
Concurrent System Programming
with

Effect Handlers

KC Sivaramakrishnan

OCaml
Labs

University of
Cambridge

Multicore OCaml
• Native support for concurrency and parallelism in OCaml

• Lead from OCaml Labs, University of Cambridge

‣ Collaborators Stephen Dolan (OCaml Labs), Leo White (Jane Street)

• Expected to hit mainline in late 2019

• In this talk,

‣ Focus on the concurrency subsystem — Effect Handlers

‣ Build scalable concurrent network services in idiomatic fashion

‣ Challenges in adding concurrency to a industrial-strength sequential language

‣ Future work: Effect handler based OS and network services

Concurrency ≠ Parallelism
• Concurrency

• Overlapped execution of processes

• Fibers — language level lightweight threads

• Parallelism

• Simultaneous execution of computations

• Domains — System thread + Context

• Concurrency ∩ Parallelism ➔ Scalable Concurrency

User-level Schedulers
• Multiplexing fibers over domain(s)

• Bake scheduler into the runtime (Go, GHC)

• Lack of flexibility

• Maintenance onus on the compiler developers

• Allow programmers to describe schedulers as OCaml libraries

• Parallel search ➔ LIFO work-stealing

• Web-server ➔ FIFO runqueue

• Data parallel ➔ Gang scheduling

• Effect handlers

• Reasoning about computational effects in a pure setting

• G. Plotkin and J. Power, Algebraic Operations and Generic Effects, 2002

Algebraic Effect Handlers : History

• Reasoning about computational effects in a pure setting

• G. Plotkin and J. Power, Algebraic Operations and Generic Effects, 2002

• Handlers for programming

• G. Plotkin and M. Pretnar, Handlers of Algebraic Effects, 2009

Algebraic Effect Handlers : History

• Reasoning about computational effects in a pure setting

• G. Plotkin and J. Power, Algebraic Operations and Generic Effects, 2002

• Handlers for programming

• G. Plotkin and M. Pretnar, Handlers of Algebraic Effects, 2009

• Many prototype languages integrate algebraic effect handlers

• Eff, Links, Koka, Frank, ….

• Multicore OCaml is the first industrial-strength language to integrate
effect handlers

Algebraic Effect Handlers : History

Basics: recovering from errors
(Demo)

Dynamic Semantics
• Powerful control operator to manipulate control flow

‣ Equivalent in power to other delimited control operators (shift/reset, prompt/
control, etc)

✦ Type inference is simpler — no answer type polymorphism problem

✦ Much more pleasant to program with

• Generalises other primitives that manipulate control-flow

‣ async/await, generators, coroutines, promises

‣ Can be implemented as libraries rather than as primitives

• Effect handler languages

‣ Eff, Koka, Links, Frank, Unison, …

‣ (Multicore) OCaml is the first industrial-strength language with effect handlers

Coroutines
(Demo)

Asynchronous I/O
• Direct-style

• Callback style

let handle conn =
 let request = read conn in
 write conn (respond_to request)

let handle conn =
 let ongoing = read conn in
 when_completed ongoing (fun req ->
 write conn (respond_to req))

http://ocamllabs.io/multicore/compare.js

Callback hell!

Can we write fast asynchronous I/O code in direct-style?

Yes (Async I/O demo)

http://ocamllabs.io/multicore/compare.js

Performance

Effect System
• WIP effect system for tracking effects in the type

‣ Make unhandled effect a compile time error

• Nominal => Structural

‣ No explicit effect declaration

‣ Row polymorphism

• Effect polymorphism

‣ val map : (‘a -[!p]-> ‘b) -> ‘a list -[!p] -> ‘b list

Representing continuations
• Continuations are heap-allocated, dynamically resized stacks

‣ 10s of bytes initially

• Linear delimited continuations

‣ Capturing a continuation is very cheap

‣ Simplifies reasoning about resources — sockets, fds, locks etc

• Overheads

‣ Stacks managed on the heap => stack overflow checks

‣ FFI is more complex

‣ ~1% avg (~9% max) slowdown compared to trunk

Enforcing linearity
• Continuations must be used exactly once

‣ Not 0 times or 1+ times

‣ No linear types => enforce dynamically

• Enforce at-most once use by invalidating the continuation on
first-use

‣ Raises exception on subsequent uses

• Enforcing at-least once use is tricky but important

Enforcing at-least once use

Gc.finalise k (fun k -> ignore(
 try discontinue k ThreadKilled with
 | Continuation_already_used -> ()
 | e -> failwith (Printexc.to_string e)))

let process_file filename =
 let fd = Unix.openfile filename …
 try
 process fd; Unix.close fd
 with e -> Unix.close fd; raise e

let process fd =
… perform DoesNotReturn …

try process_file “hello.ml” with
| effect DoesNotReturn k -> ()

• Make use of the GC for enforcing at least once use

Interrupts
• Interrupting ongoing computations is hard

• Synchronously, by polling (Go)

‣ Code pollution, timeliness…

• Asynchronously, by stopping (GHC, C)

‣ No context awareness => tricky with resource handling

‣ Signal handlers are callbacks => introduce concurrency in an
otherwise sequential program

• Interrupts are “asynchronous effects”

Preemptive multi-threading

match (handle Sys.sigvtalrm main) () with
| _ -> dequeue ()
| effect (Async f) k ->
 enqueue (continue k); run f
| effect Yield k ->
 enqueue (continue k); dequeue ()
| effect (Signal Sys.sigvtalrm) k (* context *) ->
 enqueue (continue k); dequeue ()

val handle_signal : int (* signal number *)
 -> ('a -[!r]-> 'b)
 -> 'a -[Signal: int -> unit | !r]-> 'b

• Scalable OS networking & disk IO interfaces are exposed as
callbacks

‣ select, epoll, kqueue, Windows IOCP etc

‣ Effect handlers can expose direct-style API!

• What about cases where the above doesn’t work?

‣ Posix says “File descriptors associated with regular files shall always select
true for ready to read, ready to write, and error conditions.”

• Slow disks (NFS, HDD) => overlap computation with I/O?

• Similarly calls to DB engines, cached RPC calls, 3-rd party libraries…

Overlapping I/O with Compute

User-level scheduler

Overlapping I/O with Compute

| effect (Delayed id) k ->
 Hashtbl.add ongoing_io id k;
 dequeue ()

Domain 0

read() F1 F2 Fn

T0 T1 T2 T3
D1 D2

D3 D4

Delayed!

K

Overlapping I/O with Compute

| effect (Delayed id) k ->
 Hashtbl.add ongoing_io id k;
 dequeue ()

User-level scheduler

Domain 0

read() F1 F2

T0 T1 T2 T3
D1 D2

D3 D4

Completed!| effect (Completed id) k ->
 let k' = Hashtbl.find ongoing_io id in
 Hashtbl.remove ongoing_io id;
 enqueue (continue k);
 continue k' ()

Fn

K

Summary
• Effect handlers are a great new tool for programming!

• They work really well for system programming

‣ as long as you stick to the linear version

• They make nasty OS interfaces easier to use

‣ and find salvation from callback hell!

ocamllabs/ocaml-multicore

