Certified Mergeable Replicated Data Types

"KC" Sivaramakrishnan
joint work with
Vimala Soundarapandian, Adharsh Kamath and Kartik Nagar

Tarides

Collaborative Apps

Airtable \equiv Figma
 Google Docs

Collaborative Apps

Network Partitions

Dinirtable (Eigma N Notion Everleaf

Local-first software

A Airtable EFigma \mathbf{N} Notion Overleaf

Local-first software

Airtable EFigma
 Google Docs

Local-first software

- Airtable EFigma \mathbf{N} Notion Overleaf

Distributed Version Control Systems

Distributed Version Control Systems

Distributed Version Control Systems

Mergeable Replicated Data Types

- MRDTs - DVCS for data types rather than just text files
- Sequential data types + 3-way merge $=$ replicated data type!

Mergeable Replicated Data Types

- MRDTs - DVCS for data types rather than just text files
- Sequential data types + 3-way merge $=$ replicated data type!

```
module Counter : sig
    type t
    val read : t -> int
    val add : t -> int -> t
    val mult : t -> int -> t
    val merge : lca:t -> v1:t -> v2:t -> t
end = struct
    type t = int
    let read x = x
    let add x d = x + d
    let mult x n = x * n
    let merge ~lca ~v1 ~v2 =
    lca + (v1 - lca) + (v2 - lca)
end
```


Mergeable Replicated Data Types

- MRDTs - DVCS for data types rather than just text files
- Sequential data types + 3-way merge $=$ replicated data type!

```
module Counter : sig
    type t
    val read : t -> int
    val add : t -> int -> t
    val mult : t -> int -> t
    val merge : lca:t -> v1:t -> v2:t -> t
end = struct
    type t = int
    let read x = x
    let add x d = x + d
    let mult x n = x * n
    let merge ~lca ~v1 ~v2 =
    lca + (v1 - lca) + (v2 - lca)
end
```


Mergeable Replicated Data Types

- MRDTs - DVCS for data types rather than just text files
- Sequential data types + 3-way merge $=$ replicated data type!

```
module Counter : sig
    type t
    val read : t -> int
    val add : t -> int -> t
    val mult : t -> int -> t
    val merge : lca:t -> v1:t -> v2:t -> t
end = struct
    type t = int
    let read x = x
    let add x d = x + d
    let mult x n = x * n
    let merge ~lca ~v1 ~v2 =
    lca + (v1 - lca) + (v2 - lca)
end
```


Mergeable Replicated Data Types

- MRDTs - DVCS for data types rather than just text files
- Sequential data types + 3-way merge $=$ replicated data type!

```
module Counter : sig
    type t
    val read : t -> int
    val add : t -> int -> t
    val mult : t -> int -> t
    val merge : lca:t -> v1:t -> v2:t -> t
end = struct
    type t = int
    let read x = x
    let add x d = x + d
    let mult x n = x * n
    let merge ~lca ~v1 ~v2 =
    lca + (v1 - lca) + (v2 - lca)
end
```


Mergeable Replicated Data Types

- MRDTs - DVCS for data types rather than just text files
- Sequential data types + 3-way merge $=$ replicated data type!

```
module Counter : sig
    type t
    val read : t -> int
    val add : t -> int -> t
    val mult : t -> int -> t
    val merge : lca:t -> v1:t -> v2:t -> t
end = struct
    type t = int
    let read x = x
    let add x d = x + d
    let mult x n = x * n
    let merge ~lca ~v1 ~v2 =
    lca + (v1 - lca) + (v2 - lca)
end
```


Mergeable Replicated Data Types

- MRDTs - DVCS for data types rather than just text files
- Sequential data types + 3-way merge $=$ replicated data type!

```
module Counter : sig
    type t
    val read : t -> int
    val add : t -> int -> t
    val mult : t -> int -> t
    val merge : lca:t -> v1:t -> v2:t -> t
end = struct
    type t = int
    let read x = x
    let add x d = x + d
    let mult x n = x * n
    let merge ~lca ~v1 ~v2 =
        lca + (v1 - lca) + (v2 - lca)
```

end

$$
\begin{gathered}
22=7+(8-7)+(21-7) \\
+1+14
\end{gathered}
$$

Mergeable Replicated Data Types

- MRDTs - DVCS for data types rather than just text files
- Sequential data types + 3-way merge $=$ replicated data type!

```
module Counter : sig
    type t
    val read : t -> int
    val add : t -> int -> t
    val mult : t -> int -> t
    val merge : lca:t -> v1:t -> v2:t -> t
end = struct
    type t = int
    let read x = x
    let add x d = x + d
    let mult x n = x * n
    let merge ~lca ~v1 ~v2 =
        lca + (v1 - lca) + (v2 - lca)
```

end

$$
\begin{gathered}
22=7+(8-7)+(21-7) \\
+1 \quad+14
\end{gathered}
$$

Does the 3-way merge idea generalise?

Does the 3-way merge idea generalise?

Sort of...

Observed-Removed Set

- OR-set — add-wins when there is a concurrent add and remove of the same element

Observed-Removed Set

- OR-set - add-wins when there is a concurrent add and remove of the same element

```
let merge ~lca ~v1 ~v2 =
    (lca n v1 n v2) (* unmodified elements *)
    u (v1 - lca) (* added in v1 *)
    u (v2 - lca) (* added in v2 *)
```

Kaki et al."Mergeable Replicated Data Types", OOPSLA 2019

Observed-Removed Set

- OR-set — add-wins when there is a concurrent add and remove of the same element

```
let merge ~lca ~v1 ~v2 =
    (lca n v1 n v2) (* unmodified elements *)
    u (v1 - lca) (* added in v1 *)
    u (v2 - lca) (* added in v2 *)
```

Kaki et al."Mergeable Replicated Data Types", OOPSLA 2019

Observed-Removed Set

- OR-set — add-wins when there is a concurrent add and remove of the same element

```
let merge ~lca ~v1 ~v2 =
    (lca n v1 n v2) (* unmodified elements *)
    u (v1 - lca) (* added in v1 *)
    u (v2 - lca) (* added in v2 *)
Kaki et al."Mergeable Replicated Data Types", OOPSLA 2019
```


Observed-Removed Set

- OR-set - add-wins when there is a concurrent add and remove of the same element

```
let merge ~lca ~v1 ~v2 =
    (lca n v1 n v2) (* unmodified elements *)
    u (v1 - lca) (* added in v1 *)
    u (v2 - lca) (* added in v2 *)
Kaki et al."Mergeable Replicated Data Types", OOPSLA 2019
```


Observed-Removed Set

- OR-set — add-wins when there is a concurrent add and remove of the same element

```
let merge ~lca ~v1 ~v2 =
    (lca n v1 n v2) (* unmodified elements *)
    u (v1 - lca) (* added in v1 *)
    u (v2 - lca) (* added in v2 *)
```

Kaki et al."Mergeable Replicated Data Types", OOPSLA 2019

Observed-Removed Set

- OR-set — add-wins when there is a concurrent add and remove of the same element

```
let merge ~lca ~v1 ~v2 =
    (lca n v1 n v2) (* unmodified elements *)
    u (v1 - lca) (* added in v1 *)
    u (v2 - lca) (* added in v2 *)
Kaki et al."Mergeable Replicated Data Types", OOPSLA 2019
```


- Convergence is not sufficient; Intent is not preserved

Concretising Intent

- A formal specification language to capture the intent of the MRDT
- Must be rich enough to capture eventual consistency

Concretising Intent

- A formal specification language to capture the intent of the MRDT
- Must be rich enough to capture eventual consistency
- Even simple data types attract enormous complexity when made distributed

Concretising Intent

- A formal specification language to capture the intent of the MRDT
- Must be rich enough to capture eventual consistency
- Even simple data types attract enormous complexity when made distributed

"Oh, you wanted to *increment a counter*?! Good luck with that!" -- the distributed systems literature

12:25 AM • Mar 10, $2015 \cdot$ Twitter Web Client

375 Retweets 18 Quote Tweets 614 Likes

Concretising Intent

- A formal specification language to capture the intent of the MRDT
- Must be rich enough to capture eventual consistency
- Even simple data types attract enormous complexity when made distributed


```
Lindsey Kuper
@lindsey
"Oh, you wanted to *increment a counter*?! Good luck with that!" -- the distributed systems literature
12:25 AM • Mar 10, 2015 • Twitter Web Client
375 Retweets 18 Quote Tweets 614 Likes
```

- Mechanization to bridge the gap between spec and impl

Peepul — Certified MRDTs

- An F^{*} library implementing and proving MRDTs
* https://github.com/prismlab/peepul

Peepul — Certified MRDTs

- An F^{*} library implementing and proving MRDTs
^ https://github.com/prismlab/peepul
- Specification language is event-based

\star Burckhardt et al."Replicated Data Types: Specification,Verification and Optimality", POPL 2014

Peepul — Certified MRDTs

- An F^{*} library implementing and proving MRDTs
^ https://github.com/prismlab/peepul
- Specification language is event-based

^ Burckhardt et al."Replicated Data Types: Specification, Verification and Optimality", POPL 2014
- Replication-aware simulation to connect specification with implementation

Peepul — Certified MRDTs

- An F* library implementing and proving MRDTs
^ https://github.com/prismlab/peepul
- Specification language is event-based

^ Burckhardt et al."Replicated Data Types: Specification, Verification and Optimality", POPL 2014
- Replication-aware simulation to connect specification with implementation
- Space- and time-efficient implementations
^ Ist certified implementation of a $\mathrm{O}(\mathrm{I})$ replicated queue with $\mathrm{O}(\mathrm{n})$ merge.

Peepul — Certified MRDTs

- An F^{*} library implementing and proving MRDTs
* https://github.com/prismlab/peepul
- Specification language is event-based

* Burckhardt et al."Replicated Data Types: Specification, Verification and Optimality", POPL 2014
- Replication-aware simulation to connect specification with implementation
- Space- and time-efficient implementations
* Ist certified implementation of a $O(I)$ replicated queue with $O(n)$ merge.
- Composition of MRDTs and their proofs!

Peepul — Certified MRDTs

- An F^{*} library implementing and proving MRDTs
* https://github.com/prismlab/peepul
- Specification language is event-based

^ Burckhardt et al."Replicated Data Types: Specification, Verification and Optimality", POPL 2014
- Replication-aware simulation to connect specification with implementation
- Space- and time-efficient implementations
* Ist certified implementation of a $O(I)$ replicated queue with $O(n)$ merge.
- Composition of MRDTs and their proofs!
- Extracted RDTs are compatible with Irmin - a Git-like distributed database

Fixing OR-Set

- Discriminate duplicate additions by associating a unique id

Fixing OR-Set

- Discriminate duplicate additions by associating a unique id

$$
\{(a, 1)\}
$$

Fixing OR-Set

- Discriminate duplicate additions by associating a unique id

Fixing OR-Set

- Discriminate duplicate additions by associating a unique id

Fixing OR-Set

- Discriminate duplicate additions by associating a unique id \{\}
$\cup(\{(a, 1) ;(a, 2)\}-\{(a, 1)\})$
$\cup(\}-\{(a, 1)\})$
$=\{ \} \cup\{(a, 2)\} \cup\{ \}$
$=\{(\mathrm{a}, 2)\}$

Fixing OR-Set

- Discriminate duplicate additions by associating a unique id \{ \}
$\cup(\{(a, 1) ;(a, 2)\}-\{(a, 1)\})$
$\cup(\}-\{(a, 1)\})$
$=\{ \} \cup\{(a, 2)\} \cup\{ \}$
$=\{(\mathrm{a}, 2)\}$
- MRDT implementation

$$
D_{\tau}=\left(\Sigma, \sigma_{0}, \text { do, merge }\right)
$$

Fixing OR-Set

- Discriminate duplicate additions by associating a unique id \{\}
$\cup(\{(a, 1) ;(a, 2)\}-\{(a, 1)\})$
$\cup(\}-\{(a, 1)\})$
$=\{ \} \cup\{(\mathrm{a}, 2)\} \cup\{ \}$
$=\{(\mathrm{a}, 2)\}$
- MRDT implementation

$$
D_{\tau}=\left(\Sigma, \sigma_{0}, \text { do, merge }\right)
$$

1: $\Sigma=\mathcal{P}(\mathbb{N} \times \mathbb{N})$
2: $\sigma_{0}=\{ \}$
3: $d o(r d, \sigma, t)=(\sigma,\{a \mid(a, t) \in \sigma\})$
4: $\operatorname{do}(\operatorname{add}(a), \sigma, t)=(\sigma \cup\{(a, t)\}, \perp)$
5: do $(\operatorname{remove}(a), \sigma, t)=(\{e \in \sigma \mid f s t(e) \neq a\}, \perp)$
6: $\operatorname{merge}\left(\sigma_{l c a}, \sigma_{a}, \sigma_{b}\right)=$

$$
\left(\sigma_{l c a} \cap \sigma_{a} \cap \sigma_{b}\right) \cup\left(\sigma_{a}-\sigma_{l c a}\right) \cup\left(\sigma_{b}-\sigma_{l c a}\right)
$$

Fixing OR-Set

- Discriminate duplicate additions by associating a unique id \{\}
$\cup(\{(a, 1) ;(a, 2)\}-\{(a, 1)\})$
$\cup(\}-\{(a, 1)\})$
$=\{ \} \cup\{(\mathrm{a}, 2)\} \cup\{ \}$
$=\{(\mathrm{a}, 2)\}$
- MRDT implementation

$$
D_{\tau}=\left(\Sigma, \sigma_{0}, \text { do, merge }\right)
$$

1: $\Sigma=\mathcal{P}(\mathbb{N} \times \mathbb{N})$
Unique Lamport Timestamps
2: $\sigma_{0}=\{ \}$
3: $d o(r d, \sigma, t)=(\mathscr{C},\{a \mid(a, t) \in \sigma\})$
4: $\operatorname{do}(\operatorname{add}(a), \sigma, t)=(\sigma \cup\{(a, t)\}, \perp)$
5: do(remove $(a), \sigma, t)=(\{e \in \sigma \mid f s t(e) \neq a\}, \perp)$
6: $\operatorname{merge}\left(\sigma_{l c a}, \sigma_{a}, \sigma_{b}\right)=$

$$
\left(\sigma_{l c a} \cap \sigma_{a} \cap \sigma_{b}\right) \cup\left(\sigma_{a}-\sigma_{l c a}\right) \cup\left(\sigma_{b}-\sigma_{l c a}\right)
$$

Specifying OR-Set

Abstract state $I=\langle E$, oper, rval, time, vis \rangle

Specifying OR-Set

Abstract state $I=\langle E$, oper, rval, time, vis \rangle

Specifying OR-Set

Abstract state $I=\langle E$, oper, rval, time, vis \rangle

$$
\begin{aligned}
& \mathcal{F}_{\text {orset }}(\mathrm{rd},\langle E, \text { oper, rval, time, vis }\rangle)=\{a \mid \exists e \in E . \operatorname{oper}(e) \\
& =\operatorname{add}(a) \wedge \neg(\exists f \in E . \operatorname{oper}(f)=\operatorname{remove}(a) \wedge e \xrightarrow{\text { ois }} f)\}
\end{aligned}
$$

Specifying OR-Set

Abstract state $I=\langle E$, oper, rval, time, vis \rangle

$$
\begin{aligned}
& \mathcal{F}_{\text {orset }}(\mathrm{rd},\langle E, \text { oper, rval, time, vis }\rangle)=\{a \mid \exists e \in E . \operatorname{oper}(e) \\
& =\operatorname{add}(a) \wedge \neg(\exists f \in E . \operatorname{oper}(f)=\operatorname{remove}(a) \wedge e \xrightarrow{\text { ois }} f)\}
\end{aligned}
$$

Simulation Relation

Simulation Relation

- Connects the abstract state with the concrete state

Simulation Relation

- Connects the abstract state with the concrete state
- For the OR-set,

Simulation Relation

- Connects the abstract state with the concrete state
- For the OR-set,

$$
\begin{array}{r}
\mathcal{R}_{\operatorname{sim}}(I, \sigma) \Longleftrightarrow(\forall(a, t) \in \sigma \Longleftrightarrow \\
(\exists e \in I . E \wedge I . \operatorname{oper}(e)=\operatorname{add}(a) \wedge I . \operatorname{time}(e)=t \wedge \\
\neg(\exists f \in I . E \wedge I . \operatorname{oper}(f)=\operatorname{remove}(a) \wedge e \xrightarrow{v i s} f)))
\end{array}
$$

Simulation Relation

- Connects the abstract state with the concrete state
- For the OR-set,

$$
\begin{array}{r}
\mathcal{R}_{\operatorname{sim}}(I, \sigma) \Longleftrightarrow(\forall(a, t) \in \sigma \Longleftrightarrow \\
(\exists e \in I . E \wedge I . \operatorname{oper}(e)=\operatorname{add}(a) \wedge \operatorname{I.time}(e)=t \wedge \\
\neg(\exists f \in I . E \wedge I . \operatorname{oper}(f)=\operatorname{remove}(a) \wedge e \xrightarrow{v i s} f)))
\end{array}
$$

- The main verification effort is to show that the relation above is indeed a simulation relation
\star Shown separately for operations and merge function
\star Proof by induction on the execution trace

Verification effort

MRDTs verified	\#Lines code	\#Lines proof	\#Lemmas	Verif. time (s)
Increment-only counter	6	43	2	3.494
PN counter	8	43	2	23.211
Enable-wins flag	20	58	3	1074
		81	6	171
LWW register	89	7	104	
G-set	5	44	1	4.21
G-map	10	23	0	4.71
Mergeable log	28	1	2.462	
OR-set (§2.1.1)	38	26	2	1.993
OR-set-space (§2.1.2)	39	95	0	26.089
OR-set-spacetime	30	36	2	36.562
Queue	41	0	43.85	

Verification effort

MRDTs verified	\#Lines code	\#Lines proof	\#Lemmas	Verif. time (s)
Increment-only counter	6	43	2	3.494
PN counter	8	43	2	23.211
Enable-wins flag	20	58	3	1074
		81	6	171
LWW register	89	7	104	
G-set	5	44	1	4.21
G-map	10	23	0	4.71
Mergeable log	48	28	1	2.462
OR-set (§2.1.1)	39	26	2	1.993
OR-set-space (§2.1.2)	30	95	0	26.089
OR-set-spacetime	39	2	36.562	
Queue	41	0	43.85	

Composing RDTs is HARD!

Martin Kleppmann
@martinkl
Today in "distributed systems are hard": I wrote down a simple CRDT algorithm that I thought was "obviously correct" for a course l'm teaching. Only 10 lines or so long. Found a fatal bug only after spending hours trying to prove the algorithm correct.

Foi
4:18 AM • Nov 13, $2020 \cdot$ Tweetbot for iOS

41 Retweets 4 Quote Tweets 541 Likes

Martin Kleppmann @martinkl• Nov 13, 2020

The interesting thing about this bug is that it comes about only from the interaction of two features. A LWW map by itself is fine. A set in which you can insert and delete elements (but not update them) is fine. The problem arises only when delete and update interact.

Composing IRC-style chat

- Build IRC-style group chat
\star Send and read messages in channels

Composing IRC-style chat

- Build IRC-style group chat
* Send and read messages in channels
- Represent application state as a map MRDT
\star String (channel name) keys \rightarrow mergeable-log MRDT values

Composing IRC-style chat

- Build IRC-style group chat
* Send and read messages in channels
- Represent application state as a map MRDT
\star String (channel name) keys \rightarrow mergeable-log MRDT values
- Goal:
^ map and log proved correct separately
\star Use the proof of underlying RDTs to prove chat application correctness

Generic Map MRDT

Implementation

$$
\mathcal{D}_{\alpha-m a p}=\left(\Sigma, \sigma_{0}, \text { do, } \text { merge }_{\alpha-m a p}\right) \text { where }
$$

1: $\quad \Sigma_{\alpha-\text { map }}=\mathcal{P}\left(\right.$ string $\left.\times \Sigma_{\alpha}\right)$
2: $\quad \sigma_{0}=\{ \}$
3: $\quad \delta(\sigma, k)= \begin{cases}\sigma(k), & \text { if } k \in \operatorname{dom}(\sigma) \\ \sigma_{0_{\alpha}}, & \text { otherwise }\end{cases}$
4: $\quad \operatorname{do}\left(\operatorname{set}\left(k, o_{\alpha}\right), \sigma, t\right)=$

$$
\text { let }(v, r)=d o_{\alpha}\left(o_{\alpha}, \delta(\sigma, k), t\right) \text { in }(\sigma[k \mapsto v], r)
$$

5: $\quad \operatorname{do}\left(\operatorname{get}\left(k, o_{\alpha}\right), \sigma, t\right)=$

$$
\text { let }\left(_r\right)=d o_{\alpha}\left(o_{\alpha}, \delta(\sigma, k), t\right) \text { in }(\sigma, r)
$$

6: $\quad \operatorname{merge}_{\alpha-\text { map }}\left(\sigma_{l c a}, \sigma_{a}, \sigma_{b}\right)=$ $\left\{(k, v) \mid\left(k \in \operatorname{dom}\left(\sigma_{l c a}\right) \cup \operatorname{dom}\left(\sigma_{a}\right) \cup \operatorname{dom}\left(\sigma_{b}\right)\right) \wedge\right.$

Simulation Relation

$$
v=\operatorname{merge}_{\alpha}\left(\delta\left(\sigma_{l c a}, k\right), \delta\left(\sigma_{a}, k\right), \delta\left(\sigma_{b}, k\right)\right)
$$

```
    \mathcal{R}
1: (k\in\operatorname{dom}(\sigma)\Longleftrightarrow\existse\inI.E.oper(e)=set(k,_))^
2:
    \mathcal{R}
```


Generic Map MRDT

Implementation

$\mathcal{D}_{\alpha-\text { map }}=\left(\Sigma, \sigma_{0}\right.$, do, merge $\left._{\alpha-\text { map }}\right)$ where
1: $\quad \Sigma_{\alpha-\text { map }}=\mathcal{P}\left(\right.$ string $\left.\times \Sigma_{\alpha}\right)$
$\sigma_{0}=\{ \}$
3: $\quad \delta(\sigma, k)= \begin{cases}\sigma(k), & \text { if } k \in \operatorname{dom}(\sigma) \\ \sigma_{0_{\alpha}}, & \text { otherwise }\end{cases}$
4: $\quad \operatorname{do}\left(\operatorname{set}\left(k, o_{\alpha}\right), \sigma, t\right)=$

$$
\text { let }(v, r)=d o_{\alpha}\left(o_{\alpha}, \delta(\sigma, k), t\right) \text { in }(\sigma[k \mapsto v], r)
$$

5: $\quad \operatorname{do}\left(\operatorname{get}\left(k, o_{\alpha}\right), \sigma, t\right)=$
let $\left(_r\right)=d o_{\alpha}\left(o_{\alpha}, \delta(\sigma, k), t\right)$ in (σ, r)
6: $\quad \operatorname{merge}_{\alpha-\text { map }}\left(\sigma_{l c a}, \sigma_{a}, \sigma_{b}\right)=$

$$
\left\{(k, v) \mid\left(k \in \operatorname{dom}\left(\sigma_{l c a}\right) \cup \operatorname{dom}\left(\sigma_{a}\right) \cup \operatorname{dom}\left(\sigma_{b}\right)\right) \wedge\right.
$$

Simulation Relation

$$
v=\operatorname{merge}_{\alpha}\left(\delta\left(\sigma_{l c a}, k\right), \delta\left(\sigma_{a}, k\right), \delta\left(\sigma_{b}, k\right)\right)
$$

```
    \(\mathcal{R}_{\text {sim- } \alpha-\operatorname{map}}(I, \sigma) \Longleftrightarrow \forall k\).
1: \(\left(k \in \operatorname{dom}(\sigma) \Longleftrightarrow \exists e \in I . E . \operatorname{oper}(e)=\operatorname{set}\left(k, \_\right)\right) \wedge\)
2: \(\quad \mathcal{R}_{\text {sim- }}(\operatorname{project}(k, I), \delta(\sigma, k))\)
```


Generic Map MRDT

Implementation

$\mathcal{D}_{\alpha-\text { map }}=\left(\Sigma, \sigma_{0}\right.$, do, merge $\left._{\alpha-\text { map }}\right)$ where
1: $\quad \Sigma_{\alpha-\text { map }}=\mathcal{P}\left(\right.$ string $\left.\times \Sigma_{\alpha}\right)$
$\sigma_{0}=\{ \}$
3: $\quad \delta(\sigma, k)= \begin{cases}\sigma(k), & \text { if } k \in \operatorname{dom}(\sigma) \\ \sigma_{0_{\alpha}}, & \text { otherwise }\end{cases}$
4: $\quad \operatorname{do}\left(\operatorname{set}\left(k, o_{\alpha}\right), \sigma, t\right)=$

$$
\text { let }(v, r)=d o_{\alpha}\left(o_{\alpha}, \delta(\sigma, k), t\right) \text { in }(\sigma[k \mapsto v], r)
$$

5: $\quad \operatorname{do}\left(\operatorname{get}\left(k, o_{\alpha}\right), \sigma, t\right)=$
let $\left(_r\right)=d o_{\alpha}\left(o_{\alpha}, \delta(\sigma, k), t\right)$ in (σ, r)
6: $\quad \operatorname{merge}_{\alpha-\text { map }}\left(\sigma_{l c a}, \sigma_{a}, \sigma_{b}\right)=$ $\left\{(k, v) \mid\left(k \in \operatorname{dom}\left(\sigma_{l c a}\right) \cup \operatorname{dom}\left(\sigma_{a}\right) \cup \operatorname{dom}\left(\sigma_{b}\right)\right) \wedge\right.$
Relation $\quad v=\operatorname{merge}_{\alpha}\left(\delta\left(\sigma_{l c a}, k\right), \delta\left(\sigma_{a}, k\right), \delta\left(\sigma_{b}, k\right)\right)$$\rightarrow \begin{gathered}\text { Merge uses the merge of the } \\ \text { underlying value type! }\end{gathered}$
Simulation Relation

```
    \mathcal{R}
1: (k\in\operatorname{dom}(\sigma)\Longleftrightarrow\existse\inI.E.oper (e) = set (k,_))^
2: }\mp@subsup{\mathcal{R}}{\mathrm{ sim- }}{}(\operatorname{project}(k,I),\delta(\sigma,k)
```


Generic Map MRDT

Implementation

$\mathcal{D}_{\alpha-\text { map }}=\left(\Sigma, \sigma_{0}\right.$, do $\left.^{\text {merge }}{ }_{\alpha-\text { map }}\right)$ where
1: $\quad \Sigma_{\alpha-\text { map }}=\mathcal{P}\left(\right.$ string $\left.\times \Sigma_{\alpha}\right)$
$\sigma_{0}=\{ \}$
3: $\quad \delta(\sigma, k)= \begin{cases}\sigma(k), & \text { if } k \in \operatorname{dom}(\sigma) \\ \sigma_{0_{\alpha}}, & \text { otherwise }\end{cases}$
4: $\quad \operatorname{do}\left(\operatorname{set}\left(k, o_{\alpha}\right), \sigma, t\right)=$

$$
\text { let }(v, r)=d o_{\alpha}\left(o_{\alpha}, \delta(\sigma, k), t\right) \text { in }(\sigma[k \mapsto v], r)
$$

5: $\quad \operatorname{do}\left(\operatorname{get}\left(k, o_{\alpha}\right), \sigma, t\right)=$
let $(, r)=d o_{\alpha}\left(o_{\alpha}, \delta(\sigma, k), t\right)$ in (σ, r)
6: $\quad \operatorname{merge}_{\alpha-\text { map }}\left(\sigma_{l c a}, \sigma_{a}, \sigma_{b}\right)=$

Simulation Relation

$$
\begin{aligned}
& \quad \mathcal{R}_{\text {sim- } \alpha-\operatorname{map}}(I, \sigma) \Longleftrightarrow \forall \forall k . \\
& \text { 1: }\left(k \in \operatorname{dom}(\sigma) \Longleftrightarrow \exists e \in I . E . \text { oper }(e)=\operatorname{set}\left(k,,_{-}\right)\right) \wedge \\
& \text { 2: } \quad \mathcal{R}_{\text {sim- }-\alpha}(\operatorname{project}(k, I), \delta(\sigma, k)) \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \text { Simulation relation appeals to the } \\
& \text { value type's simulation relation! }
\end{aligned}
$$

Composing IRC-style chat

- IRC app state is constructed by instantiating generic map with mergeable log
- The proof of correctness of the chat application directly follows from the composition.
\star See paper for details!

Summary

- Peepul
- An F^{*} library implementing and proving MRDTs
^ https://github.com/prismlab/peepul

Summary

- Peepul
- An F^{*} library implementing and proving MRDTs
^ https://github.com/prismlab/peepul

- Space- and time-efficient implementations
\star Certified implementation of a $\mathrm{O}(\mathrm{I})$ replicated queue with $\mathrm{O}(\mathrm{n})$ merge.

Summary

- Peepul
- An F^{*} library implementing and proving MRDTs
* https://github.com/prismlab/peepul

- Space- and time-efficient implementations
\star Certified implementation of a $\mathrm{O}(\mathrm{I})$ replicated queue with $\mathrm{O}(\mathrm{n})$ merge.
- Composition of MRDTs and their proofs!

Summary

- Peepul

- An F^{*} library implementing and proving MRDTs
* https://github.com/prismlab/peepul

- Space- and time-efficient implementations
* Certified implementation of a $\mathrm{O}(\mathrm{I})$ replicated queue with $\mathrm{O}(\mathrm{n})$ merge.
- Composition of MRDTs and their proofs!
- See paper for
- Formal description of the system + soundness proof
- Case study on replicated queues
- Performance results

