Retrofitting Effect Handlers
onto OCaml

“KC” Sivaramakrishnan

[1I'T

MADRAS %=

Retrofitting Effect Handlers
onto OCaml

“KC” Sivaramakrishnan

See PLDI’21
paper

‘QTC/’I&
N O,
I I I & &
N O
“* (5}
2 <
= 1=
z\ >

Concurrent Programming

e Computations may be suspended and resumed later

Concurrent Programming

e Computations may be suspended and resumed later

¢ Many languages provide concurrent programming mechanisms
as primitives

+ async/await — JavaScript, Python, Rust, C# 5.0, F#, ...

+ generators — Python, Javascript, ...
+ coroutines — C++, Kotlin, Lua, ...

+ futures & promises — JavaScript, Swift, ...

Concurrent Programming

e Computations may be suspended and resumed later

¢ Many languages provide concurrent programming mechanisms
as primitives

+ async/await — JavaScript, Python, Rust, C# 5.0, F#, ...

+ generators — Python, Javascript, ...
+ coroutines — C++, Kotlin, Lua, ...
+ futures & promises — JavaScript, Swift, ...
e Often include different primitives for concurrent programming

+ JavaScript has async/await, generators, promises, and callbacks!!

Concurrent Programming in OCam|

e No primitive support for concurrent programming in OCaml
+ Lwt and Async - concurrent programming libraries

+ Callback-oriented programming with monadic syntax >>=

Concurrent Programming in OCam|

e No primitive support for concurrent programming in OCaml
+ Lwt and Async - concurrent programming libraries

+ Callback-oriented programming with monadic syntax >>=

e Suffers many pitfalls of callback-oriented programming
+ No backtraces, no exceptions, more closures

+ Monads split the ecosystem into and Synchronous

<+ Bob Nystrom, “What colour is your function?”

Solution

Effect Handlers

e A mechanism for programming with user-defined effects

Solution

Effect Handlers

— —
e A mechanism for programming with user-defined effects

e Modular and composable basis of non-local control-flow
mechanisms

+ Exceptions, generators, lightweight threads, promises, asynchronous
|O, coroutines as libraries

Solution

Effect Handlers

— —
e A mechanism for programming with user-defined effects

e Modular and composable basis of non-local control-flow
mechanisms

+ Exceptions, generators, lightweight threads, promises, asynchronous
|O, coroutines as libraries

e Effect handlers ~= first-class, restartable exceptions

+ Structured programming with delimited continuations

Solution

Effect Handlers

— —
e A mechanism for programming with user-defined effects

e Modular and composable basis of non
mechanisms ® Direct-style asynchronous I/0

® Generators

+ Exceptions, generators, lightweight thre

. , , ® Resumable parsers
|O, coroutines as libraries

® Probabilistic Programming
e Effect handlers ~= first-class, restartabfBiaEEENERE

+ Structured programming with delimited,

https://github.com/ocaml-multicore/effects-examples

An example

effect E : string

comp ()
print_string "0 "
print_string (perform E
print_string "3 "

main ()

comp ()

effect E k —
print_string "1 "
continue k "2 "
print_string “4 "

An example

EeFFfECtEN string

"’////’ comp ()

print_string "0 "
print_string (perform E
print_string "3 "

effect declaration

main ()

comp ()

effect E k —
print_string "1 "
continue k "2 "
print_string “4 "

An example

EeFFfECtEN string

"’////’ comp ()

print_string "0 "
print_string (perform E
print_string "3 "

main ()///”’,,—yconunnadon

comp ()

effect E k —
print_string "1 "
continue k "2 "
print_string “4 "

effect declaration

An example

EeFFfECtEN string

*’///// comp ()

print_string "0 "
print_string (perform E
print_string "3 "

main ()’//”’,,—yconunnaﬂon

comp ()

effect E k —
print_string "1 "
continue k "2 "
print_string “4 "

effect declaration

____» handler

An example

EeFFfECtEN string

/ comp () suspends current

print_string "0 " — computation
print_string (perform E
print_string "3 "

main ()’//”’,,—yconunnaﬂon

comp ()

effect E k —
print_string "1 "
continue k "2 "
print_string “4 "

effect declaration

____» handler

An example

EeFFfECtEN string

/ comp () suspends current

print_string "0 " — computation
print_string (perform E
print_string "3 "

main ()///”,,,—rconunnadon
comp () — delimited continuation

effect E k =>
print_string "1 " ___» handler

continue k "2 "
print_string “4 "

effect declaration

An example

EeFFfECtEN string

/ comp () suspends current

print_string "0 " — computation
print_string (perform E
print_string "3 "

main ()///”,,,—rconunnadon
comp () — delimited continuation

effect k ==
print _string s handler

continue k

"”/,priﬁt_string
resume suspended

computation

effect declaration

Stepping through the example

effect E : string

let comp () =
print_string "0 ";
print_string (perform E);
print_string "3 "

let main () =
pc—» try
comp ()
with effect E k —>
print_string "1 ";
continue k "2 ",
print_string “4 "

sp —»

Stepping through the example

effect E : string

let comp () =
print_string "0 ";
print_string (perform E);
print_string "3 "

let main () =
try
pc—» comp ()
with effect E k —>
print_string "1 ";
continue k "2 ";
print_string “4 "

sp —»

Stepping through the example

parent

auEny
e v
. .
- .
o* S
- »
* -
* *
o e
o -
Q
g
*
g
g
g
g
g
g
Q
Q
0
Q
Q
0
0
Q

effect E : string

let comp () =
print_string "0 ";
print_string (perform E);
print_string "3 "

let main () =
try
pc—» comp ()
with effect E k —>
print_string "1 ";
continue k "2 ";
print_string “4 "

Stepping through the example

parent

auEny
e v
. .
. .
o* S
- »
* -
* *
o e
o -
Q
g
*
g
g
Q
g
g
g
Q
Q
0
Q
Q
Q
0
Q

effect E : string

let comp () =
print_string "0 ";
pC— print_string (perform E);
print_string "3 "

let main () =
try
comp ()
with effect E k —>
print_string "1 ";
continue k "2 ",
print_string “4 "

Stepping through the example

comp
spi—p

effect E : string

let comp () =
print_string "0 ";
pC— print_string (perform E);
print_string "3 "

let main () =
try
comp ()
with effect E k —>
print_string "1 ";
continue k "2 ",
print_string “4 "

Stepping through the example

effect E : string

let comp () =
print_string "0 ";
pC— print_string (perform E);
print_string "3 "

let main () =
try
comp ()
with effect E k —>
print_string "1 ";
continue k "2 ",
print_string “4 "

Stepping through the example

effect E : string

let comp () =
print_string "0 ";
print_string (perform E);
print_string "3 "

let main () =
try
comp ()
with effect E k —>
pc—» print_string "1 ";
continue k "2 ";
print_string “4 "

Stepping through the example

effect E : string

let comp () =
print_string "0 ";
print_string (perform E);
print_string "3 "

let main () =
try
comp ()
with effect E k —>
print_string "1 ";
pC —>» continue k "2 ";
print_string “4 "

Stepping through the example

effect E : string

let comp () =
print_string "0 ";
print_string (perform E);
print_string "3 "

let main () =
try
comp ()
with effect E k —>
print_string "1 ";
pC —>» continue k "2 ";
print_string “4 "

Stepping through the example

parent

effect E : string

let comp () =
print_string "0 ";
print_string (perform E);
print_string "3 "

let main () =
try
comp ()
with effect E k —>
print_string "1 ";
pC —>» continue k "2 ";
print_string “4 "

Stepping through the example

parent

effect E : string

let comp () =
print_string "0 ";
print_string (perform E);
pc —» print_string "3 "

let main () =
try
comp ()
with effect E k —>
print_string "1 ";
continue k "2 ",
print_string “4 "

Stepping through the example

effect E : string

let comp () =
print_string "0 ";
print_string (perform E);
print_string "3 "

let main () =
try
comp ()
with effect E k —>
print_string "1 ";
continue k "2 ";

rint string “4 "
pc —» print_string sp ;

Stepping through the example

effect E : string

let comp () =
print_string "0 ";
print_string (perform E);
print_string "3 "

let main () =
try
comp ()
with effect E k —>
print_string "1 ";
continue k "2 ";

print_string “4 "
sp —»

pc —»

O 1 2 3 4

Lightweight T hreading

effect Fork : (unit —> unit) —> unit
effect Yield : unit

Lightweight T hreading

effect Fork : (unit => unit) —> unit
effect Yield : unit

let run main =
(x assume queue of continuations x)
let run_next () =
match dequeue () with
| Some k —> continue k ()
| None —> ()
in
let rec spawn f =
match f () with
() == run_next () (x value case)
effect Yield k —> enqueue k; run_next ()
effect (Fork f) k —> enqueue k; spawn f

in
spawn main

Lightweight T hreading

effect Fork : (unit => unit) —> unit
effect Yield : unit

let run main =
(x assume queue of continuations x)
let run_next () =
match dequeue () with
| Some k —> continue k ()
| None —> ()
in
let rec spawn f =
match f () with
() == run_next () (x value case)
effect Yield k —> enqueue k; run_next ()
effect (Fork f) k —> enqueue k; spawn f

in
spawn main

let fork f = perform (Fork f)
let yield () = perform Yield

Lishtweight threading

let main () =
fork (fun _ —> print_endline "1.a"; yield (); print_endline "1.b");
fork (fun _ —> print_endline "2.a"; yield (); print_endline “2.b")

run main

Lishtweight threading

let main () =
fork (fun _ —> print_endline "1.a"; yield (); print_endline "1.b");
fork (fun _ —> print_endline "2.a"; yield (); print_endline “2.b")

run main

N RPN B
O T o Q

Lightweight threading

let main () =
fork (fun _ —-> print_endline "1.a"; yield (); print_endline "1.b");
fork (fun _ —> print_endline "2.a"; yield (); print_endline “2.b")

run main

® Direct-style (ho monads)

® User-code need not be aware of effects
® No Async vs Sync distinction

NN B
O T 9 Q

Retrofitting Challenges

e Millions of lines of legacy code
+ Written without non-local control-flow in mind

+ Cost of refactoring sequential code itself is prohibitive

Retrofitting Challenges

e Millions of lines of legacy code
+ Written without non-local control-flow in mind
+ Cost of refactoring sequential code itself is prohibitive
e OCaml uses the same system stack for both OCaml and C
+ Fast exceptions and FFl between C and OCam|
+ No stack overflow checks needed

+ Excellent compatibility with debugging (gdb) and profiling (perf) tools

Retrofitting Challenges

e Millions of lines of legacy code
+ Written without non-local control-flow in mind
+ Cost of refactoring sequential code itself is prohibitive
e OCaml uses the same system stack for both OCaml and C
+ Fast exceptions and FFl between C and OCam|
+ No stack overflow checks needed

+ Excellent compatibility with debugging (gdb) and profiling (perf) tools

Must preserve
feature, tooling, performance
compatibility

Representing Stacks & Continuations

Representing Stacks & Continuations

e A stack of runtime-managed, dynamically growing stack segments
+ No pointers into OCaml stack

4+ Need stack overflow checks for OCaml code

Representing Stacks & Continuations

e A stack of runtime-managed, dynamically growing stack segments
+ No pointers into OCaml stack

4+ Need stack overflow checks for OCaml code

e Switch to system stack for C calls

C
HETNMES

OCaml

Stack Frames
grows

down C
frames

Main Effect
entry handler

*
*
.
.
-
kS
.
.
.
.
.
.
.
.
.
““
.
-
.
.
.
s
e
st

HEIMES

a
LY .
gy e
......
""""
llllll
"""""
........................

Callback

OCaml
Frames

System
Stack

Stock Multicore
OCaml OCaml

Representing Stacks & Continuations

e A stack of runtime-managed, dynamically growing stack segments

+ No pointers into OCaml stack
Formal
4+ Need stack overflow checks for OCaml code Semantics in

PLDI’21 paper

e Switch to system stack for C calls

C
HETNMES

OCaml

Stack Frames
grows

down C
frames

Main Effect
entry handler

*
-
*
*
*
.
.
.
.
.
.
.
.
.
.
““
.
.
.
.
.s
s
s
(LA

HEIMES

a
LY .
gy e
gy Pyl

llllll

........................

Callback

OCaml
Frames

System
Stack

Stock Multicore
OCaml OCaml

Switching stacks fast

® (One-shot — capture and resumption does not involve copying
frames

Switching stacks fast

® (One-shot — capture and resumption does not involve copying
frames

¢ No callee-saved registers in OCami

+ Switching between stacks need not save & restore register state

Performance

foo ()
(x a *)

(x b %)

perform E

(x d %)
effect E kK

(x C %)

continue k ()

(x e %)

Performance

foo ()

Instruction .
(x a x) SasEnge Significance
Create a new stack &
F()Z r?ot;] E atob run the computation
(*x d *) btoc Performing & handling an effect
effect E k
(% C %) ctod Resuming a continuation
continue k () ENTI—— —
eturning from a computation
X X
(¥ e %) ShOE free the stack

e Each of the instruction sequences involves a stack switch

Performance

foo () Instruction .
(x a x) SasEnge Significance
Create a new stack &
é: r?otril E atob run the computation
(% d *) btoc Performing & handling an effect
effect E k
(% C %) ctod Resuming a continuation
continue k () ENTI—— —
eturning from a computation
% %
(¥ e %) ShOE free the stack

e Each of the instruction sequences involves a stack switch

¢ Intel(R) Xeon(R) Gold 5120 CPU @ 2.20GHz

+ Cost measured using Intel PT’s cycle accurate tracing

+ For calibration, memory read latency is 90 ns (local NUMA node) and
145 ns (remote NUMA node)

Performance

foo ()

Instruction
(x a x)

Sequence

Significance Time (ns)

Create a new stack &
F(): r?(;:f;] E atob run the computation 23
(*x d *) btoc Performing & handling an effect 5
effect E k
(% C %) ctod Resuming a continuation 11
continue k () Returning from a computation &
(€ %) Sl E free the stack !

e Each of the instruction sequences involves a stack switch

¢ Intel(R) Xeon(R) Gold 5120 CPU @ 2.20GHz

+ Cost measured using Intel PT’s cycle accurate tracing

+ For calibration, memory read latency is 90 ns (local NUMA node) and
145 ns (remote NUMA node)

Performance: VWebServer

e Effect handlers for asynchronous I/O in direct-style

+ https://github.com/kayceesrk/ocaml-aeio

® Variants

+ Go + net/http (GOMAXPROCS=1)
+ OCaml + http/af + Lwt (explicit callbacks)

+ OCaml + http/af + Effect handlers (MC)

® Performance measured using wrk2

https://github.com/kayceesrk/ocaml-aeio

Performance: VWebServer

e Effect handlers for asynchronous I/O in direct-style

+ https://github.com/kayceesrk/ocaml-aeio

® Variants
+ Go + net/http (GOMAXPROCS=1)
+ OCaml + http/af + Lwt (explicit callbacks)

+ OCaml + http/af + Effect handlers (MC)

® Performance measured using wrk2
1000 conns, 20000 req/s

1000 conns
@39 — MC AT 20{ — M o=
S " lwt)
Y lwt 3)
o c 154 === QO
S =" go S
S 20 @
X 0 10+
= £
S 10; >
c
& 017 | | | |
- ' | | 0 1% ok 450 025
0 20 40 60 0% 9317 19607 19917 49 99

offered (x1000 req/s) percentile

(a) Throughput (b) Tail latency

https://github.com/kayceesrk/ocaml-aeio

Performance: VWebServer

e Effect handlers for asynchronous I/O in direct-style

+ https://github.com/kayceesrk/ocaml-aeio

® Variants ¢ Direct style (no monadic syntax)
+ Go + net/http (GOMAXPROCS=1) e Can use OCaml exceptions!
+ OCaml + http/af + Lwt (explicit callbacks) * Backtrace per thread (request)

e gdb & perf work!
+ OCaml + http/af + Effect handlers (MC)

® Performance measured using wrk2

1000 conns, 20000 req/s

1000 conns | —
— . —— MC - . " ")
L2304 20 i
g 30 % - |lwt . :/
8 S 154 === . i
S 20 O
25 _é) 10'
S £
g 10- >
o
3 014 | | |
0 20 40 60 00 33712 15.60% 5 975 99%°
offered (x1000 req/s) .
percentile

(a) Throughput (b) Tail latency

https://github.com/kayceesrk/ocaml-aeio

Performance: VWebServer

¢ eio: effects-based I/O over Linux kernel’s new 10_uring

SUPPOI‘t
= httpaf _effects
60000 - nethttp go
— cohttp_Iwt unix

50000 1 —

o
§ httpaf eio
@ — rust_hyper —
% 40000 1 — nttpaf Iwt
=2
2 30000 - —
9
S 20000 -
c
7

10000 -

0-

0 20000 40000 60000 80000 100000 120000 140000
load requests/second

Performance: VWebServer

¢ eio: effects-based I/O over Linux kernel’s new 10_uring

support
— httpaf effects

60000 - nethttp go
= = cohttp_lwt_unix
o 50000 1 —— nttpaf eio v
@ — rust_hyper —
% 40000 1 — nttpaf Iwt _
3
g 30000 - -
0
S 20000 +
c
v

10000 -

0 <

0 20000 40000 60000 80000 100000 120000 140000
load requests/second

Backwards Compatibility

e OCaml is a systems programming language

+ Manipulates resources such as files, sockets, buffers, etc.

Backwards Compatibility

e OCaml is a systems programming language

+ Manipulates resources such as files, sockets, buffers, etc.

e OCaml code is written in defensive style to guard against
exceptional behaviour and clear up resources

Backwards Compatibility

e OCaml is a systems programming language

+ Manipulates resources such as files, sockets, buffers, etc.

e OCaml code is written in defensive style to guard against
exceptional behaviour and clear up resources

let copy ic oc =
let rec loop () =
let L = 1input_line 1ic 1in
output_string oc (1 ~ "\n");
loop ()
in
try loop () with
| End_of_file -> close_in 1ic; close_out oc
| e => close_1in 1ic; close_out oc; raise e

Backwards Compatibility

e OCaml is a systems programming language

+ Manipulates resources such as files, sockets, buffers, etc.

e OCaml code is written in defensive style to guard against
exceptional behaviour and clear up resources

Nopp () =
: let 1 =Sinput_line ic in
raises _ com
End of file at output_string oc (1 \n");
“the end Loop ()
1in

try loop () with
| End_of_file -> close_in 1ic; close_out oc
| e => close_1in ic; close_out oc; raise e

Backwards Compatibility

e OCaml is a systems programming language

+ Manipulates resources such as files, sockets, buffers, etc.

e OCaml code is written in defensive style to guard against
exceptional behaviour and clear up resources

let.eopy 1C oC = P o AiSE€ SYS_€error
~ et rec™ opp () =© when channel is
: let 1 ;*anut llne ic in closed
raises €1
End of file at output_ strlngnoc (L \n"); s

the end Loop () ™~
in — .

try loop () with

| End_of _file -> close_in ic; close_out oc
| e => close_in ic; close_out oc; raise e

Backwards Compatibility

e OCaml is a systems programming language

+ Manipulates resources such as files, sockets, buffers, etc.

e OCaml code is written in defensive style to guard against
exceptional behaviour and clear up resources

let.qopy ic oc = P RS aise SYS_error
~ et rec™ opp () =© when channel is
: let 1 ;linput llne ic in closed
ralSes A1 1 7
End of file at output_ strlngnoc (L \n"); '

try loop () with
| End_of_file -> close_in 1ic; close_out oc
| e => close_in ic; close_out oc; raise e

We would like to make this code transparently asynchronous

Asynchronous |O

effect In_Lline : in_channel —> string
effect Out_str : out_channel x string —> unit

Asynchronous |O

effect In_Lline : in_channel —> string
effect Out_str : out_channel x string —> unit

let input_line ic = perform (In_line ic)
let output_string oc s = perform (Out_str (oc,s))

Asynchronous |O

effect In_Lline : in_channel —> string
effect Out_str : out_channel % string —> unit

let input_line ic = perform (In_line ic)
let output_string oc s = perform (Out_str (oc,s))

let run_aio f = match f () with

| v —> v

| effect (In_line chan) k —->
register_async_input_Lline chan Kk;
run_next ()

| effect (Out_str (chan, s)) k —>
register_async_output_string chan s Kk;
run_next ()

Asynchronous |O

effect In_Lline : in_channel —> string
effect Out_str : out_channel x string —> unit

let input_line ic = perform (In_line ic)
let output_string oc s = perform (Out_str (oc,s))

let run_aio f = match f () with

| v —> v

| effect (In_line chan) k —> |
register_async_input_line chan k; €<=
run_next ()

| effect (Out_str (chan, s)) k —> |
register_async_output_string chan s k;&=
run_next ()

e Continue with appropriate value when the asynchronous 1O call returns

Asynchronous |O

effect In_Lline : in_channel —> string
effect Out_str : out_channel x string —> unit

let input_line ic = perform (In_line ic)
let output_string oc s = perform (Out_str (oc,s))

let run_aio f = match f () with

| v —> v

| effect (In_line chan) k —> |
register_async_input_line chan k; &=
run_next ()

| effect (Out_str (chan, s)) k —> |
register_async_output_string chan s k;¢{~y‘
run_next () |

e Continue with appropriate value when the asynchronous 1O call returns

e But what about termination! — End _of file and Sys_error
exceptional cases.

Discontinue

discontinue k End of file

® We add a discontinue primitive to resume a continuation by
raising an exception

e On End_of_file and Sys_error, the asynchronous 1O scheduler
uses discontinue to raise the appropriate exception

Linearity

e Resources such as sockets, file descriptors, channels and buffers
are linear resources

+ Created and destroyed exactly once

e Resources such as sockets, file descriptors, channels and buffers
are linear resources
+ Created and destroyed exactly once

e OCaml functions return exactly once with value or exception

+ Defensive programming already guards against exceptional return
cases

e Resources such as sockets, file descriptors, channels and buffers
are linear resources
+ Created and destroyed exactly once

e OCaml functions return exactly once with value or exception

+ Defensive programming already guards against exceptional return
cases

e With effect handlers, functions may return at-most once if
continuation not resumed

+ This breaks resource-safe legacy code

Linearity

effect E : unit
let foo () = perform E

Linearity

effect E : unit
let foo () = perform E

let bar () =
let ic = open_in "input.txt" in
match foo () with
| v —> close_in ic
| exception e —> close_1in ic; raise e

Linearity

effect E : unit
let foo () = perform E

let bar () =
let ic = open_in "input.txt" in
match foo () with
| v —> close_in ic
| exception e —> close_1in ic; raise e

let baz () =
try bar () with
| effect E _ — () [EICELCERIEEY)

Linearity

effect E : unit
let foo () = perform E

let bar () =
let ic = open_in "input.txt" in
match foo () with
| v —> close_in ic
| exception e —> close_1in ic; raise e

let baz () =
try bar () with
| effect E _ — () [EICELCERIEEY)

We assume that captured continuations are resumed exactly once
either using continue or discontinue

Backtraces

e OCaml has excellent compatibility with debugging and profiling
tools — gdb, lldb, perf, libunwind, etc.

+ DWAREF stack unwinding support

Backtraces

e OCaml has excellent compatibility with debugging and profiling
tools — gdb, lldb, perf, libunwind, etc.

+ DWAREF stack unwinding support

e Multicore OCaml supports DWARF stack unwinding across fibers

Backtraces

e OCaml has excellent compatibility with debugging and profiling
tools — gdb, lidb, perf, libunwind, etc.

+ DWAREF stack unwinding support
e Multicore OCaml supports DWARF stack unwinding across fibers

effect E : unit
let foo () = perform E

let bar () =
let ic = open_in "1input.txt" in
match foo () with
| v => close_in ic
| exception e —>
close_in ic; raise e

let baz () =
try bar () with
| effect E _ —> () (x leak x)

Backtraces

e OCaml has excellent compatibility with debugging and profiling
tools — gdb, lldb, perf, libunwind, etc.

+ DWAREF stack unwinding support

e Multicore OCaml supports DWARF stack unwinding across fibers
Fiber | Fiber 2

effect E : unit
let foo () = perform E

let bar () = Stack
let ic = open_in "input.txt" in grows
match foo () with down

| v => close_in ic
| exception e —>
close_in ic; raise e

let baz () =
try bar () with
| effect E _ —> () (% leak)

Backtraces

e OCaml has excellent compatibility with debugging and profiling
tools — gdb, lidb, perf, libunwind, etc.

+ DWAREF stack unwinding support

e Multicore OCaml supports DWARF stack unwinding across fibers

effect E : unit Fiber | Fiber 2

let foo () = perform E

Stack

grows
down

let bar () =
let ic = open_in "1input.txt" in
match foo () with
| v —> close_in 1ic
| exception e —> Bespoke DWARF bytecode for
close_in ic; raise e unwinding across fibers

let baz () =
try bar () with
| effect E _ —> () (% leak %)

Backtraces

effect E : unit
let foo () = perform E

let bar () =
let 1ic = open_in "input.txt" in
match foo () with
| v => close_in ic
| exception e —>
close_in 1c; raise e

let baz () =
try bar () with
| effect E _ —> () (*x leak *)

(1ldb)

bt

* thread #1, name

* #0O:
#1:
#2.
#3:
#4 .
#5:
#6:
#17:
#8:

0x58b208
@x56aabd
@x56aae?2
Ox56a9fc
Ox58b322
@x56ab99
Ox56aceb
@x56a4lc
0x58b0b7

#9: .

= 'a.out', stop reason = ..
caml_perform

camlTest foo 83 at test.ml:4
camlTest_bar 85 at test.ml:9
camlTest_ fun_199 at test.ml:14
caml_runstack + 70
camlTest baz 91 at test.ml:14
camlTest__entry at test.ml:21
caml_program + 60
caml_start_program + 135

Thanks!

e Multicore OCaml

+ https://github.com/ocaml|-multicore/ocaml-multicore

o Effects Examples

+ https://github.com/ocaml-multicore/effects-examples

e Sivaramakrishnan et al, “Retrofitting Effect Handlers onto OCaml”,
PLDI 2021

+ https://arxiv.org/abs/2104.00250

https://github.com/ocaml-multicore/ocaml-multicore
https://github.com/ocaml-multicore/effects-examples
https://arxiv.org/abs/2104.00250
https://arxiv.org/abs/2104.00250

Bonus Slides

Fiber Layout

<+—— parent_fiber

clos_heffect

> handler_info

e > clos_hexn
e clos_hval
: | :
' Context block | 2 words
calls: - :
R pc(ExnHandle) prjfvih
: exn handler
calls: Job-
o pc(RetVal)
! l
i 0Caml Frames |
—> E > Variable size
L R 4
! |
E Free space |
. ! stack
I TR : threshold
! I
E Red Zone : 16 words
|
{]
saved_exn_ptr
fiber_info
saved_sp
fiber
HEADER WORD

match f () with

v o=> .

exception
exception
effect E1
effect E2

X1 —>
(X2

K —>
K —>

Fiber Layout

V) —> ...

parent_fiber

clos_heffect

clos_hexn

clos_hval

> handler_info

Context block

pc (ExnHandle)

NULL

pc(RetVal)

OCaml Frames

Red Zone

e - e o o SR

saved_exn_ptr

saved_sp

fiber

HEADER WORD

2 words

Top-level
exn handler

}-Variable size

stack
threshold

16 words

fiber_info

“KC” Sivaramakrishnan

* Who am I?

+ Asst Prof at lIT Madras, India

+ Lead the development of Multicore OCaml project
® |nterested in learning

+ Compiling effect handlers for uncooperative environments (VWasm, Java,
C, JavaScript)

+ Pragmatic effect systems
+ New use cases for effects
o Talks

+ Retrofitting effect handlers onto OCaml (30 minutes)

+ ParaFuzz: Fuzzing Multicore OCaml programs (15 minutes)

