
State of Multicore
OCaml

KC Sivaramakrishnan

University of
Cambridge

OCaml Labs

Outline
• Overview of the multicore OCaml project

• Multicore OCaml runtime design

• Future directions

Multicore OCaml

Multicore OCaml
• Add native support for concurrency and (shared-memory)

parallelism to OCaml

Multicore OCaml
• Add native support for concurrency and (shared-memory)

parallelism to OCaml

• History
★ Jan 2014: Initiated by Stephen Dolan and Leo White

★ Sep 2014: Multicore OCaml design @ OCaml workshop

★ Jan 2015: KC joins the project at OCaml Labs

★ Sep 2015: Effect handlers @ OCaml workshop

★ Jan 2016: Native code backend for Amd64 on Linux and OSX

★ Jun 2016: Multicore rebased to 4.02.2 from 4.00.0

★ Sep 2016: Reagents library, Multicore backend for Links @ OCaml workshop

★ Apr 2017: ARM64 backend

Multicore OCaml

Multicore OCaml
• History continued…

★ Jun 2017: Handlers for Concurrent System Programming @ TFP

★ Sep 2017: Memory model proposal @ OCaml workshop

★ Sep 2017: CPS translation for handlers @ FSCD

★ Apr 2018: Multicore rebased to 4.06.1 (will track releases going forward)

★ Jun 2018: Memory model @ PLDI

Multicore OCaml
• History continued…

★ Jun 2017: Handlers for Concurrent System Programming @ TFP

★ Sep 2017: Memory model proposal @ OCaml workshop

★ Sep 2017: CPS translation for handlers @ FSCD

★ Apr 2018: Multicore rebased to 4.06.1 (will track releases going forward)

★ Jun 2018: Memory model @ PLDI

• Looking forward…

★ Q3’18 — Q4’18: Implement missing features, upstream prerequisites to
trunk

★ Q1’19 — Q2’19: Submit feature-based PRs to upstream

Components
Multicore Runtime

+
Domains

Effect Handlers Effect System

Components
Multicore Runtime

+
Domains

Effect Handlers Effect System

• Multicore Runtime

★ Multicore GC + Domains (creating and managing parallel threads)

Components
Multicore Runtime

+
Domains

Effect Handlers Effect System

• Multicore Runtime

★ Multicore GC + Domains (creating and managing parallel threads)

• Effect handlers

★ Fibers: Runtime system support for linear delimited continuations

Components
Multicore Runtime

+
Domains

Effect Handlers Effect System

• Multicore Runtime

★ Multicore GC + Domains (creating and managing parallel threads)

• Effect handlers

★ Fibers: Runtime system support for linear delimited continuations

• Effect system

★ Track user-defined effects in the type system

★ Statically rule out the possibility of unhandled effects

Components
Multicore Runtime

+
Domains

Effect Handlers Effect System

• Multicore Runtime

★ Multicore GC + Domains (creating and managing parallel threads)

• Effect handlers

★ Fibers: Runtime system support for linear delimited continuations

• Effect system

★ Track user-defined effects in the type system

★ Statically rule out the possibility of unhandled effects

Current
implementation

Components
Multicore Runtime

+
Domains

Effect Handlers Effect System

• Multicore Runtime

★ Multicore GC + Domains (creating and managing parallel threads)

• Effect handlers

★ Fibers: Runtime system support for linear delimited continuations

• Effect system

★ Track user-defined effects in the type system

★ Statically rule out the possibility of unhandled effects

Current
implementation

Work-in-progress

Multicore GC

Minor
Heap

Minor
Heap

Minor
Heap

Minor
Heap

Major Heap

Domain 0 Domain 1 Domain 2 Domain 3

[1] Scott Schneider, Christos D. Antonopoulos, and Dimitrios S. Nikolopoulos. "Scalable, locality-conscious multithreaded memory
allocation." ISMM 2006.
[2] Lorenz Huelsbergen and Phil Winterbottom. "Very concurrent mark-&-sweep garbage collection without fine-grain
synchronization." ISMM 1998.

Multicore GC

Minor
Heap

Minor
Heap

Minor
Heap

Minor
Heap

Major Heap

Domain 0 Domain 1 Domain 2 Domain 3

[1] Scott Schneider, Christos D. Antonopoulos, and Dimitrios S. Nikolopoulos. "Scalable, locality-conscious multithreaded memory
allocation." ISMM 2006.
[2] Lorenz Huelsbergen and Phil Winterbottom. "Very concurrent mark-&-sweep garbage collection without fine-grain
synchronization." ISMM 1998.

Multicore GC

Minor
Heap

Minor
Heap

Minor
Heap

Minor
Heap

Major Heap

Domain 0 Domain 1 Domain 2 Domain 3

• Independent per-domain minor collection

[1] Scott Schneider, Christos D. Antonopoulos, and Dimitrios S. Nikolopoulos. "Scalable, locality-conscious multithreaded memory
allocation." ISMM 2006.
[2] Lorenz Huelsbergen and Phil Winterbottom. "Very concurrent mark-&-sweep garbage collection without fine-grain
synchronization." ISMM 1998.

Multicore GC

Minor
Heap

Minor
Heap

Minor
Heap

Minor
Heap

Major Heap

Domain 0 Domain 1 Domain 2 Domain 3

• Independent per-domain minor collection
★ Read barrier for mutable fields + promotion to major

[1] Scott Schneider, Christos D. Antonopoulos, and Dimitrios S. Nikolopoulos. "Scalable, locality-conscious multithreaded memory
allocation." ISMM 2006.
[2] Lorenz Huelsbergen and Phil Winterbottom. "Very concurrent mark-&-sweep garbage collection without fine-grain
synchronization." ISMM 1998.

Multicore GC

Minor
Heap

Minor
Heap

Minor
Heap

Minor
Heap

Major Heap

Domain 0 Domain 1 Domain 2 Domain 3

• Independent per-domain minor collection
★ Read barrier for mutable fields + promotion to major

• A new major allocator based on StreamFlow [1], lock-free multithreaded
allocation

[1] Scott Schneider, Christos D. Antonopoulos, and Dimitrios S. Nikolopoulos. "Scalable, locality-conscious multithreaded memory
allocation." ISMM 2006.
[2] Lorenz Huelsbergen and Phil Winterbottom. "Very concurrent mark-&-sweep garbage collection without fine-grain
synchronization." ISMM 1998.

Multicore GC

Minor
Heap

Minor
Heap

Minor
Heap

Minor
Heap

Major Heap

Domain 0 Domain 1 Domain 2 Domain 3

• Independent per-domain minor collection
★ Read barrier for mutable fields + promotion to major

• A new major allocator based on StreamFlow [1], lock-free multithreaded
allocation

• A new major GC based on VCGC [2] adapted to fibers, ephemerons, finalisers

[1] Scott Schneider, Christos D. Antonopoulos, and Dimitrios S. Nikolopoulos. "Scalable, locality-conscious multithreaded memory
allocation." ISMM 2006.
[2] Lorenz Huelsbergen and Phil Winterbottom. "Very concurrent mark-&-sweep garbage collection without fine-grain
synchronization." ISMM 1998.

Major GC
• Concurrent, incremental, mark and sweep

★ Uses deletion/yuasa barrier

★ Upper bound on marking work per cycle (not fixed due to weak refs)

• 3 phases:

★ Sweep-and-mark-main

★ Mark-final

★ Sweep-ephe

Major GC: Sweep-and-mark-main

Major GC: Sweep-and-mark-main

Domain 0 Mark
Roots

Domain 1 Mark
Roots

• Domains begin by marking roots

Major GC: Sweep-and-mark-main

MutatorDomain 0 SweepMark
Roots Mutator Sweep Mutator

Domain 1 MutatorMark
Roots Sweep Mutator

• Domains begin by marking roots

• Domains alternate between sweeping own garbage and running mutator

Major GC: Sweep-and-mark-main

MutatorDomain 0 MarkSweepMark
Roots Mutator Sweep Mutator MarkMutator Mutator

Domain 1 MutatorMark
Roots Sweep Mutator Mark Mutator Mark Mutator

• Domains begin by marking roots

• Domains alternate between sweeping own garbage and running mutator

• Domains alternate between marking objects and running mutator

Major GC: Sweep-and-mark-main

MutatorDomain 0 MarkSweepMark
Roots Mutator Sweep Mutator MarkMutator Mutator

Domain 1 MutatorMark
Roots Sweep Mutator Mark Mutator Mark Mutator

• Domains begin by marking roots

• Domains alternate between sweeping own garbage and running mutator

• Domains alternate between marking objects and running mutator

Major GC: Sweep-and-mark-main

MutatorDomain 0 MarkSweep Ephe
Mark

Mark
Roots Mutator Sweep Mutator MarkMutator Mutator Mutator Mark Mutator

Domain 1 MutatorMark
Roots Sweep Mutator Mark Mutator Mark Ephe

MarkMutator Mutator Mark Mutator

• Domains begin by marking roots

• Domains alternate between sweeping own garbage and running mutator

• Domains alternate between marking objects and running mutator

• Domains alternate between marking ephemerons, marking other objects and running
mutator

Major GC: Sweep-and-mark-main

MutatorDomain 0 MarkSweep Ephe
Mark

Mark
Roots Mutator Sweep Mutator MarkMutator Mutator Mutator Mark Mutator

Domain 1 MutatorMark
Roots Sweep Mutator Mark Mutator Mark Ephe

MarkMutator Mutator Mark Mutator

• Domains begin by marking roots

• Domains alternate between sweeping own garbage and running mutator

• Domains alternate between marking objects and running mutator

• Domains alternate between marking ephemerons, marking other objects and running
mutator

Major GC: Sweep-and-mark-main

MutatorDomain 0 MarkSweep Ephe
Mark

Mark
Roots Mutator Sweep Mutator MarkMutator Mutator Mutator Mark Mutator Ephe

Mark

Domain 1 MutatorMark
Roots Sweep Mutator Mark Mutator Mark Ephe

MarkMutator Mutator Mark Mutator

• Domains begin by marking roots

• Domains alternate between sweeping own garbage and running mutator

• Domains alternate between marking objects and running mutator

• Domains alternate between marking ephemerons, marking other objects and running
mutator

Major GC: Sweep-and-mark-main

MutatorDomain 0 MarkSweep Ephe
Mark

Mark
Roots Mutator Sweep Mutator MarkMutator Mutator Mutator Mark Mutator Ephe

Mark

Domain 1 MutatorMark
Roots Sweep Mutator Mark Mutator Mark Ephe

MarkMutator Mutator Mark Mutator

Barrier

• Domains begin by marking roots

• Domains alternate between sweeping own garbage and running mutator

• Domains alternate between marking objects and running mutator

• Domains alternate between marking ephemerons, marking other objects and running
mutator

• Global barrier to switch to the next phase
★ Reading weak keys may make unreachable objects reachable

★ Verify that the phase termination conditions hold

Major GC: mark-final

Major GC: mark-final

Domain 0 Update
final first

Domain 1 Update
final first

• Domains update Gc.finalise finalisers which take values and mark the values
★ Preserves the order of evaluation of finalisers per domain c.f trunk

Major GC: mark-final

Domain 0 Mark Ephe
Mark

Update
final first Mutator MarkMutator Mutator Mutator Mark Mutator Ephe

Mark

Domain 1 Update
final first Mutator Mark Mutator Mark Ephe

MarkMutator Mutator Mark Mutator

• Domains update Gc.finalise finalisers which take values and mark the values
★ Preserves the order of evaluation of finalisers per domain c.f trunk

Major GC: mark-final

Domain 0 Mark Ephe
Mark

Update
final first Mutator MarkMutator Mutator Mutator Mark Mutator Ephe

Mark

Domain 1 Update
final first Mutator Mark Mutator Mark Ephe

MarkMutator Mutator Mark Mutator

Barrier

• Domains update Gc.finalise finalisers which take values and mark the values
★ Preserves the order of evaluation of finalisers per domain c.f trunk

Major GC: sweep-ephe

Major GC: sweep-ephe

Domain 0 Update
final last

Domain 1 Update
final last

• Domains prepares the Gc.finalise_last finaliser list which do not take values
★ Preserves the order of evaluation of finalisers per domain c.f trunk

Major GC: sweep-ephe

Domain 0 Update
final last

Domain 1 Update
final last

Ephe
SweepMutator Mutator

Mutator

Barrier

• Domains prepares the Gc.finalise_last finaliser list which do not take values
★ Preserves the order of evaluation of finalisers per domain c.f trunk

Ephe Sweep

Ephe
SweepMutator Mutator Ephe

Sweep

Major GC: sweep-ephe

Domain 0 Update
final last

Domain 1 Update
final last

Ephe
SweepMutator Mutator

Mutator

Barrier

• Domains prepares the Gc.finalise_last finaliser list which do not take values
★ Preserves the order of evaluation of finalisers per domain c.f trunk

Ephe Sweep

Ephe
SweepMutator Mutator Ephe

Sweep

• Swap the meaning of GC bits
★ MARKED → UNMARKED

★ UNMARKED → GARBAGE

★ GARBAGE → MARKED

Major GC: sweep-ephe

Domain 0 Update
final last

Domain 1 Update
final last

Ephe
SweepMutator Mutator

Mutator

Barrier

• Domains prepares the Gc.finalise_last finaliser list which do not take values
★ Preserves the order of evaluation of finalisers per domain c.f trunk

Ephe Sweep

Ephe
SweepMutator Mutator Ephe

Sweep

• Swap the meaning of GC bits
★ MARKED → UNMARKED

★ UNMARKED → GARBAGE

★ GARBAGE → MARKED

• Major GC algorithm verified in SPIN model checker

Memory Model

Memory Model
• Goal: Balance comprehensibility and performance

Memory Model
• Goal: Balance comprehensibility and performance

• Generalise

★ SC-DRF property

✦ Data-race-free programs have sequential semantics

★ to local DRF

✦ Data-race-free parts of programs have sequential semantics

Memory Model
• Goal: Balance comprehensibility and performance

• Generalise

★ SC-DRF property

✦ Data-race-free programs have sequential semantics

★ to local DRF

✦ Data-race-free parts of programs have sequential semantics

• Bounds data races in space and time

★ Data races on one location do not affect sequential semantics of another

★ Dara races in the past or the future do no affect sequential semantics of non-
racy accesses

Memory Model

Memory Model
• We have developed a memory model that has LDRF

★ Atomic and non-atomic locations (no relaxed operations yet)

★ Proven correct (on paper) compilation to x86 and ARMv8

Memory Model
• We have developed a memory model that has LDRF

★ Atomic and non-atomic locations (no relaxed operations yet)

★ Proven correct (on paper) compilation to x86 and ARMv8

• Is it practical?

★ SC has LDRF and SRA is conjectured to have LDRF, but not practical due to
performance impact

Memory Model
• We have developed a memory model that has LDRF

★ Atomic and non-atomic locations (no relaxed operations yet)

★ Proven correct (on paper) compilation to x86 and ARMv8

• Is it practical?

★ SC has LDRF and SRA is conjectured to have LDRF, but not practical due to
performance impact

• Must preserve load-store ordering

★ Most compiler optimisations are valid (CSE, LICM).

✦ No redundant store elimination across load.

★ Free on x86, low-overhead on ARM (0.6% overhead) and POWER (2.9%
overhead)

Runtime support for
Effect handlers

Runtime support for
Effect handlers

• Linear delimited continuations

★ Linearity enforced by the runtime

★ Raise exception when continuation resumed more than once

★ Finaliser discontinues unresumed continuation

Runtime support for
Effect handlers

• Linear delimited continuations

★ Linearity enforced by the runtime

★ Raise exception when continuation resumed more than once

★ Finaliser discontinues unresumed continuation

• Fibers: Heap managed stack segments

★ Requires stack-overflow checks at function entry

★ Static analysis removes checks in small leaf functions

Runtime support for
Effect handlers

• Linear delimited continuations

★ Linearity enforced by the runtime

★ Raise exception when continuation resumed more than once

★ Finaliser discontinues unresumed continuation

• Fibers: Heap managed stack segments

★ Requires stack-overflow checks at function entry

★ Static analysis removes checks in small leaf functions

• C calls needs to be performed on C stack

★ < 1% performance slowdown on average for this feature

★ DWARF magic allows full backtrace across nested calls of handlers, C calls and callbacks.

Runtime support for
Effect handlers

• Linear delimited continuations

★ Linearity enforced by the runtime

★ Raise exception when continuation resumed more than once

★ Finaliser discontinues unresumed continuation

• Fibers: Heap managed stack segments

★ Requires stack-overflow checks at function entry

★ Static analysis removes checks in small leaf functions

• C calls needs to be performed on C stack

★ < 1% performance slowdown on average for this feature

★ DWARF magic allows full backtrace across nested calls of handlers, C calls and callbacks.

• WIP to support capturing continuations that include C frames c.f “Threads Yield Continuations”

Status
• Major GC and fiber implementations are stable modulo bugs

★ TODO: Effect System

• Laundry list of minor features

★ https://github.com/ocamllabs/ocaml-multicore/projects/3

• We need

★ Benchmarks

★ Benchmarking tools and infrastructure

★ Performance tuning

https://github.com/ocamllabs/ocaml-multicore/projects/3

Future Directions: Memory Model

Future Directions: Memory Model

• Memory model only supports atomic and non-atomic locations

★ Extend memory model with weaker atomics and “new ref” while
preserving LDRF theorem

Future Directions: Memory Model

• Memory model only supports atomic and non-atomic locations

★ Extend memory model with weaker atomics and “new ref” while
preserving LDRF theorem

• Avoid become C++ — multiple weak atomics w/ subtle
interactions

★ Could we expose restricted APIs to the programmer?

Future Directions: Memory Model

• Memory model only supports atomic and non-atomic locations

★ Extend memory model with weaker atomics and “new ref” while
preserving LDRF theorem

• Avoid become C++ — multiple weak atomics w/ subtle
interactions

★ Could we expose restricted APIs to the programmer?

• Verify multicore OCaml programs

★ Explore (semi-)automated SMT-aided verification

★ Challenge problem: verify k-CAS at the heart of Reagents library

Future Directions: Multicore MirageOS

Future Directions: Multicore MirageOS

• MirageOS rewrite to take advantage of typed effect handlers
and multicore parallelism

★ Typed effects for better error handling and concurrency

Future Directions: Multicore MirageOS

• MirageOS rewrite to take advantage of typed effect handlers
and multicore parallelism

★ Typed effects for better error handling and concurrency

• Better concurrency model over Xen block devices

★ Extricate oneself from dependence on POSIX API

★ Discriminate various concurrency levels (CPU, application, I/O) in the
scheduler

★ Failure and Back pressure as a first-class operation

Future Directions: Multicore MirageOS

• MirageOS rewrite to take advantage of typed effect handlers
and multicore parallelism

★ Typed effects for better error handling and concurrency

• Better concurrency model over Xen block devices

★ Extricate oneself from dependence on POSIX API

★ Discriminate various concurrency levels (CPU, application, I/O) in the
scheduler

★ Failure and Back pressure as a first-class operation

• Multicore-capable Irmin, a branch-consistent database library

Future Directions:
Heterogeneous System

• Programming heterogenous, non Von Neumann architectures

★ How do we capture computational model in richer type system?

★ How do we compile efficiently to such a system?

