
Effective Programming
in OCaml

“KC” Sivaramakrishnan

• Adds native support for concurrency and parallelism to OCaml

Multicore OCaml

• Adds native support for concurrency and parallelism to OCaml

Multicore OCaml

Overlapped
execution

A

B

A

C

B

Time

• Adds native support for concurrency and parallelism to OCaml

Multicore OCaml

Overlapped
execution

A

B

A

C

B

Time

Simultaneous
execution

A
B

C

Time

• Adds native support for concurrency and parallelism to OCaml

Multicore OCaml

Overlapped
execution

A

B

A

C

B

Time

Simultaneous
execution

A
B

C

Time

Effect Handlers

• Adds native support for concurrency and parallelism to OCaml

Multicore OCaml

Overlapped
execution

A

B

A

C

B

Time

Simultaneous
execution

A
B

C

Time

Effect Handlers Domains

• Adds native support for concurrency and parallelism to OCaml

Multicore OCaml

Overlapped
execution

A

B

A

C

B

Time

Simultaneous
execution

A
B

C

Time

Effect Handlers Domains

Concurrency is not parallelism
Parallelism is a performance hack

whereas

concurrency is a program structuring mechanism

Concurrency is not parallelism

• OS threads give you parallelism and concurrency

✦ Too heavy weight for concurrent programming

✦ Http server with 1 OS thread per request is a terrible idea

Parallelism is a performance hack

whereas

concurrency is a program structuring mechanism

Concurrency is not parallelism

• OS threads give you parallelism and concurrency

✦ Too heavy weight for concurrent programming

✦ Http server with 1 OS thread per request is a terrible idea

• Programming languages provide concurrent programming
mechanisms as primitives

✦ async/await, generators, coroutines, etc.

Parallelism is a performance hack

whereas

concurrency is a program structuring mechanism

Concurrency is not parallelism

• OS threads give you parallelism and concurrency

✦ Too heavy weight for concurrent programming

✦ Http server with 1 OS thread per request is a terrible idea

• Programming languages provide concurrent programming
mechanisms as primitives

✦ async/await, generators, coroutines, etc.

• Often include different primitives for concurrent programming

✦ JavaScript has async/await, generators, promises, and callbacks!!

Parallelism is a performance hack

whereas

concurrency is a program structuring mechanism

Concurrent Programming in OCaml
• OCaml does not have primitive support for concurrent

programming

Concurrent Programming in OCaml
• OCaml does not have primitive support for concurrent

programming

• Lwt and Async - concurrent programming libraries in OCaml

✦ Callback-oriented programming with monadic syntax >>=

✦ But do not satisfy monad laws

Concurrent Programming in OCaml
• OCaml does not have primitive support for concurrent

programming

• Lwt and Async - concurrent programming libraries in OCaml

✦ Callback-oriented programming with monadic syntax >>=

✦ But do not satisfy monad laws

• Suffers many pitfalls of callback-oriented programming

✦ No backtraces, No exception, monadic syntax, too many closures

Concurrent Programming in OCaml
• OCaml does not have primitive support for concurrent

programming

• Lwt and Async - concurrent programming libraries in OCaml

✦ Callback-oriented programming with monadic syntax >>=

✦ But do not satisfy monad laws

• Suffers many pitfalls of callback-oriented programming

✦ No backtraces, No exception, monadic syntax, too many closures

• Go (goroutines) and GHC Haskell (threads) have better
abstractions — lightweight threads

Concurrent Programming in OCaml
• OCaml does not have primitive support for concurrent

programming

• Lwt and Async - concurrent programming libraries in OCaml

✦ Callback-oriented programming with monadic syntax >>=

✦ But do not satisfy monad laws

• Suffers many pitfalls of callback-oriented programming

✦ No backtraces, No exception, monadic syntax, too many closures

• Go (goroutines) and GHC Haskell (threads) have better
abstractions — lightweight threads

Should we add lightweight threads to OCaml?

Effect Handlers
• A mechanism for programming with user-defined effects

Effect Handlers
• A mechanism for programming with user-defined effects

• Modular basis of non-local control-flow mechanisms

✦ Exceptions, generators, lightweight threads, promises, asynchronous
IO, coroutines

Effect Handlers
• A mechanism for programming with user-defined effects

• Modular basis of non-local control-flow mechanisms

✦ Exceptions, generators, lightweight threads, promises, asynchronous
IO, coroutines

• Effect handlers ~= first-class, restartable exceptions

✦ Similar to exceptions, performing an effect separate from handling it

An example

effect E : string

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E k ->
 print_string "1 ";
 continue k "2 ";
 print_string “4 "

An example

effect E : string

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E k ->
 print_string "1 ";
 continue k "2 ";
 print_string “4 "

effect declaration

An example

effect E : string

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E k ->
 print_string "1 ";
 continue k "2 ";
 print_string “4 "

computation

effect declaration

An example

effect E : string

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E k ->
 print_string "1 ";
 continue k "2 ";
 print_string “4 "

computation

handler

effect declaration

An example

effect E : string

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E k ->
 print_string "1 ";
 continue k "2 ";
 print_string “4 "

computation

handler

suspends current
computation

effect declaration

An example

effect E : string

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E k ->
 print_string "1 ";
 continue k "2 ";
 print_string “4 "

computation

handler

delimited continuation

suspends current
computation

effect declaration

An example

effect E : string

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E k ->
 print_string "1 ";
 continue k "2 ";
 print_string “4 "

computation

handler

delimited continuation

suspends current
computation

resume suspended
computation

effect declaration

Stepping through the example

effect E : string

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E k ->
 print_string "1 ";
 continue k "2 ";
 print_string “4 "

pc
main

sp

Stepping through the example

effect E : string

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E k ->
 print_string "1 ";
 continue k "2 ";
 print_string “4 "

pc

main

sp

comp

Stepping through the example

effect E : string

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E k ->
 print_string "1 ";
 continue k "2 ";
 print_string “4 "

pc

main
sp

parent

Fiber: A piece of stack
+ effect handler

comp

comp

Stepping through the example

effect E : string

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E k ->
 print_string "1 ";
 continue k "2 ";
 print_string “4 "

pc

main

sp

parent

0

comp

comp

Stepping through the example

effect E : string

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E k ->
 print_string "1 ";
 continue k "2 ";
 print_string “4 "

pc

main

sp

k

0

comp

comp

Stepping through the example

effect E : string

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E k ->
 print_string "1 ";
 continue k "2 ";
 print_string “4 "

pc

main

sp k

0

comp

comp

Stepping through the example

effect E : string

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E k ->
 print_string "1 ";
 continue k "2 ";
 print_string “4 "

pc

main

sp k

0

comp

comp

Stepping through the example

effect E : string

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E k ->
 print_string "1 ";
 continue k "2 ";
 print_string “4 "

pc

main

sp k

0 1

comp

comp

Stepping through the example

effect E : string

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E k ->
 print_string "1 ";
 continue k "2 ";
 print_string “4 "

pc

main

sp k

0 1

comp

comp

Stepping through the example

effect E : string

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E k ->
 print_string "1 ";
 continue k "2 ";
 print_string “4 "

pc

main

sp

k

parent

0 1

comp

comp

Stepping through the example

effect E : string

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E k ->
 print_string "1 ";
 continue k "2 ";
 print_string “4 "

pc
main

sp

k

parent

0 1 2

Stepping through the example

effect E : string

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E k ->
 print_string "1 ";
 continue k "2 ";
 print_string “4 " pc

main

sp k

0 1 2 3

Stepping through the example

effect E : string

let comp () =
 print_string "0 ";
 print_string (perform E);
 print_string "3 "

let main () =
 try
 comp ()
 with effect E k ->
 print_string "1 ";
 continue k "2 ";
 print_string “4 "

pc

main

sp k

0 1 2 3 4

effect A : unit
effect B : unit

let baz () =
 perform A

let bar () =
 try
 baz ()
 with effect B k ->
 continue k ()

let foo () =
 try
 bar ()
 with effect A k ->
 continue k ()

Handlers can be nested

foo bar baz

sp

parent
parent

pc

effect A : unit
effect B : unit

let baz () =
 perform A

let bar () =
 try
 baz ()
 with effect B k ->
 continue k ()

let foo () =
 try
 bar ()
 with effect A k ->
 continue k ()

Handlers can be nested

foo bar baz

sp

parent
parent

pc

effect A : unit
effect B : unit

let baz () =
 perform A

let bar () =
 try
 baz ()
 with effect B k ->
 continue k ()

let foo () =
 try
 bar ()
 with effect A k ->
 continue k ()

Handlers can be nested

foo bar baz

sp

parent

pc k

effect A : unit
effect B : unit

let baz () =
 perform A

let bar () =
 try
 baz ()
 with effect B k ->
 continue k ()

let foo () =
 try
 bar ()
 with effect A k ->
 continue k ()

Handlers can be nested

foo bar baz

sp

parent

pc k

• Linear search through handlers

• Handler stacks shallow in practice

Lightweight Threading
effect Fork : (unit -> unit) -> unit
effect Yield : unit

Lightweight Threading
effect Fork : (unit -> unit) -> unit
effect Yield : unit

let run main =
 ... (* assume queue of continuations *)
 let run_next () =
 match dequeue () with
 | Some k -> continue k ()
 | None -> ()
 in
 let rec spawn f =
 match f () with
 | () -> run_next () (* value case *)
 | effect Yield k -> enqueue k; run_next ()
 | effect (Fork f) k -> enqueue k; spawn f
 in
 spawn main

Lightweight Threading
effect Fork : (unit -> unit) -> unit
effect Yield : unit

let run main =
 ... (* assume queue of continuations *)
 let run_next () =
 match dequeue () with
 | Some k -> continue k ()
 | None -> ()
 in
 let rec spawn f =
 match f () with
 | () -> run_next () (* value case *)
 | effect Yield k -> enqueue k; run_next ()
 | effect (Fork f) k -> enqueue k; spawn f
 in
 spawn main

let fork f = perform (Fork f)
let yield () = perform Yield

Lightweight threading

let main () =
 fork (fun _ -> print_endline "1.a"; yield (); print_endline "1.b");
 fork (fun _ -> print_endline "2.a"; yield (); print_endline “2.b")
;;
run main

Lightweight threading

let main () =
 fork (fun _ -> print_endline "1.a"; yield (); print_endline "1.b");
 fork (fun _ -> print_endline "2.a"; yield (); print_endline “2.b")
;;
run main

1.a
2.a
1.b
2.b

Lightweight threading

let main () =
 fork (fun _ -> print_endline "1.a"; yield (); print_endline "1.b");
 fork (fun _ -> print_endline "2.a"; yield (); print_endline “2.b")
;;
run main

1.a
2.a
1.b
2.b

• Direct-style (no monads)
• User-code need not be aware of effects

Generators

Generators
• Generators — non-continuous traversal of data structure by

yielding values

✦ Primitives in JavaScript and Python

Generators
• Generators — non-continuous traversal of data structure by

yielding values

✦ Primitives in JavaScript and Python

function* generator(i) {
 yield i;
 yield i + 10;
}
const gen = generator(10);

console.log(gen.next().value);
// expected output: 10

console.log(gen.next().value);
// expected output: 20

Generators
• Generators — non-continuous traversal of data structure by

yielding values

✦ Primitives in JavaScript and Python

• Can be derived automatically from any iterator using effect
handlers

function* generator(i) {
 yield i;
 yield i + 10;
}
const gen = generator(10);

console.log(gen.next().value);
// expected output: 10

console.log(gen.next().value);
// expected output: 20

Generators: effect handlers
module MkGen (S :sig
 type 'a t
 val iter : ('a -> unit) -> 'a t -> unit
end) : sig
 val gen : 'a S.t -> (unit -> 'a option)
end = struct

Generators: effect handlers
module MkGen (S :sig
 type 'a t
 val iter : ('a -> unit) -> 'a t -> unit
end) : sig
 val gen : 'a S.t -> (unit -> 'a option)
end = struct

 let gen : type a. a S.t -> (unit -> a option) = fun l ->
 let module M = struct effect Yield : a -> unit end in
 let open M in
 let rec step = ref (fun () ->
 match S.iter (fun v -> perform (Yield v)) l with
 | () -> None
 | effect (Yield v) k ->
 step := (fun () -> continue k ());
 Some v)
 in
 fun () -> !step ()
end

Generators: List

module L = MkGen (struct
 type 'a t = 'a list
 let iter = List.iter
end)

Generators: List

module L = MkGen (struct
 type 'a t = 'a list
 let iter = List.iter
end)

let next = L.gen [1;2;3]
next() (* Some 1 *)
next() (* Some 2 *)
next() (* Some 3 *)
next() (* None *)

Generators: Tree
type 'a tree =
| Leaf
| Node of 'a tree * 'a * 'a tree

let rec iter f = function
 | Leaf -> ()
 | Node (l, x, r) ->
 iter f l; f x; iter f r

module T = MkGen(struct
 type 'a t = 'a tree
 let iter = iter
end)

Generators: Tree
type 'a tree =
| Leaf
| Node of 'a tree * 'a * 'a tree

let rec iter f = function
 | Leaf -> ()
 | Node (l, x, r) ->
 iter f l; f x; iter f r

module T = MkGen(struct
 type 'a t = 'a tree
 let iter = iter
end)

(* Make a complete binary tree of
 depth [n] using [O(n)] space *)
let rec make = function
 | 0 -> Leaf
 | n -> let t = make (n-1)
 in Node (t,n,t)

Generators: Tree
type 'a tree =
| Leaf
| Node of 'a tree * 'a * 'a tree

let rec iter f = function
 | Leaf -> ()
 | Node (l, x, r) ->
 iter f l; f x; iter f r

module T = MkGen(struct
 type 'a t = 'a tree
 let iter = iter
end)

let t = make 2

2

1 1

(* Make a complete binary tree of
 depth [n] using [O(n)] space *)
let rec make = function
 | 0 -> Leaf
 | n -> let t = make (n-1)
 in Node (t,n,t)

Generators: Tree
type 'a tree =
| Leaf
| Node of 'a tree * 'a * 'a tree

let rec iter f = function
 | Leaf -> ()
 | Node (l, x, r) ->
 iter f l; f x; iter f r

module T = MkGen(struct
 type 'a t = 'a tree
 let iter = iter
end)

let t = make 2

2

1 1

(* Make a complete binary tree of
 depth [n] using [O(n)] space *)
let rec make = function
 | 0 -> Leaf
 | n -> let t = make (n-1)
 in Node (t,n,t)

let next = T.gen t
next() (* Some 1 *)
next() (* Some 2 *)
next() (* Some 1 *)
next() (* None *)

Retrofitting Challenges

Retrofitting Challenges
• Millions of lines of legacy code

✦ Written without non-local control-flow in mind

✦ Cost of refactoring sequential code itself is prohibitive

Retrofitting Challenges
• Millions of lines of legacy code

✦ Written without non-local control-flow in mind

✦ Cost of refactoring sequential code itself is prohibitive

Backwards compatibility
before

fancy new features

Systems Programming
• OCaml is a systems programming language

✦ Manipulates resources such as files, sockets, buffers, etc.

Systems Programming
• OCaml is a systems programming language

✦ Manipulates resources such as files, sockets, buffers, etc.

• OCaml code is written in defensive style to guard against
exceptional behaviour and clear up resources

Systems Programming
• OCaml is a systems programming language

✦ Manipulates resources such as files, sockets, buffers, etc.

• OCaml code is written in defensive style to guard against
exceptional behaviour and clear up resources

let copy ic oc =
 let rec loop () =
 let l = input_line ic in
 output_string oc (l ^ "\n");
 loop ()
 in
 try loop () with
 | End_of_file -> close_in ic; close_out oc
 | e -> close_in ic; close_out oc; raise e

Systems Programming
• OCaml is a systems programming language

✦ Manipulates resources such as files, sockets, buffers, etc.

• OCaml code is written in defensive style to guard against
exceptional behaviour and clear up resources

let copy ic oc =
 let rec loop () =
 let l = input_line ic in
 output_string oc (l ^ "\n");
 loop ()
 in
 try loop () with
 | End_of_file -> close_in ic; close_out oc
 | e -> close_in ic; close_out oc; raise e

raises
End_of_file at

the end

Systems Programming
• OCaml is a systems programming language

✦ Manipulates resources such as files, sockets, buffers, etc.

• OCaml code is written in defensive style to guard against
exceptional behaviour and clear up resources

let copy ic oc =
 let rec loop () =
 let l = input_line ic in
 output_string oc (l ^ "\n");
 loop ()
 in
 try loop () with
 | End_of_file -> close_in ic; close_out oc
 | e -> close_in ic; close_out oc; raise e

raise Sys_error
when channel is

closed
raises

End_of_file at
the end

Systems Programming
• OCaml is a systems programming language

✦ Manipulates resources such as files, sockets, buffers, etc.

• OCaml code is written in defensive style to guard against
exceptional behaviour and clear up resources

let copy ic oc =
 let rec loop () =
 let l = input_line ic in
 output_string oc (l ^ "\n");
 loop ()
 in
 try loop () with
 | End_of_file -> close_in ic; close_out oc
 | e -> close_in ic; close_out oc; raise e

We would like to make this code transparently asynchronous

raise Sys_error
when channel is

closed
raises

End_of_file at
the end

Asynchronous IO
effect In_line : in_channel -> string
effect Out_str : out_channel * string -> unit

Asynchronous IO
effect In_line : in_channel -> string
effect Out_str : out_channel * string -> unit

let input_line ic = perform (In_line ic)
let output_string oc s = perform (Out_str (oc,s))

Asynchronous IO

let run_aio f = match f () with
| v -> v
| effect (In_line chan) k ->
 register_async_input_line chan k;
 run_next ()
| effect (Out_str (chan, s)) k ->
 register_async_output_string chan s k;
 run_next ()

effect In_line : in_channel -> string
effect Out_str : out_channel * string -> unit

let input_line ic = perform (In_line ic)
let output_string oc s = perform (Out_str (oc,s))

Asynchronous IO

let run_aio f = match f () with
| v -> v
| effect (In_line chan) k ->
 register_async_input_line chan k;
 run_next ()
| effect (Out_str (chan, s)) k ->
 register_async_output_string chan s k;
 run_next ()

• Continue with appropriate value when the asynchronous IO call returns

effect In_line : in_channel -> string
effect Out_str : out_channel * string -> unit

let input_line ic = perform (In_line ic)
let output_string oc s = perform (Out_str (oc,s))

Asynchronous IO

let run_aio f = match f () with
| v -> v
| effect (In_line chan) k ->
 register_async_input_line chan k;
 run_next ()
| effect (Out_str (chan, s)) k ->
 register_async_output_string chan s k;
 run_next ()

• Continue with appropriate value when the asynchronous IO call returns

• But what about termination? — End_of_file and Sys_error
exceptional cases.

effect In_line : in_channel -> string
effect Out_str : out_channel * string -> unit

let input_line ic = perform (In_line ic)
let output_string oc s = perform (Out_str (oc,s))

Discontinue

• We add a discontinue primitive to resume a continuation by
raising an exception

• On End_of_file and Sys_error, the asynchronous IO scheduler
uses discontinue to raise the appropriate exception

discontinue k End_of_file

Linearity
• Resources such as sockets, file descriptors, channels and buffers

are linear resources

✦ Created and destroyed exactly once

Linearity
• Resources such as sockets, file descriptors, channels and buffers

are linear resources

✦ Created and destroyed exactly once

• OCaml functions return exactly once with value or exception

✦ Defensive programming already guards against exceptional return
cases

Linearity
• Resources such as sockets, file descriptors, channels and buffers

are linear resources

✦ Created and destroyed exactly once

• OCaml functions return exactly once with value or exception

✦ Defensive programming already guards against exceptional return
cases

• With effect handlers, functions may return at-most once if
continuation not resumed

✦ This breaks resource-safe legacy code

Linearity
effect E : unit
let foo () = perform E

Linearity
effect E : unit
let foo () = perform E

let bar () =
 let ic = open_in "input.txt" in
 match foo () with
 | v -> close_in ic
 | exception e -> close_in ic; raise e

Linearity
effect E : unit
let foo () = perform E

let bar () =
 let ic = open_in "input.txt" in
 match foo () with
 | v -> close_in ic
 | exception e -> close_in ic; raise e

let baz () =
 try bar () with
 | effect E _ -> () (* leaks ic *)

Linearity
effect E : unit
let foo () = perform E

We assume that captured continuations are resumed exactly once
either using continue or discontinue

let bar () =
 let ic = open_in "input.txt" in
 match foo () with
 | v -> close_in ic
 | exception e -> close_in ic; raise e

let baz () =
 try bar () with
 | effect E _ -> () (* leaks ic *)

Backtraces
• OCaml has excellent compatibility with debugging and profiling

tools — gdb, lldb, perf, libunwind, etc.

✦ DWARF stack unwinding support

Backtraces
• OCaml has excellent compatibility with debugging and profiling

tools — gdb, lldb, perf, libunwind, etc.

✦ DWARF stack unwinding support

• Multicore OCaml supports DWARF stack unwinding across fibers

Backtraces

effect E : unit
let foo () = perform E

let bar () =
 let ic = open_in "input.txt" in
 match foo () with
 | v -> close_in ic
 | exception e ->
 close_in ic; raise e

let baz () =
 try bar () with
 | effect E _ -> () (* leak *)

• OCaml has excellent compatibility with debugging and profiling
tools — gdb, lldb, perf, libunwind, etc.

✦ DWARF stack unwinding support

• Multicore OCaml supports DWARF stack unwinding across fibers

Backtraces

effect E : unit
let foo () = perform E

let bar () =
 let ic = open_in "input.txt" in
 match foo () with
 | v -> close_in ic
 | exception e ->
 close_in ic; raise e

let baz () =
 try bar () with
 | effect E _ -> () (* leak *)

• OCaml has excellent compatibility with debugging and profiling
tools — gdb, lldb, perf, libunwind, etc.

✦ DWARF stack unwinding support

• Multicore OCaml supports DWARF stack unwinding across fibers

foo

baz bar
Stack
grows
down

Fiber 1 Fiber 2

Backtraces

effect E : unit
let foo () = perform E

let bar () =
 let ic = open_in "input.txt" in
 match foo () with
 | v -> close_in ic
 | exception e ->
 close_in ic; raise e

let baz () =
 try bar () with
 | effect E _ -> () (* leak *)

• OCaml has excellent compatibility with debugging and profiling
tools — gdb, lldb, perf, libunwind, etc.

✦ DWARF stack unwinding support

• Multicore OCaml supports DWARF stack unwinding across fibers

foo

baz bar
Stack
grows
down

Fiber 1 Fiber 2

Bespoke DWARF bytecode for
unwinding across fibers

Backtraces
effect E : unit
let foo () = perform E

let bar () =
 let ic = open_in "input.txt" in
 match foo () with
 | v -> close_in ic
 | exception e ->
 close_in ic; raise e

let baz () =
 try bar () with
 | effect E _ -> () (* leak *)

(lldb) bt
* thread #1, name = 'a.out', stop reason = …
 * #0: 0x58b208 caml_perform
 #1: 0x56aa5d camlTest__foo_83 at test.ml:4
 #2: 0x56aae2 camlTest__bar_85 at test.ml:9
 #3: 0x56a9fc camlTest__fun_199 at test.ml:14
 #4: 0x58b322 caml_runstack + 70
 #5: 0x56ab99 camlTest__baz_91 at test.ml:14
 #6: 0x56ace6 camlTest__entry at test.ml:21
 #7: 0x56a41c caml_program + 60
 #8: 0x58b0b7 caml_start_program + 135
 #9: …

Static Semantics

Static Semantics
• No effect safety

✦ No static guarantee that all the effects performed are handled (c.f.
exceptions)

✦ perform E at the top-level raises Unhandled exception

Static Semantics
• No effect safety

✦ No static guarantee that all the effects performed are handled (c.f.
exceptions)

✦ perform E at the top-level raises Unhandled exception

• Effect system in the works

✦ See also Eff, Koka, Links, Helium

Static Semantics
• No effect safety

✦ No static guarantee that all the effects performed are handled (c.f.
exceptions)

✦ perform E at the top-level raises Unhandled exception

• Effect system in the works

✦ See also Eff, Koka, Links, Helium

• Effective OCaml

✦ Track both user-defined and built-in (ref, io, exceptions) effects

✦ OCaml becomes a pure language (in the Haskell sense — divergence
allowed)

Static Semantics
• No effect safety

✦ No static guarantee that all the effects performed are handled (c.f.
exceptions)

✦ perform E at the top-level raises Unhandled exception

• Effect system in the works

✦ See also Eff, Koka, Links, Helium

• Effective OCaml

✦ Track both user-defined and built-in (ref, io, exceptions) effects

✦ OCaml becomes a pure language (in the Haskell sense — divergence
allowed)

let foo () = print_string "hello, world"

val foo : unit -[io]-> unit

Syntax is still in
the works

Dynamic Semantics
• A small-step operational semantics as an extension of the CEK

machine from Felleisen et al.

Dynamic Semantics
• A small-step operational semantics as an extension of the CEK

machine from Felleisen et al.

• Why?

✦ The stack layout is more complicated than stock OCaml

Dynamic Semantics
• A small-step operational semantics as an extension of the CEK

machine from Felleisen et al.

• Why?

✦ The stack layout is more complicated than stock OCaml

C
frames

OCaml
Frames

C
frames

OCaml
Frames

Stock
OCaml

Stack
grows
down

Dynamic Semantics
• A small-step operational semantics as an extension of the CEK

machine from Felleisen et al.

• Why?

✦ The stack layout is more complicated than stock OCaml

C
frames

OCaml
Frames

C
frames

OCaml
Frames

Stock
OCaml

Stack
grows
down

C
frames

C
frames

Fiber 1
(Many
OCaml

Frames)

Fiber 2

C
frames Fiber 3

Main
entry

Effect
handler

External Call

Callback

System
Stack

Multicore
OCaml

Dynamic Semantics
Deep dive

Fiber Layout

Free space

OCaml Frames

Context block

parent_fiber

clos_heffect

clos_hexn

clos_hval

pc(ExnHandle)

NULL

pc(RetVal)

Red Zone

saved_exn_ptr

saved_sp

HEADER WORD
fiber

calls

calls

handler_info

Top-level
exn handler

Variable size

2 words

16 words

fiber_info

stack
threshold

Fiber Layout

Free space

OCaml Frames

Context block

parent_fiber

clos_heffect

clos_hexn

clos_hval

pc(ExnHandle)

NULL

pc(RetVal)

Red Zone

saved_exn_ptr

saved_sp

HEADER WORD
fiber

calls

calls

handler_info

Top-level
exn handler

Variable size

2 words

16 words

fiber_info

stack
threshold

No effects micro benchmarks

No effects macro benchmarks

No effects macro benchmarks

coq

irmin

menhir

alt-ergo

No effects macro benchmarks

coq

irmin

menhir

alt-ergo

• ~1% faster than stock (geomean of normalised running times)

✦ Difference under measurement noise mostly

✦ Outliers due to difference in allocators

Effect handler — Nano benchmark

let foo () =
 (* a *)
 try
 (* b *)
 perform E
 (* d *)
 with effect E k ->
 (* c *)
 continue k ()
 (* e *)

Effect handler — Nano benchmark

let foo () =
 (* a *)
 try
 (* b *)
 perform E
 (* d *)
 with effect E k ->
 (* c *)
 continue k ()
 (* e *)

Instruction
Sequence

a to b

b to c

c to d

d to e

Significance

Create a new stack &

run the computation

Performing & handling an effect

Resuming a continuation

Returning from a computation &
free the stack

• Each of the instruction sequences involves a stack switch

Effect handler — Nano benchmark

let foo () =
 (* a *)
 try
 (* b *)
 perform E
 (* d *)
 with effect E k ->
 (* c *)
 continue k ()
 (* e *)

Instruction
Sequence

a to b

b to c

c to d

d to e

Significance

Create a new stack &

run the computation

Performing & handling an effect

Resuming a continuation

Returning from a computation &
free the stack

• Each of the instruction sequences involves a stack switch

• Intel(R) Xeon(R) Gold 5120 CPU @ 2.20GHz

★ For calibration, memory read latency is 90 ns (local NUMA node) and
145 ns (remote NUMA node)

Effect handler — Nano benchmark

let foo () =
 (* a *)
 try
 (* b *)
 perform E
 (* d *)
 with effect E k ->
 (* c *)
 continue k ()
 (* e *)

Instruction
Sequence

a to b

b to c

c to d

d to e

Significance

Create a new stack &

run the computation

Performing & handling an effect

Resuming a continuation

Returning from a computation &
free the stack

Time (ns)

23

5

11

7

• Each of the instruction sequences involves a stack switch

• Intel(R) Xeon(R) Gold 5120 CPU @ 2.20GHz

★ For calibration, memory read latency is 90 ns (local NUMA node) and
145 ns (remote NUMA node)

Performance: Generators
• Traverse a complete binary-tree of depth 25

✦ 226 stack switches

Performance: Generators
• Traverse a complete binary-tree of depth 25

✦ 226 stack switches

• Iterator — idiomatic recursive traversal

Performance: Generators
• Traverse a complete binary-tree of depth 25

✦ 226 stack switches

• Iterator — idiomatic recursive traversal

• Generator

✦ Hand-written generator (hw-generator)

✤ CPS translation + defunctionalization to remove intermediate closure
allocation

✦ Generator using effect handlers (eh-generator)

Performance: Generators

Variant Time (milliseconds)

Iterator (baseline) 202

hw-generator 837 (3.76x)

eh-generator 1879 (9.30x)

Multicore OCaml

Performance: Generators

Variant Time (milliseconds)

Iterator (baseline) 202

hw-generator 837 (3.76x)

eh-generator 1879 (9.30x)

Multicore OCaml

Variant Time (milliseconds)

Iterator (baseline) 492

generator 43842 (89.1x)

nodejs 14.07

Performance: WebServer
• Effect handlers for asynchronous I/O in direct-style

✦ https://github.com/kayceesrk/ocaml-aeio/

• Variants

✦ Go + net/http (GOMAXPROCS=1)

✦ OCaml + http/af + Lwt (explicit callbacks)

✦ OCaml + http/af + Effect handlers (MC)

• Performance measured using wrk2

https://github.com/kayceesrk/ocaml-aeio/

Performance: WebServer
• Effect handlers for asynchronous I/O in direct-style

✦ https://github.com/kayceesrk/ocaml-aeio/

• Variants

✦ Go + net/http (GOMAXPROCS=1)

✦ OCaml + http/af + Lwt (explicit callbacks)

✦ OCaml + http/af + Effect handlers (MC)

• Performance measured using wrk2

https://github.com/kayceesrk/ocaml-aeio/

Performance: WebServer
• Effect handlers for asynchronous I/O in direct-style

✦ https://github.com/kayceesrk/ocaml-aeio/

• Variants

✦ Go + net/http (GOMAXPROCS=1)

✦ OCaml + http/af + Lwt (explicit callbacks)

✦ OCaml + http/af + Effect handlers (MC)

• Performance measured using wrk2

• Direct style (no monadic syntax)
• Can use OCaml exceptions!
• Backtrace per thread (request)
• gdb & perf work!

https://github.com/kayceesrk/ocaml-aeio/

Thanks!

• Multicore OCaml — https://github.com/ocaml-multicore/ocaml-
multicore

• Effects Examples — https://github.com/ocaml-multicore/effects-
examples

• Sivaramakrishnan et al, “Retrofitting Parallelism onto OCaml", ICFP 2020

• Dolan et al, “Concurrent System Programming with Effect Handlers”, TFP
2017

$ opam switch create 4.10.0+multicore \
 --packages=ocaml-variants.4.10.0+multicore \
 --repositories=multicore=git+https://github.com/ocaml-multicore/multicore-opam.git,default

Install Multicore OCaml

https://github.com/ocaml-multicore/ocaml-multicore
https://github.com/ocaml-multicore/ocaml-multicore
https://github.com/ocaml-multicore/effects-examples
https://github.com/ocaml-multicore/effects-examples
https://kcsrk.info/papers/retro-parallel_icfp_20.pdf
https://link.springer.com/chapter/10.1007/978-3-319-89719-6_6

Bonus Slides

