
Certified Mergeable
Replicated Data Types

“KC” Sivaramakrishnan
joint work with

Vimala Soundarapandian, Adharsh Kamath and Kartik Nagar

INTERNET	

INTERNET	

INTERNET	

≠

INTERNET	

≠

• Serializability
• Linearizability• Weak Consistency & Isolation

Even simple data structures attract enormous
complexity when made distributed

4

module Counter : sig
 type t
 val read : t -> int
 val add : t -> int -> t
 val sub : t -> int -> t
end = struct
 type t = int
 let read x = x
 let add x d = x + d
 let sub x d = x - d
end

Sequential Counter

• Written in idiomatic style

• Composable

4

module Counter : sig
 type t
 val read : t -> int
 val add : t -> int -> t
 val sub : t -> int -> t
end = struct
 type t = int
 let read x = x
 let add x d = x + d
 let sub x d = x - d
end

type counter_list = Counter.t list

Sequential Counter

INTERNET	

0000

Replicated Counter

INTERNET	

000
0

Replicated Counter

INTERNET	

00

0

0

Replicated Counter

INTERNET	

0
0

0

0

Replicated Counter

INTERNET	

0
0

0

0

Replicated Counter

INTERNET	

0

0

0

Replicated Counter

+2

2

INTERNET	

0

0

0

Replicated Counter

+2

2

INTERNET	

0

0

Replicated Counter

+2

2

+3
3

INTERNET	

0

0

Replicated Counter

+2

2

+3
3

• Idea: Apply the local operations at all replicas

INTERNET	

Replicated Counter

+2 +3

5

5

5

5

• Idea: Apply the local operations at all replicas

7

module Counter : sig
 type t
 val read : t -> int
 val add : t -> int -> t
 val sub : t -> int -> t
 val mult : t -> int -> t
end = struct
 type t = int
 let read x = x
 let add x d = x + d
 let sub x d = x - d
 let mult x n = x * n
end

7

module Counter : sig
 type t
 val read : t -> int
 val add : t -> int -> t
 val sub : t -> int -> t
 val mult : t -> int -> t
end = struct
 type t = int
 let read x = x
 let add x d = x + d
 let sub x d = x - d
 let mult x n = x * n
end

7

7

module Counter : sig
 type t
 val read : t -> int
 val add : t -> int -> t
 val sub : t -> int -> t
 val mult : t -> int -> t
end = struct
 type t = int
 let read x = x
 let add x d = x + d
 let sub x d = x - d
 let mult x n = x * n
end

7

8

+1

7

module Counter : sig
 type t
 val read : t -> int
 val add : t -> int -> t
 val sub : t -> int -> t
 val mult : t -> int -> t
end = struct
 type t = int
 let read x = x
 let add x d = x + d
 let sub x d = x - d
 let mult x n = x * n
end

7

8 21

+1 *3

7

module Counter : sig
 type t
 val read : t -> int
 val add : t -> int -> t
 val sub : t -> int -> t
 val mult : t -> int -> t
end = struct
 type t = int
 let read x = x
 let add x d = x + d
 let sub x d = x - d
 let mult x n = x * n
end

7

8 21

+1 *3

24

*3

7

module Counter : sig
 type t
 val read : t -> int
 val add : t -> int -> t
 val sub : t -> int -> t
 val mult : t -> int -> t
end = struct
 type t = int
 let read x = x
 let add x d = x + d
 let sub x d = x - d
 let mult x n = x * n
end

7

8 21

+1 *3

24 22

*3 +1

7

module Counter : sig
 type t
 val read : t -> int
 val add : t -> int -> t
 val sub : t -> int -> t
 val mult : t -> int -> t
end = struct
 type t = int
 let read x = x
 let add x d = x + d
 let sub x d = x - d
 let mult x n = x * n
end

7

8 21

+1 *3

24 22

*3 +1

Diverges

7

module Counter : sig
 type t
 val read : t -> int
 val add : t -> int -> t
 val sub : t -> int -> t
 val mult : t -> int -> t
end = struct
 type t = int
 let read x = x
 let add x d = x + d
 let sub x d = x - d
 let mult x n = x * n
end

7

8 21

+1 *3

24 22

*3 +1

Diverges

Addition and multiplication do not commute

8

module Counter : sig
 type t
 val read : t -> int
 val add : t -> int -> t
 val sub : t -> int -> t
 val mult : t -> int -> t
end = struct
 type t = int
 let read x = x
 let add x d = x + d
 let sub x d = x - d
 let mult x n = x * n
end

8

module Counter : sig
 type t
 val read : t -> int
 val add : t -> int -> t
 val sub : t -> int -> t
 val mult : t -> int -> t
end = struct
 type t = int
 let read x = x
 let add x d = x + d
 let sub x d = x - d
 let mult x n = x * n
end

• Idea: Capture the effect of multiplication through the
commutative addition operation

8

module Counter : sig
 type t
 val read : t -> int
 val add : t -> int -> t
 val sub : t -> int -> t
 val mult : t -> int -> t
end = struct
 type t = int
 let read x = x
 let add x d = x + d
 let sub x d = x - d
 let mult x n = x * n
end

7

• Idea: Capture the effect of multiplication through the
commutative addition operation

8

module Counter : sig
 type t
 val read : t -> int
 val add : t -> int -> t
 val sub : t -> int -> t
 val mult : t -> int -> t
end = struct
 type t = int
 let read x = x
 let add x d = x + d
 let sub x d = x - d
 let mult x n = x * n
end

7

8

+1

• Idea: Capture the effect of multiplication through the
commutative addition operation

8

module Counter : sig
 type t
 val read : t -> int
 val add : t -> int -> t
 val sub : t -> int -> t
 val mult : t -> int -> t
end = struct
 type t = int
 let read x = x
 let add x d = x + d
 let sub x d = x - d
 let mult x n = x * n
end

7

8 21

+1 *3

• Idea: Capture the effect of multiplication through the
commutative addition operation

8

module Counter : sig
 type t
 val read : t -> int
 val add : t -> int -> t
 val sub : t -> int -> t
 val mult : t -> int -> t
end = struct
 type t = int
 let read x = x
 let add x d = x + d
 let sub x d = x - d
 let mult x n = x * n
end

7

8 21

+1 *3

22

+14

• Idea: Capture the effect of multiplication through the
commutative addition operation

8

module Counter : sig
 type t
 val read : t -> int
 val add : t -> int -> t
 val sub : t -> int -> t
 val mult : t -> int -> t
end = struct
 type t = int
 let read x = x
 let add x d = x + d
 let sub x d = x - d
 let mult x n = x * n
end

7

8 21

+1 *3

22 22

+14 +1

• Idea: Capture the effect of multiplication through the
commutative addition operation

8

module Counter : sig
 type t
 val read : t -> int
 val add : t -> int -> t
 val sub : t -> int -> t
 val mult : t -> int -> t
end = struct
 type t = int
 let read x = x
 let add x d = x + d
 let sub x d = x - d
 let mult x n = x * n
end

7

8 21

+1 *3

22 22

+14 +1

Converges

• Idea: Capture the effect of multiplication through the
commutative addition operation

8

module Counter : sig
 type t
 val read : t -> int
 val add : t -> int -> t
 val sub : t -> int -> t
 val mult : t -> int -> t
end = struct
 type t = int
 let read x = x
 let add x d = x + d
 let sub x d = x - d
 let mult x n = x * n
end

7

8 21

+1 *3

22 22

+14 +1

Converges

• Idea: Capture the effect of multiplication through the
commutative addition operation

• CRDTs

Convergent Replicated Data Types
(CRDT)

9

Convergent Replicated Data Types
(CRDT)

• CRDT is guaranteed to ensure strong eventual consistency (SEC)

★ G-counters, PN-counters, OR-Sets, Graphs, Ropes, docs, sheets

★ Simple interface for the clients of CRDTs

9

Convergent Replicated Data Types
(CRDT)

• CRDT is guaranteed to ensure strong eventual consistency (SEC)

★ G-counters, PN-counters, OR-Sets, Graphs, Ropes, docs, sheets

★ Simple interface for the clients of CRDTs

• Need to reengineer every datatype to ensure SEC
(commutativity)

★ Do not mirror sequential counter parts => implementation & proof
burden

★ Do not compose!

✦ counter set is not a composition of counter and set CRDTs

9

Can we program & reason about replicated data types
as an extension of their sequential counterparts?

Can we program & reason about replicated data types
as an extension of their sequential counterparts?

MRDT

11

module Counter : sig
 type t
 val read : t -> int
 val add : t -> int -> t
 val sub : t -> int -> t
 val mult : t -> int -> t
 val merge : lca:t -> v1:t -> v2:t -> t
end = struct
 type t = int
 let read x = x
 let add x d = x + d
 let sub x d = x - d
 let mult x n = x * n
 let merge ~lca ~v1 ~v2 =
 lca + (v1 - lca) + (v2 - lca)
end

11

module Counter : sig
 type t
 val read : t -> int
 val add : t -> int -> t
 val sub : t -> int -> t
 val mult : t -> int -> t
 val merge : lca:t -> v1:t -> v2:t -> t
end = struct
 type t = int
 let read x = x
 let add x d = x + d
 let sub x d = x - d
 let mult x n = x * n
 let merge ~lca ~v1 ~v2 =
 lca + (v1 - lca) + (v2 - lca)
end

7

11

module Counter : sig
 type t
 val read : t -> int
 val add : t -> int -> t
 val sub : t -> int -> t
 val mult : t -> int -> t
 val merge : lca:t -> v1:t -> v2:t -> t
end = struct
 type t = int
 let read x = x
 let add x d = x + d
 let sub x d = x - d
 let mult x n = x * n
 let merge ~lca ~v1 ~v2 =
 lca + (v1 - lca) + (v2 - lca)
end

7

8

+1

11

module Counter : sig
 type t
 val read : t -> int
 val add : t -> int -> t
 val sub : t -> int -> t
 val mult : t -> int -> t
 val merge : lca:t -> v1:t -> v2:t -> t
end = struct
 type t = int
 let read x = x
 let add x d = x + d
 let sub x d = x - d
 let mult x n = x * n
 let merge ~lca ~v1 ~v2 =
 lca + (v1 - lca) + (v2 - lca)
end

7

8 21

+1 *3

11

module Counter : sig
 type t
 val read : t -> int
 val add : t -> int -> t
 val sub : t -> int -> t
 val mult : t -> int -> t
 val merge : lca:t -> v1:t -> v2:t -> t
end = struct
 type t = int
 let read x = x
 let add x d = x + d
 let sub x d = x - d
 let mult x n = x * n
 let merge ~lca ~v1 ~v2 =
 lca + (v1 - lca) + (v2 - lca)
end

7

8 21

+1 *3

22

11

module Counter : sig
 type t
 val read : t -> int
 val add : t -> int -> t
 val sub : t -> int -> t
 val mult : t -> int -> t
 val merge : lca:t -> v1:t -> v2:t -> t
end = struct
 type t = int
 let read x = x
 let add x d = x + d
 let sub x d = x - d
 let mult x n = x * n
 let merge ~lca ~v1 ~v2 =
 lca + (v1 - lca) + (v2 - lca)
end

7

8 21

+1 *3

22 22

11

module Counter : sig
 type t
 val read : t -> int
 val add : t -> int -> t
 val sub : t -> int -> t
 val mult : t -> int -> t
 val merge : lca:t -> v1:t -> v2:t -> t
end = struct
 type t = int
 let read x = x
 let add x d = x + d
 let sub x d = x - d
 let mult x n = x * n
 let merge ~lca ~v1 ~v2 =
 lca + (v1 - lca) + (v2 - lca)
end

7

8 21

+1 *3

22 22

22 = 7 + (8-1) + (21 -7)

11

module Counter : sig
 type t
 val read : t -> int
 val add : t -> int -> t
 val sub : t -> int -> t
 val mult : t -> int -> t
 val merge : lca:t -> v1:t -> v2:t -> t
end = struct
 type t = int
 let read x = x
 let add x d = x + d
 let sub x d = x - d
 let mult x n = x * n
 let merge ~lca ~v1 ~v2 =
 lca + (v1 - lca) + (v2 - lca)
end

7

8 21

+1 *3

22 22

22 = 7 + (8-1) + (21 -7)

• 3-way merge function makes the counter suitable for distribution

11

module Counter : sig
 type t
 val read : t -> int
 val add : t -> int -> t
 val sub : t -> int -> t
 val mult : t -> int -> t
 val merge : lca:t -> v1:t -> v2:t -> t
end = struct
 type t = int
 let read x = x
 let add x d = x + d
 let sub x d = x - d
 let mult x n = x * n
 let merge ~lca ~v1 ~v2 =
 lca + (v1 - lca) + (v2 - lca)
end

7

8 21

+1 *3

22 22

22 = 7 + (8-1) + (21 -7)

• 3-way merge function makes the counter suitable for distribution

• Does not appeal to individual operations => independently
extend data-type

12

Systems ➞ PL

12

Systems ➞ PL

• CRDTs need to take care of
systems level concerns such as
message loss, duplication and
reordering

12

Systems ➞ PL

• CRDTs need to take care of
systems level concerns such as
message loss, duplication and
reordering

• 3-way merge is oblivious to these

✦ By leaving those concerns to MRDT
middleware

12

7

8 21

+1 *3

22 22

Systems ➞ PL

• CRDTs need to take care of
systems level concerns such as
message loss, duplication and
reordering

• 3-way merge is oblivious to these

✦ By leaving those concerns to MRDT
middleware

??

12

7

8 21

+1 *3

22 22

Systems ➞ PL

• CRDTs need to take care of
systems level concerns such as
message loss, duplication and
reordering

• 3-way merge is oblivious to these

✦ By leaving those concerns to MRDT
middleware

??

12

7

8 21

+1 *3

22 22

22

22 = 21 + (21-21) + (22 -21)

Systems ➞ PL

• CRDTs need to take care of
systems level concerns such as
message loss, duplication and
reordering

• 3-way merge is oblivious to these

✦ By leaving those concerns to MRDT
middleware

Does the 3-way merge idea generalise?

Does the 3-way merge idea generalise?

Sort of

14

Observed-Removed Set

14

• OR-set — add-wins when there is a concurrent add and remove
of the same element

Observed-Removed Set

14

• OR-set — add-wins when there is a concurrent add and remove
of the same element

Observed-Removed Set

let merge ~lca ~v1 ~v2 =
 (lca ∩ v1 ∩ v2) (* unmodified elements *)
 ∪ (v1 - lca) (* added in v1 *)
 ∪ (v2 - lca) (* added in v2 *)

Kaki et al. “Mergeable Replicated Data Types”,
OOPSLA 2019

14

{1}

• OR-set — add-wins when there is a concurrent add and remove
of the same element

Observed-Removed Set

let merge ~lca ~v1 ~v2 =
 (lca ∩ v1 ∩ v2) (* unmodified elements *)
 ∪ (v1 - lca) (* added in v1 *)
 ∪ (v2 - lca) (* added in v2 *)

Kaki et al. “Mergeable Replicated Data Types”,
OOPSLA 2019

14

{1}

{1}

add(1)

• OR-set — add-wins when there is a concurrent add and remove
of the same element

Observed-Removed Set

let merge ~lca ~v1 ~v2 =
 (lca ∩ v1 ∩ v2) (* unmodified elements *)
 ∪ (v1 - lca) (* added in v1 *)
 ∪ (v2 - lca) (* added in v2 *)

Kaki et al. “Mergeable Replicated Data Types”,
OOPSLA 2019

14

{1}

{1} { }

add(1) rem(1)

• OR-set — add-wins when there is a concurrent add and remove
of the same element

Observed-Removed Set

let merge ~lca ~v1 ~v2 =
 (lca ∩ v1 ∩ v2) (* unmodified elements *)
 ∪ (v1 - lca) (* added in v1 *)
 ∪ (v2 - lca) (* added in v2 *)

Kaki et al. “Mergeable Replicated Data Types”,
OOPSLA 2019

14

{1}

{1} { }

{ } { }

add(1) rem(1)

• OR-set — add-wins when there is a concurrent add and remove
of the same element

Observed-Removed Set

let merge ~lca ~v1 ~v2 =
 (lca ∩ v1 ∩ v2) (* unmodified elements *)
 ∪ (v1 - lca) (* added in v1 *)
 ∪ (v2 - lca) (* added in v2 *)

 { } ∪ ({1} - {1}) ∪ ({ } - {1})

= { } ∪ { } ∪ { }

= { } (expected {1})

Kaki et al. “Mergeable Replicated Data Types”,
OOPSLA 2019

14

{1}

{1} { }

{ } { }

add(1) rem(1)

• Convergence is not sufficient; Intent is not preserved

• OR-set — add-wins when there is a concurrent add and remove
of the same element

Observed-Removed Set

let merge ~lca ~v1 ~v2 =
 (lca ∩ v1 ∩ v2) (* unmodified elements *)
 ∪ (v1 - lca) (* added in v1 *)
 ∪ (v2 - lca) (* added in v2 *)

 { } ∪ ({1} - {1}) ∪ ({ } - {1})

= { } ∪ { } ∪ { }

= { } (expected {1})

Kaki et al. “Mergeable Replicated Data Types”,
OOPSLA 2019

Concretising Intent
• Intent is a woolly term

★ How can we formalise the intent of operations on a data
structure?

15

l

v1 v2

v

Concretising Intent
• Intent is a woolly term

★ How can we formalise the intent of operations on a data
structure?

• We need

★ A formal language to specify the intent of an RDT

★ Mechanization to bridge the air gap between specification
and implementation due to distributed system complexity

15

l

v1 v2

v

Peepul — Certified MRDTs

16

Peepul — Certified MRDTs
• An F* library implementing and proving MRDTs

★ https://github.com/prismlab/peepul

16

Peepul — Certified MRDTs
• An F* library implementing and proving MRDTs

★ https://github.com/prismlab/peepul

• Specification language is event-based

★ Burckhardt et al. “Replicated Data Types: Specification, Verification and Optimality”,
POPL 2014

16

Peepul — Certified MRDTs
• An F* library implementing and proving MRDTs

★ https://github.com/prismlab/peepul

• Specification language is event-based

★ Burckhardt et al. “Replicated Data Types: Specification, Verification and Optimality”,
POPL 2014

• Replication-aware simulation to connect specification with implementation

16

Peepul — Certified MRDTs
• An F* library implementing and proving MRDTs

★ https://github.com/prismlab/peepul

• Specification language is event-based

★ Burckhardt et al. “Replicated Data Types: Specification, Verification and Optimality”,
POPL 2014

• Replication-aware simulation to connect specification with implementation

• Composition of MRDTs and their proofs!

16

Peepul — Certified MRDTs
• An F* library implementing and proving MRDTs

★ https://github.com/prismlab/peepul

• Specification language is event-based

★ Burckhardt et al. “Replicated Data Types: Specification, Verification and Optimality”,
POPL 2014

• Replication-aware simulation to connect specification with implementation

• Composition of MRDTs and their proofs!

• Extracted RDTs are compatible with Irmin — a Git-like distributed
database

16

Fixing OR-Set
• Discriminate duplicate additions by

associating a unique id

17

Fixing OR-Set
• Discriminate duplicate additions by

associating a unique id

17

{ (a,1) }

Fixing OR-Set
• Discriminate duplicate additions by

associating a unique id

17

{ (a,1) }

{ (a,1);
 (a,2) }

add(a)

Fixing OR-Set
• Discriminate duplicate additions by

associating a unique id

17

{ (a,1) }

{ (a,1);
 (a,2) } { }

add(a) rem(a)

Fixing OR-Set
• Discriminate duplicate additions by

associating a unique id

17

{ (a,1) }

{ (a,1);
 (a,2) } { }

{ (a,2) } { (a,2) }

add(a) rem(a)

 { } ∪ ({ (a,1); (a,2) } - { (a,1) }) ∪ ({ } - { (a,1) })

= { } ∪ { (a,2) } ∪ { }

= { (a,2) }

Fixing OR-Set
• Discriminate duplicate additions by

associating a unique id

• MRDT implementation

17

{ (a,1) }

{ (a,1);
 (a,2) } { }

{ (a,2) } { (a,2) }

add(a) rem(a)

 { } ∪ ({ (a,1); (a,2) } - { (a,1) }) ∪ ({ } - { (a,1) })

= { } ∪ { (a,2) } ∪ { }

= { (a,2) }

Fixing OR-Set
• Discriminate duplicate additions by

associating a unique id

• MRDT implementation

17

{ (a,1) }

{ (a,1);
 (a,2) } { }

{ (a,2) } { (a,2) }

add(a) rem(a)

 { } ∪ ({ (a,1); (a,2) } - { (a,1) }) ∪ ({ } - { (a,1) })

= { } ∪ { (a,2) } ∪ { }

= { (a,2) }

Fixing OR-Set
• Discriminate duplicate additions by

associating a unique id

• MRDT implementation

17

{ (a,1) }

{ (a,1);
 (a,2) } { }

{ (a,2) } { (a,2) }

add(a) rem(a)

 { } ∪ ({ (a,1); (a,2) } - { (a,1) }) ∪ ({ } - { (a,1) })

= { } ∪ { (a,2) } ∪ { }

= { (a,2) }

Unique Lamport Timestamps

18

Specifying OR-Set
Abstract state

18

Specifying OR-Set
Abstract state

add(a)

add(a) rem(a)

rd

visvis

vis vis

{ (a,1) }

{ (a,1);
 (a,2) } { }

{ (a,2) } { (a,2) }

add(a) rem(a)

18

Specifying OR-Set
Abstract state

add(a)

add(a) rem(a)

rd

visvis

vis vis

{ (a,1) }

{ (a,1);
 (a,2) } { }

{ (a,2) } { (a,2) }

add(a) rem(a)

18

Specifying OR-Set
Abstract state

= { a }

add(a)

add(a) rem(a)

rd

visvis

vis vis

{ (a,1) }

{ (a,1);
 (a,2) } { }

{ (a,2) } { (a,2) }

add(a) rem(a)

Simulation Relation
• Connects the abstract execution with the concrete state

• For the OR-set,

19

Verifying Operations
1. Show that the simulation holds for operations

20

Verifying Operations
1. Show that the simulation holds for operations

20

to prove

Operation definition

defined once-and-for-all

Simulation
relation

Verifying Operations
1. Show that the simulation holds for operations

20

to prove

Operation definition

defined once-and-for-all

Simulation
relation

2. Show that the simulation holds for merge

Verifying Operations
1. Show that the simulation holds for operations

20

to prove

Operation definition

defined once-and-for-all

Simulation
relation

2. Show that the simulation holds for merge

Verifying Operations
1. Show that the simulation holds for operations

20

to prove

Operation definition

defined once-and-for-all

Simulation
relation

2. Show that the simulation holds for merge

Merge definition

Assume

defined once-and-for-all
To prove

Verifying Operations
3. Show that the specification and the implementation agree on

the return values of operations

21

Verifying Operations
3. Show that the specification and the implementation agree on

the return values of operations

21

4. Convergence

Verifying Operations
3. Show that the specification and the implementation agree on

the return values of operations

21

4. Convergence

✦ Permits the different replicas to converge to states that are
observationally equal but not structurally equal

✤ Example: differently balanced BSTs

Verifying Operations
3. Show that the specification and the implementation agree on

the return values of operations

21

4. Convergence

✦ Permits the different replicas to converge to states that are
observationally equal but not structurally equal

✤ Example: differently balanced BSTs

Space-efficient OR-Set
• Recall that the OR-set has duplicates

• How can we remove them?

22

{ (a,1) }

{ (a,1);
 (a,2) } { }

{ (a,2) } { (a,2) }

add(a) rem(a)

Space-efficient OR-Set
• Recall that the OR-set has duplicates

• How can we remove them?

• Idea

★ On addition, replace existing element’s timestamp with the new timestamp

★ On merge, pick the larger timestamp

22

{ (a,1) }

{ (a,1);
 (a,2) } { }

{ (a,2) } { (a,2) }

add(a) rem(a)

Space-efficient OR-Set
• Recall that the OR-set has duplicates

• How can we remove them?

• Idea

★ On addition, replace existing element’s timestamp with the new timestamp

★ On merge, pick the larger timestamp

22

{ (a,1) }

{ (a,1);
 (a,2) } { }

{ (a,2) } { (a,2) }

add(a) rem(a)

Correctness
argument is tricky

Space-efficient OR-Set

23

{ (a,1) }

{ (a,1);
 (a,2) } { }

{ (a,2) } { (a,2) }

add(a) rem(a)

{ (a,1) }

{ (a,2) } { }

{ (a,2) } { (a,2) }

add(a) rem(a)

Space-efficient OR-Set

23

{ (a,1) }

{ (a,1);
 (a,2) } { }

{ (a,2) } { (a,2) }

add(a) rem(a)

{ (a,1) }

{ (a,2) } { }

{ (a,2) } { (a,2) }

add(a) rem(a)

Space-efficient OR-Set

23

{ (a,1) }

{ (a,1);
 (a,2) } { }

{ (a,2) } { (a,2) }

add(a) rem(a)

{ (a,1) }

{ (a,2) } { }

{ (a,2) } { (a,2) }

add(a) rem(a)

Simulation relation is more
intricate as one would

expect

Verification effort

24

25

Composing CRDTs is HARD!

Composing IRC-style chat
• Build IRC-style group chat

★ Send and read messages in channels

★ For simplicity, channels and messages cannot be deleted

• Represent application state as a grow-only map with string
(channel name) keys and mergeable-log as values

• Goal:

★ map and log proved correct separately

★ Use the proof of underlying RDTs to prove chat application
correctness

26

Generic Map MRDT
• Specification

27

Generic Map MRDT
• Specification

27

where

Generic Map MRDT
• Specification

• Project filters the abstract state of the map on the key k and
returns an abstract state of the underlying data type

★ Provided by the user once for a generic MRDT

27

where

Generic Map MRDT
• Specification

• Project filters the abstract state of the map on the key k and
returns an abstract state of the underlying data type

★ Provided by the user once for a generic MRDT

27

where

set (“general”, append (“hello”))

set (“compiler”, append (“error”))

set (“general”, append (“world”))

vis

vis

get (“general”, rd)
[“world”; “hello”]

28

Generic Map MRDT
Implementation

Simulation Relation

28

Generic Map MRDT
Implementation

Simulation Relation

Get applies given operation on the
value at key k and returns the value

28

Generic Map MRDT
Implementation

Simulation Relation

Get applies given operation on the
value at key k and returns the value

Set is Get + update the map
with the new state

28

Generic Map MRDT
Implementation

Simulation Relation

Get applies given operation on the
value at key k and returns the value

Set is Get + update the map
with the new state

Merge uses the merge of the
underlying value type!

28

Generic Map MRDT
Implementation

Simulation Relation

Get applies given operation on the
value at key k and returns the value

Set is Get + update the map
with the new state

Merge uses the merge of the
underlying value type!

Simulation relation appeals to the
value type’s simulation relation!

• Program state is constructed by instantiating generic map with
mergeable log

★ The proof of correctness of the chat application directly follows from the
composition!

29

Composing IRC-style chat

Mergeable Queues
• Replicated queue with at-least-once dequeue semantics

★ First verified queue RDT!

30

Mergeable Queues
• Replicated queue with at-least-once dequeue semantics

★ First verified queue RDT!

30

Mergeable Queues
• Replicated queue with at-least-once dequeue semantics

★ First verified queue RDT!

• Our aim is to have O(1) enqueue and dequeue and O(n) merge

30

Mergeable Queues
• Implementation

★ Uses two-list functional queue implementation

✦ amortised O(1) enqueue and dequeue operations

★ Merge uses longest common contiguous subsequence
algorithm — O(n)

31

M

Mergeable Queues
• Implementation

★ Uses two-list functional queue implementation

✦ amortised O(1) enqueue and dequeue operations

★ Merge uses longest common contiguous subsequence
algorithm — O(n)

• Specification

1.Any element popped in either A or B does not
remain in M

2. Any element pushed into either A or B appears in M

3. An element that remains untouched in LCA, A, B
remains in M

4. Order of pairs of elements in LCA, A, B must be
preserved in M, if those elements are present in M.

31

M

Mergeable Queues
• Implementation

★ Uses two-list functional queue implementation

✦ amortised O(1) enqueue and dequeue operations

★ Merge uses longest common contiguous subsequence
algorithm — O(n)

• Specification

1.Any element popped in either A or B does not
remain in M

2. Any element pushed into either A or B appears in M

3. An element that remains untouched in LCA, A, B
remains in M

4. Order of pairs of elements in LCA, A, B must be
preserved in M, if those elements are present in M.

31

M

Implementation far
removed from the

specification!

Verification effort

32

33

Summary

• Programming and proving with RDTs is complicated due to
concurrency and the lack of suitable programming abstractions

33

Summary

• Programming and proving with RDTs is complicated due to
concurrency and the lack of suitable programming abstractions

• MRDTs simplify RDTs by implementing them as extensions of
sequential data types

★ Reasoning about correctness is still hard

33

Summary

• Programming and proving with RDTs is complicated due to
concurrency and the lack of suitable programming abstractions

• MRDTs simplify RDTs by implementing them as extensions of
sequential data types

★ Reasoning about correctness is still hard

• Peepul is an F* library for certified MRDTs

★ Replication-aware simulation for proving complex MRDTs

★ Complex MRDTs can be constructed and proved using simpler MRDTs

33

Summary

• Programming and proving with RDTs is complicated due to
concurrency and the lack of suitable programming abstractions

• MRDTs simplify RDTs by implementing them as extensions of
sequential data types

★ Reasoning about correctness is still hard

• Peepul is an F* library for certified MRDTs

★ Replication-aware simulation for proving complex MRDTs

★ Complex MRDTs can be constructed and proved using simpler MRDTs

• F* allows us to strike a balance between automated and
interactive proofs

★ Extract to OCaml and run on Irmin!

33

Summary

Backup Slides

34

Queue Performance

35

