@subsup{\sigma}{a}{},\mp@subsup{\sigma}{b}{})
    (\mp@subsup{\sigma}{lca}{}\cap\mp@subsup{\sigma}{a}{}\cap\mp@subsup{\sigma}{b}{})\cup(\mp@subsup{\sigma}{a}{}-\mp@subsup{\sigma}{lca}{})\cup(\mp@subsup{\sigma}{b}{}-\mp@subsup{\sigma}{lca}{})
```



## Fixing OR-Set

- Discriminate duplicate additions by associating a unique id
$\} \cup(\{(a, 1) ;(a, 2)\}-\{(a, 1)\}) \cup(\}-\{(a, 1)\})$
$=\{ \} \cup\{(a, 2)\} \cup\{ \}$
$=\{(\mathrm{a}, \mathrm{z})\}$
- MRDT implementation

$$
D_{\tau}=\left(\Sigma, \sigma_{0}, \text { do, merge }\right)
$$

1: $\Sigma=\mathcal{P}(\mathbb{N} \times \mathbb{N}) \longrightarrow$ Unique Lamport Timestamps
2: $\sigma_{0}=\{ \}$
3: $\operatorname{do}(r d, \sigma, t)=(\sigma,\{a \mid(a, t) \in \sigma\})$
4: $\operatorname{do}(\operatorname{add}(a), \sigma, t)=(\sigma \cup\{(a, t)\}, \perp)$


5: do $($ remove $(a), \sigma, t)=(\{e \in \sigma \mid f s t(e) \neq a\}, \perp)$
6: $\operatorname{merge}\left(\sigma_{l c a}, \sigma_{a}, \sigma_{b}\right)=$

$$
\left(\sigma_{l c a} \cap \sigma_{a} \cap \sigma_{b}\right) \cup\left(\sigma_{a}-\sigma_{l c a}\right) \cup\left(\sigma_{b}-\sigma_{l c a}\right)
$$

## Specifying OR-Set

Abstract state $I=\langle E$, oper, rval, time, vis $\rangle$

## Specifying OR-Set

Abstract state $I=\langle E$, oper, rval, time, vis $\rangle$


## Specifying OR-Set

Abstract state $I=\langle E$, oper, rval, time, vis $\rangle$


$$
\begin{aligned}
& \mathcal{F}_{\text {orset }}(\mathrm{rd},\langle E, \text { oper, rval, time, vis }\rangle)=\{a \mid \exists e \in E . \operatorname{oper}(e) \\
& =\operatorname{add}(a) \wedge \neg(\exists f \in E . \operatorname{oper}(f)=\operatorname{remove}(a) \wedge e \xrightarrow{\text { ois }} f)\}
\end{aligned}
$$

## Specifying OR-Set

Abstract state $I=\langle E$, oper, rval, time, vis $\rangle$


$$
\begin{aligned}
& \mathcal{F}_{\text {orset }}(\mathrm{rd},\langle E, \text { oper, rval, time, vis }\rangle)=\{a \mid \exists e \in E . \operatorname{oper}(e) \\
& =\operatorname{add}(a) \wedge \neg(\exists f \in E . \operatorname{oper}(f)=\operatorname{remove}(a) \wedge e \xrightarrow{\text { ois }} f)\}
\end{aligned}
$$

## Simulation Relation

- Connects the abstract execution with the concrete state
- For the OR-set,

$$
\begin{array}{r}
\mathcal{R}_{\operatorname{sim}(I, \sigma)} \Longleftrightarrow(\forall(a, t) \in \sigma \Longleftrightarrow \\
(\exists e \in I . E \wedge I \cdot \operatorname{oper}(e)=\operatorname{add}(a) \wedge I . \operatorname{time}(e)=t \wedge \\
\neg(\exists f \in I . E \wedge I . \operatorname{oper}(f)=\operatorname{remove}(a) \wedge e \xrightarrow{\text { vis }} f)))
\end{array}
$$

## Verifying Operations

I. Show that the simulation holds for operations


## Verifying Operations

I. Show that the simulation holds for operations


## Verifying Operations

I. Show that the simulation holds for operations

2. Show that the simulation holds for merge

## Verifying Operations

I. Show that the simulation holds for operations

2. Show that the simulation holds for merge


## Verifying Operations

I. Show that the simulation holds for operations

2. Show that the simulation holds for merge


## Verifying Operations

3. Show that the specification and the implementation agree on the return values of operations

$$
\begin{array}{cc}
\quad \forall I, \sigma, e, o p, a, t . \mathcal{R}_{\text {sim }}(I, \sigma) \wedge d o^{\#}(I, e, o p, a, t)=I^{\prime} \\
\Phi_{\text {spec }}\left(\mathcal{R}_{\text {sim }}\right) & \wedge \mathcal{D}_{\tau} \cdot d o(o p, \sigma, t)=\left(\sigma^{\prime}, a\right) \wedge \Psi_{t s}(I) \Longrightarrow a=\mathcal{F}_{\tau}(o, I)
\end{array}
$$

## Verifying Operations

3. Show that the specification and the implementation agree on the return values of operations

$$
\begin{array}{cc}
\quad \forall I, \sigma, e, o p, a, t . \mathcal{R}_{\text {sim }}(I, \sigma) \wedge d o^{\#}(I, e, o p, a, t)=I^{\prime} \\
\Phi_{\text {spec }}\left(\mathcal{R}_{\text {sim }}\right) & \wedge \mathcal{D}_{\tau} \cdot d o(o p, \sigma, t)=\left(\sigma^{\prime}, a\right) \wedge \Psi_{t s}(I) \Longrightarrow a=\mathcal{F}_{\tau}(o, I)
\end{array}
$$

4. Convergence

$$
\Phi_{\text {con }}\left(\mathcal{R}_{\text {sim }}\right)
$$

$$
\forall I, \sigma_{a}, \sigma_{b} \cdot \mathcal{R}_{\operatorname{sim}}\left(I, \sigma_{a}\right) \wedge \mathcal{R}_{\operatorname{sim}}\left(I, \sigma_{b}\right) \Longrightarrow \sigma_{a} \sim \sigma_{b}
$$

## Verifying Operations

3. Show that the specification and the implementation agree on the return values of operations

$$
\begin{gathered}
\forall I, \sigma, e, o p, a, t . \mathcal{R}_{\text {sim }}(I, \sigma) \wedge d o^{\#}(I, e, o p, a, t)=I^{\prime} \\
\Phi_{\text {spec }}\left(\mathcal{R}_{\text {sim }}\right) \\
\wedge \mathcal{D}_{\tau} \cdot d o(o p, \sigma, t)=\left(\sigma^{\prime}, a\right) \wedge \Psi_{t s}(I) \Longrightarrow a=\mathcal{F}_{\tau}(o, I)
\end{gathered}
$$

4. Convergence

$$
\Phi_{c o n}\left(\mathcal{R}_{s i m}\right) \quad \forall I, \sigma_{a}, \sigma_{b} . \mathcal{R}_{s i m}\left(I, \sigma_{a}\right) \wedge \mathcal{R}_{s i m}\left(I, \sigma_{b}\right) \Longrightarrow \sigma_{a} \sim \sigma_{b}
$$

$\uparrow$ Permits the different replicas to converge to states that are observationally equal but not structurally equal
© Example: differently balanced BSTs

## Verifying Operations

3. Show that the specification and the implementation agree on the return values of operations

$$
\begin{gathered}
\forall I, \sigma, e, o p, a, t . \mathcal{R}_{\text {sim }}(I, \sigma) \wedge d o^{\#}(I, e, o p, a, t)=I^{\prime} \\
\Phi_{\text {spec }}\left(\mathcal{R}_{\text {sim }}\right) \\
\wedge \mathcal{D}_{\tau} \cdot d o(o p, \sigma, t)=\left(\sigma^{\prime}, a\right) \wedge \Psi_{t s}(I) \Longrightarrow a=\mathcal{F}_{\tau}(o, I)
\end{gathered}
$$

4. Convergence

$$
\Phi_{\text {con }}\left(\mathcal{R}_{\text {sim }}\right) \quad \forall I, \sigma_{a}, \sigma_{b} . \mathcal{R}_{\text {sim }}\left(I, \sigma_{a}\right) \wedge \mathcal{R}_{\text {sim }}\left(I, \sigma_{b}\right) \Longrightarrow \sigma_{a} \sim \sigma_{b}
$$

$\downarrow$ Permits the different replicas to converge to states that are observationally equal but not structurally equal
© Example: differently balanced BSTs


## Space-efficient OR-Set

- Recall that the OR-set has duplicates

- How can we remove them?


## Space-efficient OR-Set

- Recall that the OR-set has duplicates

- How can we remove them?
- Idea
$\star$ On addition, replace existing element's timestamp with the new timestamp
$\star$ On merge, pick the larger timestamp


## Space-efficient OR-Set

- Recall that the OR-set has duplicates

- How can we remove them?
- Idea
$\star$ On addition, replace existing element's timestamp with the new timestamp
$\star$ On merge, pick the larger timestamp


## Space-efficient OR-Set



## Space-efficient OR-Set



$$
\begin{array}{r}
\mathcal{R}_{\text {sim }}((E, \text { oper, rval, time, vis }), \sigma) \Longleftrightarrow \\
(\forall(a, t) \in \sigma \Longrightarrow \quad(\exists e \in E . \operatorname{oper}(e)=\operatorname{add}(a) \wedge \operatorname{time}(e)=t \\
\wedge \neg(\exists r \in E . \operatorname{oper}(r)=\operatorname{remove}(a) \wedge e \xrightarrow{v i s} r)) \wedge \\
(\forall e \in E . \operatorname{oper}(e)=\operatorname{add}(a) \wedge \neg(\exists r \in \operatorname{E.oper}(r)=\operatorname{remove}(a) \\
\wedge e \xrightarrow{v i s} r) \Longrightarrow t \geq \operatorname{time}(e))) \wedge \\
(\forall e \in E . \forall a \in \mathbb{N} . \operatorname{oper}(e)=\operatorname{add}(a) \\
\left.\wedge \neg(\exists r \in E . \operatorname{oper}(r)=\operatorname{remove}(a) \wedge e \xrightarrow{v i s} r) \Longrightarrow\left(a, \_\right) \in \sigma\right)
\end{array}
$$

## Space-efficient OR-Set



$$
\begin{array}{r}
\mathcal{R}_{\text {sim }}((E, \text { oper, rval, time, vis }), \sigma) \Longleftrightarrow \\
(\forall(a, t) \in \sigma \Longrightarrow \operatorname{lime}(e)=t \\
\wedge \neg(\exists r \in E . \text { oper }(e)=\operatorname{add}(a) \wedge \operatorname{time})=\operatorname{remove}(a) \wedge e \xrightarrow{v i s} r)) \wedge \\
(\forall e \in E . \operatorname{oper}(e)=\operatorname{add}(a) \wedge \neg(\exists r \in \operatorname{E.oper}(r)=\operatorname{remove}(a) \\
\wedge e \xrightarrow{v i s} r) \Longrightarrow t \geq \operatorname{time}(e))) \wedge \\
(\forall e \in E . \forall a \in \mathbb{N} . \operatorname{oper}(e)=\operatorname{add}(a) \\
\left.\wedge \neg(\exists r \in E . \operatorname{oper}(r)=\operatorname{remove}(a) \wedge e \xrightarrow{v i s} r) \Longrightarrow\left(a,,_{-}\right) \in \sigma\right)
\end{array}
$$

Simulation relation is more intricate as one would
expect

## Verification effort

| MRDTs verified | \#Lines code | \#Lines proof | \#Lemmas | Verif. time (s) |
| :--- | :--- | :--- | :--- | :--- |
| Increment-only counter | 6 | 43 | 2 | 3.494 |
| PN counter | 8 | 43 | 2 | 23.211 |
| Enable-wins flag | 20 | 58 | 3 | 1074 |
|  |  | 81 | 6 | 171 |
| LWW register | 89 | 7 | 104 |  |
| G-set | 5 | 44 | 1 | 4.21 |
| G-map | 10 | 23 | 0 | 4.71 |
| Mergeable log | 28 | 1 | 2.462 |  |
| OR-set (§2.1.1) | 38 | 2 | 1.993 |  |
| OR-set-space (§2.1.2) | 39 | 26 | 0 | 26.089 |
| OR-set-spacetime | 30 | 36 | 2 | 36.562 |
| Queue | 41 | 0 | 43.85 |  |

## Composing CRDTs is HARD!

Martin Kleppmann
@martinkl
Today in "distributed systems are hard": I wrote down a simple CRDT algorithm that I thought was "obviously correct" for a course l'm teaching. Only 10 lines or so long. Found a fatal bug only after spending hours trying to prove the algorithm correct.

4:18 AM • Nov 13, $2020 \cdot$ Tweetbot for iOS

41 Retweets 4 Quote Tweets 541 Likes

## Martin Kleppmann @martinkl• Nov 13, 2020

The interesting thing about this bug is that it comes about only from the interaction of two features. A LWW map by itself is fine. A set in which you can insert and delete elements (but not update them) is fine. The problem arises only when delete and update interact.


## Composing IRC-style chat

- Build IRC-style group chat
* Send and read messages in channels
$\star$ For simplicity, channels and messages cannot be deleted
- Represent application state as a grow-only map with string (channel name) keys and mergeable-log as values
- Goal:
^ map and log proved correct separately
$\star$ Use the proof of underlying RDTs to prove chat application correctness


## Generic Map MRDT

- Specification


## Generic Map MRDT

- Specification

$$
\begin{aligned}
& \mathcal{F}_{\alpha-\text { map }}\left(\operatorname{get}\left(k, o_{\alpha}\right), I\right)= \\
& \quad \text { let } I_{\alpha}=\operatorname{project}(k, I) \text { in } \mathcal{F}_{\alpha}\left(o_{\alpha}, I_{\alpha}\right)
\end{aligned}
$$

where
project $k I_{\alpha-\text { map }}=I_{\alpha}$

## Generic Map MRDT

- Specification

$$
\begin{aligned}
& \mathcal{F}_{\alpha-\operatorname{map}}\left(\operatorname{get}\left(k, o_{\alpha}\right), I\right)= \\
& \quad \text { let } I_{\alpha}=\operatorname{project}(k, I) \text { in } \mathcal{F}_{\alpha}\left(o_{\alpha}, I_{\alpha}\right)
\end{aligned}
$$

where

$$
\text { project } k I_{\alpha-\text { map }}=I_{\alpha}
$$

- Project filters the abstract state of the map on the key $k$ and returns an abstract state of the underlying data type
$\star$ Provided by the user once for a generic MRDT


## Generic Map MRDT

- Specification

$$
\begin{aligned}
& \mathcal{F}_{\alpha-\text { map }}\left(\operatorname{get}\left(k, o_{\alpha}\right), I\right)= \\
& \quad \operatorname{let} I_{\alpha}=\operatorname{project}(k, I) \text { in } \mathcal{F}_{\alpha}\left(o_{\alpha}, I_{\alpha}\right)
\end{aligned}
$$

where

$$
\text { project } k I_{\alpha-m a p}=I_{\alpha}
$$

- Project filters the abstract state of the map on the key $k$ and returns an abstract state of the underlying data type
$\star$ Provided by the user once for a generic MRDT



## Generic Map MRDT

## Implementation

$$
\mathcal{D}_{\alpha-m a p}=\left(\Sigma, \sigma_{0}, \text { do, } \text { merge }_{\alpha-m a p}\right) \text { where }
$$

1: $\quad \Sigma_{\alpha-m a p}=\mathcal{P}\left(\right.$ string $\left.\times \Sigma_{\alpha}\right)$
2: $\quad \sigma_{0}=\{ \}$
3: $\quad \delta(\sigma, k)= \begin{cases}\sigma(k), & \text { if } k \in \operatorname{dom}(\sigma) \\ \sigma_{0_{\alpha}}, & \text { otherwise }\end{cases}$
4: $\quad \operatorname{do}\left(\operatorname{set}\left(k, o_{\alpha}\right), \sigma, t\right)=$

$$
\text { let }(v, r)=d o_{\alpha}\left(o_{\alpha}, \delta(\sigma, k), t\right) \text { in }(\sigma[k \mapsto v], r)
$$

5: $\quad \operatorname{do}\left(\operatorname{get}\left(k, o_{\alpha}\right), \sigma, t\right)=$

$$
\text { let }\left(\_r\right)=d o_{\alpha}\left(o_{\alpha}, \delta(\sigma, k), t\right) \text { in }(\sigma, r)
$$

6: $\quad \operatorname{merge}_{\alpha-\text { map }}\left(\sigma_{l c a}, \sigma_{a}, \sigma_{b}\right)=$ $\left\{(k, v) \mid\left(k \in \operatorname{dom}\left(\sigma_{l c a}\right) \cup \operatorname{dom}\left(\sigma_{a}\right) \cup \operatorname{dom}\left(\sigma_{b}\right)\right) \wedge\right.$

Simulation Relation

$$
v=\operatorname{merge}_{\alpha}\left(\delta\left(\sigma_{l c a}, k\right), \delta\left(\sigma_{a}, k\right), \delta\left(\sigma_{b}, k\right)\right)
$$

```
    \mathcal{R sim-\alpha-map}}(I,\sigma)\Longleftrightarrow\forallk
1: (k\in\operatorname{dom}(\sigma)\Longleftrightarrow\existse\inI.E.oper (e) = set (k,_))^
2:
    \mathcal{R}
```


## Generic Map MRDT

## Implementation

```
    \(\mathcal{D}_{\alpha-\text { map }}=\left(\Sigma, \sigma_{0}\right.\), do, merge \(\left._{\alpha-\text { map }}\right)\) where
    1: \(\quad \Sigma_{\alpha-\text { map }}=\mathcal{P}\left(\right.\) string \(\left.\times \Sigma_{\alpha}\right)\)
    2: \(\quad \sigma_{0}=\{ \}\)
    3: \(\quad \delta(\sigma, k)= \begin{cases}\sigma(k), & \text { if } k \in \operatorname{dom}(\sigma) \\ \sigma_{0_{\alpha}}, & \text { otherwise }\end{cases}\)
    4: \(\quad \operatorname{do}\left(\operatorname{set}\left(k, o_{\alpha}\right), \sigma, t\right)=\)
        let \((v, r)=d o_{\alpha}\left(o_{\alpha}, \delta(\sigma, k), t\right)\) in \((\sigma[k \mapsto v], r)\)
    5: \(\quad \operatorname{do}\left(\operatorname{get}\left(k, o_{\alpha}\right), \sigma, t\right)=\)
        let \((, r)=d o_{\alpha}\left(o_{\alpha}, \delta(\sigma, k), t\right)\) in \((\sigma, r) \longrightarrow\) value at key k and returns the value
    6: \(\quad \operatorname{merge}_{\alpha-\text { map }}\left(\sigma_{\text {lca }}, \sigma_{a}, \sigma_{b}\right)=\)
        \(\left\{(k, v) \mid\left(k \in \operatorname{dom}\left(\sigma_{l c a}\right) \cup \operatorname{dom}\left(\sigma_{a}\right) \cup \operatorname{dom}\left(\sigma_{b}\right)\right) \wedge\right.\)
                        \(v=\operatorname{merge}_{\alpha}\left(\delta\left(\sigma_{l c a}, k\right), \delta\left(\sigma_{a}, k\right), \delta\left(\sigma_{b}, k\right)\right)\)
Simulation Relation
```

```
    \(\mathcal{R}_{\text {sim- } \alpha-m a p}(I, \sigma) \Longleftrightarrow \forall k\).
1: \(\left(k \in \operatorname{dom}(\sigma) \Longleftrightarrow \exists e \in I . E . \operatorname{oper}(e)=\operatorname{set}\left(k, \_\right)\right) \wedge\)
2: \(\quad \mathcal{R}_{\text {sim- }}(\operatorname{project}(k, I), \delta(\sigma, k))\)
```


## Generic Map MRDT

## Implementation

$$
\begin{array}{ll} 
& \mathcal{D}_{\alpha-\text { map }}=\left(\Sigma, \sigma_{0}, \text { do, } \text { merge }_{\alpha-m a p}\right) \text { where } \\
1: & \Sigma_{\alpha-m a p}=\mathcal{P}\left(\text { string } \times \Sigma_{\alpha}\right) \\
2: & \sigma_{0}=\{ \} \\
3: & \delta(\sigma, k)= \begin{cases}\sigma(k), & \text { if } k \in \operatorname{dom}(\sigma) \\
\sigma_{0_{\alpha}}, & \text { otherwise }\end{cases}
\end{array}
$$

$$
\text { 4: } \quad \operatorname{do}\left(\operatorname{set}\left(k, o_{\alpha}\right), \sigma, t\right)=
$$

$$
\text { let }(v, r)=d o_{\alpha}\left(o_{\alpha}, \delta(\sigma, k), t\right) \text { in }(\sigma[k \mapsto v], r)
$$ with the new state

5: $\quad \operatorname{do}\left(\operatorname{get}\left(k, o_{\alpha}\right), \sigma, t\right)=$
let $(, r)=d o_{\alpha}\left(o_{\alpha}, \delta(\sigma, k), t\right)$ in $(\sigma, r) \longrightarrow$ value at key $k$ and returns the value
6: $\quad \operatorname{merge}_{\alpha-\text { map }}\left(\sigma_{\text {lca }}, \sigma_{a}, \sigma_{b}\right)=$

$$
\left\{(k, v) \mid\left(k \in \operatorname{dom}\left(\sigma_{l c a}\right) \cup \operatorname{dom}\left(\sigma_{a}\right) \cup \operatorname{dom}\left(\sigma_{b}\right)\right) \wedge\right.
$$

Simulation Relation

$$
v=\operatorname{merge}_{\alpha}\left(\delta\left(\sigma_{l c a}, k\right), \delta\left(\sigma_{a}, k\right), \delta\left(\sigma_{b}, k\right)\right)
$$

```
    \mathcal{R}
1:(k\in\operatorname{dom}(\sigma)\Longleftrightarrow\existse\inI.E.oper(e)=set(k,_))^
2: }\mp@subsup{\mathcal{R}}{\mathrm{ sim- }}{}(\operatorname{project}(k,I),\delta(\sigma,k)
```


## Generic Map MRDT

## Implementation

$\mathcal{D}_{\alpha-\text { map }}=\left(\Sigma, \sigma_{0}\right.$, do, merge $\left.e_{\alpha-\text { map }}\right)$ where
1: $\quad \Sigma_{\alpha-\text { map }}=\mathcal{P}\left(\right.$ string $\left.\times \Sigma_{\alpha}\right)$
2: $\quad \sigma_{0}=\{ \}$
3: $\quad \delta(\sigma, k)= \begin{cases}\sigma(k), & \text { if } k \in \operatorname{dom}(\sigma) \\ \sigma_{0_{\alpha}}, & \text { otherwise }\end{cases}$
4: $\quad \operatorname{do}\left(\operatorname{set}\left(k, o_{\alpha}\right), \sigma, t\right)=$


Set is Get + update the map with the new state

5: $\quad \operatorname{do}\left(\operatorname{get}\left(k, o_{\alpha}\right), \sigma, t\right)=$
let $(, r)=d o_{\alpha}\left(o_{\alpha}, \delta(\sigma, k), t\right)$ in $(\sigma, r)$
6: $\quad \operatorname{merge}_{\alpha-\text { map }}\left(\sigma_{\text {lca }}, \sigma_{a}, \sigma_{b}\right)=$ $\left\{(k, v) \mid\left(k \in \operatorname{dom}\left(\sigma_{l c a}\right) \cup \operatorname{dom}\left(\sigma_{a}\right) \cup \operatorname{dom}\left(\sigma_{b}\right)\right) \wedge\right.$ Get applies given operation on the value at key $k$ and returns the value

$$
v=\operatorname{merge}_{\alpha}\left(\delta\left(\sigma_{l c a}, k\right), \delta\left(\sigma_{a}, k\right), \delta\left(\sigma_{b}, k\right)\right) \longrightarrow \quad \text { underlying value type! }
$$

## Simulation Relation

```
    \mathcal{R sim-\alpha-map}}(I,\sigma)\Longleftrightarrow\forallk
1: (k\in\operatorname{dom}(\sigma)\Longleftrightarrow\existse\inI.E.oper (e)=set(k,_))^
2: }\mp@subsup{\mathcal{R}}{\mathrm{ sim- }}{}(\operatorname{project}(k,I),\delta(\sigma,k)
```


## Generic Map MRDT

## Implementation

```
            \(\mathcal{D}_{\alpha-\text { map }}=\left(\Sigma, \sigma_{0}\right.\), do merge \(\left._{\alpha-\text { map }}\right)\) where
    1: \(\quad \Sigma_{\alpha-\text { map }}=\mathcal{P}\left(\right.\) string \(\left.\times \Sigma_{\alpha}\right)\)
    2: \(\quad \sigma_{0}=\{ \}\)
    3: \(\quad \delta(\sigma, k)= \begin{cases}\sigma(k), & \text { if } k \in \operatorname{dom}(\sigma) \\ \sigma_{0_{\alpha}}, & \text { otherwise }\end{cases}\)
    4: \(\quad \operatorname{do}\left(\operatorname{set}\left(k, o_{\alpha}\right), \sigma, t\right)=\)
        let \((v, r)=d o_{\alpha}\left(o_{\alpha}, \delta(\sigma, k), t\right)\) in \((\sigma[k \mapsto v], r)\)
```

$\longrightarrow$ Set is Get + update the map with the new state

## Simulation Relation

```
    \mathcal{R}
1: (k\in\operatorname{dom}(\sigma)\Longleftrightarrow\existse\inI.E.oper (e)=set(k,_))^
2: }\mp@subsup{\mathcal{R}}{\mathrm{ sim- }}{}(\operatorname{project}(k,I),\delta(\sigma,k)
Simulation relation appeals to the
value type's simulation relation!
```


## Composing IRC-style chat

- Program state is constructed by instantiating generic map with mergeable log
$\star$ The proof of correctness of the chat application directly follows from the composition!


## Mergeable Queues

- Replicated queue with at-least-once dequeue semantics
$\star$ First verified queue RDT!


## Mergeable Queues

- Replicated queue with at-least-once dequeue semantics
$\star$ First verified queue RDT!



## Mergeable Queues

- Replicated queue with at-least-once dequeue semantics
$\star$ First verified queue RDT!

- Our aim is to have $O(1)$ enqueue and dequeue and $O(n)$ merge


## Mergeable Queues

- Implementation
$\star$ Uses two-list functional queue implementation
- amortised $\mathrm{O}(\mathrm{I})$ enqueue and dequeue operations
* Merge uses longest common contiguous subsequence algorithm — O(n)



## Mergeable Queues

- Implementation
^ Uses two-list functional queue implementation
- amortised $\mathrm{O}(\mathrm{I})$ enqueue and dequeue operations
* Merge uses longest common contiguous subsequence algorithm — O(n)
- Specification

I.Any element popped in either A or B does not remain in M

2. Any element pushed into either $A$ or $B$ appears in $M$
3. An element that remains untouched in LCA, A, B remains in $M$
4. Order of pairs of elements in LCA, A, B must be preserved in $M$, if those elements are present in $M$.

## 

- Implementation
^ Uses two-list functional queue implementation
- amortised $O(1)$ enqueue and dequeue operations
* Merge uses longest common contiguous subsequence algorithm - $O(n)$
- Specification
I.Any element popped in either A or B does not remain in $M$


2. Any element pushed into either $A$ or $B$ appears in $M$
3. An element that remains untouched in LCA, A, B remains in $M$
4. Order of pairs of elements in LCA, A, B must be preserved in $M$, if those elements are present in $M$.

## Verification effort

| MRDTs verified | \#Lines code | \#Lines proof | \#Lemmas | Verif. time (s) |
| :--- | :--- | :--- | :--- | :--- |
| Increment-only counter | 6 | 43 | 2 | 3.494 |
| PN counter | 8 | 43 | 2 | 23.211 |
| Enable-wins flag | 20 | 58 | 3 | 1074 |
|  |  | 81 | 6 | 171 |
| LWW register | 89 | 7 | 104 |  |
| G-set | 5 | 44 | 1 | 4.21 |
| G-map | 10 | 23 | 0 | 4.71 |
| Mergeable log | 28 | 1 | 2.462 |  |
| OR-set (§2.1.1) | 38 | 23 | 1.993 |  |
| OR-set-space (§2.1.2) | 39 | 95 | 0 | 26.089 |
| OR-set-spacetime | 30 | 36 | 2 | 36.562 |
| Queue | 41 | 0 | 43.85 |  |

## Summary

## Summary

- Programming and proving with RDTs is complicated due to concurrency and the lack of suitable programming abstractions


## Summary

- Programming and proving with RDTs is complicated due to concurrency and the lack of suitable programming abstractions
- MRDTs simplify RDTs by implementing them as extensions of sequential data types
^ Reasoning about correctness is still hard


## Summary

- Programming and proving with RDTs is complicated due to concurrency and the lack of suitable programming abstractions
- MRDTs simplify RDTs by implementing them as extensions of sequential data types
$\star$ Reasoning about correctness is still hard
- Peepul is an $\mathrm{F}^{*}$ library for certified MRDTs
$\star$ Replication-aware simulation for proving complex MRDTs
$\star$ Complex MRDTs can be constructed and proved using simpler MRDTs


## Summary

- Programming and proving with RDTs is complicated due to concurrency and the lack of suitable programming abstractions
- MRDTs simplify RDTs by implementing them as extensions of sequential data types
* Reasoning about correctness is still hard
- Peepul is an $\mathrm{F}^{*}$ library for certified MRDTs
^ Replication-aware simulation for proving complex MRDTs
$\star$ Complex MRDTs can be constructed and proved using simpler MRDTs
- $\mathrm{F}^{*}$ allows us to strike a balance between automated and interactive proofs
$\star$ Extract to OCaml and run on Irmin!


## Backup Slides

## Queue Performance



