KC Sivaramakrishnan

Lukasz Ziarek Suresh Jagannathan
SUNY Buftalo Purdue University

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

Two often competing goals when designing and
implementing concurrency abstractions

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

Two often competing goals when designing and
implementing concurrency abstractions

Simplicity Performance
Safety Functionality

PURDUE }) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

Two often competing goals when designing and
implementing concurrency abstractions

Simplicity Performance
Safety Functionality

Always desirable to marry the two whenever possible

PURDUE

UNIVERSITY

Tuesday, January 21, 14

S?

MultiMLton

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

e Functional language + Synchronous message passing

* Communication = Data transfer + Synchronization

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

e Functional language + Synchronous message passing

* Communication = Data transfer + Synchronization

e However, in the cloud,

Synchrony latency

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

e Functional language + Synchronous message passing

* Communication = Data transfer + Synchronization

e However, in the cloud,

Synchrony latency

*x Explicit asynchrony complicates reasoning

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

e Functional language + Synchronous message passing

* Communication = Data transfer + Synchronization
Cre
\../

Synchrony latency

e However, in the cloud,

*x Explicit asynchrony complicates reasoning

Can we discharge synchronous communications asynchronously
while ensuring observable equivalence?

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

1. Formalize the conditions under which the following equivalence

holds:
[send (c,v)]k = [asend(c,v)[k

(*) MultiMLton

Tuesday, January 21, 14

1. Formalize the conditions under which the following equivalence

holds:
[send (c,v)]k = [asend(c,v)[k

2. A cloud infrastructure + speculative execution framework
a. discharges synchronous sends asynchronously
b. detects when the equivalence fails, and

c. repairs failed executions

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

o A distributed extension of MultiMLton - MLton for scalable
architectures

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

o A distributed extension of MultiMLton - MLton for scalable
architectures

e Parallel extension of Concurrent ML
* Dynamic lightweight threads
* Synchronous message passing

x First-class events

+ Composable synchronous protocols

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

o A distributed extension of MultiMLton - MLton for scalable
architectures

e Parallel extension of Concurrent ML

* Dynamic lightweight threads

* Synchronous message passing

x First-class events

+ Composable synchronous protocols

val channel : unit -> ‘a chan val never : ‘a event

val spawn : (unit -> unit) -> thread id val alwaysEvt : ‘a -> ‘a event

val send : chan * ‘a -> unit val wrap : ‘a event -> (fa -> ‘b) ->

val recv : chan -> ‘a ‘b event

val sendEvt : chan * “a -> unit event val guard : (unit -> ‘a event) -> ‘a event
val recvEvt : chan -> ‘a event val choose : ‘a event list -> ‘a event

val sync : event -> ‘a

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

T1 T2 13

send(cl,vl) recv(c2) || send(c2,v3)

fO |®) h(©
send(c2,v2) recv(cl) recv(c?2)

Tl T2 T3
send(cl,vl) recv(c2) send(c2,v3)

Synchronous l l l
Execution f() g() h()

Il

send(c2,v2) recv(cl)

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

Synchronous
Execution

PURDUE

UNIVERSITY

Tuesday, January 21, 14

T1 T2 13

send(cl,vl) recv(c2) || send(c2,v3)

fO |®) h(©
send(c2,v2) recv(cl) recv(c?2)

Tl T2 T3

send(cl,vl) recv(c2) <---» send(c2,v3)

Lol

f) g() h()

Il

send(c2,v2) recv(cl) recv(c2)

SB

MultiMLton

Synchronous
Execution

PURDUE

UNIVERSITY

Tuesday, January 21, 14

T1 T2 13

send(cl,vl) recv(c2) || send(c2,v3)

fO |®) h(©
send(c2,v2) recv(cl) recv(c?2)

Tl T2 T3

send(cl,vl) recv(c2) <---» send(c2,v3)

>‘\
S

f0 &0 h()

N

send(c2,v2) recv(cl) recv(c2)

SB

MultiMLton

Synchronous
Execution

PURDUE

UNIVERSITY

Tuesday, January 21, 14

T1

send(cl,vl)

fO
send(c2,v2)

Tl

send(cl,vl)

"
A
A
A
A)
A)
Ay
A
A

f)

l

send(c2,v2)

A
A
A
A
A
A)
A
A
Y

T2

recv(c?2)

[@,

recv(cl)

T2

13

send(c2,v3)
h()

recv(c?2)

T3

recv(c2) <--->send(c2,v3)

l

g()

recv(cl)

l

h()

l

recv(c2)

SB

MultiMLton

Asynchronous
Execution

PURDUE

UNIVERSITY

Tuesday, January 21, 14

T1

send(cl,vl)

fO
send(cZ2,v2)

Tl

T2
recv(c?2)

g

recv(cl)

T2

@send(c l,v I) recv(c2)

l

f)

l

send(c2,v2)

l

g()

l

recv(cl)

13

send(cZ2,v3)
h()

recv(c?)

T3
send(c2,v3)

SB

MultiMLton

Asynchronous
Execution

PURDUE

UNIVERSITY

Tuesday, January 21, 14

T1

send(cl,vl)

fO
send(cZ2,v2)

Tl

T2
recv(c?2)

g

recv(cl)

T2

@send(c l,v I) recv(c2)

l ¥

send(c2,v2)

0
4
’
’
’
’

0 A

g()

l

recv(cl)

13

send(cZ2,v3)
h()

recv(c?)

T3
send(c2,v3)

SB

MultiMLton

Asynchronous
Execution

PURDUE

UNIVERSITY

Tuesday, January 21, 14

T1

send(cl,vl)

fO
send(cZ2,v2)

Tl

T2
recv(c?2)

g

recv(cl)

T2

@send(c l,v I) recv(c2)

"B
A 3
‘ 4
A ’
Ay ’
A S 4

() AX\

l ¥

send(c2,v2)

ﬂ l

g()

A
A
A Y
.
A
A
‘
Y

recv(cl)

13

send(cZ2,v3)
h()

recv(c?)

T3
send(c2,v3)

SB

MultiMLton

T1 T2 13

send(cl,vl) recv(c?2) || send(c2,v3)

fO (@) hQ)
send(c2,v2) recv(cl) || recv(c2)

Tl T2 T3

C
Asynchronous (asend(cl v1) recv(c2) <X send(c2,v3)
- SUI
Execution l l
0 A" &0

Y
’ A
’ A Y
’ .
' A Y
’ A Y
Y
o ¥

send(c2,v2) recv(cl)

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

T1 T2 13

send(cl,vl) recv(c?2) || send(c2,v3)

fO (@) hQ)
send(c2,v2) recv(cl) || recv(c2)

Tl T2 T3

C
Asynchronous (asend(cl v1) recv(c2) <X send(c2,v3)
- SUI
Execution l l
0 A" &0

Y
Vi .
’ A Y
’ A Y
’ A Y
’ .
Y
< ¥

send(c2,v2) recv(cl)

e Synchronous evaluation never results in cyclic dependence

* Cyclic dependence => divergent behavior w.r.t synchronous evaluation

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

e No central server + Preserve causal dependence

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

e No central server + Preserve causal dependence

* Causal broadcast primitive: If message A is generated as a response to message B, then A is
delivered after B at every site

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

e No central server + Preserve causal dependence

* Causal broadcast primitive: If message A is generated as a response to message B, then A is
delivered after B at every site

* Asynchronous messaging => explicitly manage vector clocks and buffering on receiver side

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

e No central server + Preserve causal dependence

Causal broadcast primitive: If message A is generated as a response to message B, then A is
delivered after B at every site

Asynchronous messaging => explicitly manage vector clocks and buffering on receiver side

Synchronous messaging => directly using point-to-point messaging

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

e No central server + Preserve causal dependence

* Causal broadcast primitive: If message A is generated as a response to message B, then A is
delivered after B at every site

Asynchronous messaging => explicitly manage vector clocks and buffering on receiver side

Synchronous messaging => directly using point-to-point messaging

fun bsend (BCHAN (vclList, aclList), v: ’a, id: int) : unit =
let
val _ = map (fn vc => if (vc = nth (vclList, id)) then () else send (vc, Vv))
vclList (* phase 1 -- Value distribution x*)
val _ ap (fn ac => if (ac = nth (aclist, id)) then () else recv ac)
acList (* phase 2 -- Acknowledgments %)
in QO
end
prevent receivers from proceeding until

h / d val ;
Syncnronousty sena vatues all members have received the value

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

e No central server + Preserve causal dependence

* Causal broadcast primitive: If message A is generated as a response to message B, then A is
delivered after B at every site

Asynchronous messaging => explicitly manage vector clocks and buffering on receiver side

Synchronous messaging => directly using point-to-point messaging

fun bsend (BCHAN (vclList, aclList), v: ’a, id: int) : unit =
let
val _ = map (fn vc => if (vc = nth (vclList, id)) then () else send (vc, Vv))
vclList (* phase 1 -- Value distribution x*)
val _ ap (fn ac => if (ac = nth (aclist, id)) then () else recv ac)
acList (* phase 2 -- Acknowledgments %)
in QO
end
prevent receivers from proceeding until

all members have received the value

e Simple but likely to be ineflicient - phase 2 is a global barrier!

synchronously send values

PURDUE) MultiMLton

Tuesday, January 21, 14

e No central server + Preserve causal dependence

* Causal broadcast primitive: If message A is generated as a response to message B, then A is
delivered after B at every site

Asynchronous messaging => explicitly manage vector clocks and buffering on receiver side

Synchronous messaging => directly using point-to-point messaging

fun bsend (BCHAN (vclList, aclList), v: ’a, id: int) : unit =
let
val _ = map (fn vc => if (vc = nth (vclList, id)) then () else send (vc, Vv))
vclList (* phase 1 -- Value distribution x*)
val _ ap (fn ac => if (ac = nth (aclist, id)) then () else recv ac)
acList (* phase 2 -- Acknowledgments %)
in QO
end
prevent receivers from proceeding until

all members have received the value

e Simple but likely to be ineflicient - phase 2 is a global barrier!

synchronously send values

* Discharging asynchronously breaks causal ordering

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

e No central server + Preserve causal dependence

* Causal broadcast primitive: If message A is generated as a response to message B, then A is
delivered after B at every site

Asynchronous messaging => explicitly manage vector clocks and buffering on receiver side

Synchronous messaging => directly using point-to-point messaging

fun bsend (BCHAN (vclList, aclList), v: ’a, id: int) : unit =
let
val _ = map (fn vc => if (vc = nth (vclList, id)) then () else send (vc, Vv))
vclList (* phase 1 -- Value distribution x*)
val _ ap (fn ac => if (ac = nth (aclist, id)) then () else recv ac)
acList (* phase 2 -- Acknowledgments %)
in QO
end
prevent receivers from proceeding until

all members have received the value

e Simple but likely to be ineflicient - phase 2 is a global barrier!

synchronously send values

* Discharging asynchronously breaks causal ordering

* Our idea: program synchronously, discharge asynchronously, detect and remediate causal
ordering violations

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

e A distributed group chat program = {Node}
¢ Node = MultiMLton process = {CML threads}

Daemon thread Display thread

IP thread

Receive broadcast
message message

PURDUE }) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

Display IP

/,,show (X)

X A:,"" l
bcast (X)

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

PURDUE

UNIVERSITY

Tuesday, January 21, 14

Display

IP

_»show (X)

O""
X

l

bcast (X)

Display

_.»show (Y)

""'
Y A7

|

bcast (Y)

-

S)

MultiMLton

Display IP Daemon

_»show (X) /,yshow (Y) Precv (X)

XA:,"" l
bcast (X) <

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

Display IP Daemon [Daemon

_»show (X) brecv (Y)--.

bcast (X) < s beast (Y) S

/,show (Y) Precv (X)

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

Display IP Daemon Display Daemon

_»show (X) brecv (Y)~.. /,show (Y) brecv (X)

l

bcast (X) <
»show (X)

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

Display

IP

Daemon

PURDUE

UNIVERSITY

Tuesday, January 21, 14

l

bcast (X) <

/,,show (X) brecv (Y)~.._

~..
e
~
~
Y
-~
Sel
~
ey
~

»show (Y)

Display

Daemon

_.»show (Y)

Tl bcast (Y)

brecv (X)

»show (X)

-

S)

MultiMLton

Display IP Daemon [Daemon

_,Show (X) brecv (Y)~..
X A:"""' l \..\.

e Observations

* Xand Y independently generated => No causal dependence between bcast (X)
and bcast (Y)

e No Cycles => Correct execution!

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

Daemon

PURDUE

UNIVERSITY

Tuesday, January 21, 14

Daemon

Daemon

-

S)

MultiMLton

Display IP Daemon Daemon Daemon

_4show (X)

|

bcast (X)

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

Daemon i Daemon Daemon

»brecv (X)

{
» show (X)

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

Daemon i Daemon Daemon

»brecv (X)

Presume causal
dependence X =Y

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

Daemon i Daemon Daemon

»brecv (X)

{
» show (X)

bcast (Y)

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

Daemon i Daemon

. brecv (Y)

T
_.»show (Y)

bcast (Y) “

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

Daemon i Daemon i Daemon

»brecv (X) . brecv (Y)

| |
» show (X) = show (Y)

PURDUE) MultiMLton

UNIVERSI

Tuesday, January 21, 14

Daemon i Daemon i Daemon

»brecv (X) . brecv (Y)

| |
» show (X) = show (Y)

PURDUE) MultiMLton

UNIVERSI

Tuesday, January 21, 14

Daemon i Daemon i Daemon

»brecv (X) . brecv (Y)

| |
» show (X) = show (Y)

PURDUE) MultiMLton

UNIVERSI

Tuesday, January 21, 14

Display

IP

Daemon

_4show (X)

|

bcast (X)“
¥

PURDUE

UNIVERSITY

Tuesday, January 21, 14

Daemon

Daemon

»brecv (X)

v
show (X)

» brecv (Y)

Ly shopv (Y)

»brecv (X)

-

S)

MultiMLton

¢ Simulation on 3 geo-distributed Amazon EC2 instances

¢ Measure time between message initiation and receipt by all parties over
1000 1terations

Execution Avg.time (ms) | Errors
Sync 1540 0
Unsafe Async 520 7
Safe Async (R*ML) 533 0

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

e Reason axiomatically about executions (relaxed or otherwise)

* Similar to formalizations used in relaxed memory models

x Declarative characterization of (relaxed) CML behavior

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

e Reason axiomatically about executions (relaxed or otherwise)

* Similar to formalizations used in relaxed memory models

* Declarative characterization of (relaxed) CML behavior
o Actions + happens-before relation

* Captures visibility and dependence properties

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

e Reason axiomatically about executions (relaxed or otherwise)

* Similar to formalizations used in relaxed memory models

* Declarative characterization of (relaxed) CML behavior
o Actions + happens-before relation

* Captures visibility and dependence properties

e Happens-before is intentionally relaxed: may define more
behaviors than possible in CML

* Strengthen the relation with well-formedness conditions

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

e Actions:

(thread t starts)

(thread t ends)

(thread t detects thread t’ has terminated)
(thread t creates a new thread t’)

(thread t sends value v on channel c
(thread t receives a value on channel ¢)
(thread t outputs an observable value v)

ceC ttteT veV mmnéeN

e Execution:

(P, A, =10, —>co)

relates matching communication actions
a set of program order:

actions sequential actions of a thread

PURDUE) MultiMLton

UNIVERSITY |4

Tuesday, January 21, 14

¢ Synchronous communication » communication order is
symmetric:

a—>.0 b — b—.,a

e Thread dependence order:

O —7¢d 6 if:
(1) a = f/"t" and B = by or
(2) a = ey and B = 5"t

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

e Establishes both intra- and inter-thread dependences:

(—>p0 U —¢q U
{(a,B) | @ —co & N’ —po B} U
{(B,a) | B—=po @ N —co a})T

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

e Establishes both intra- and inter-thread dependences:

(—>p0 U —¢qg U
{(a, B) | @ = o o Ao —po B} U
{(B;a) | B—=po @ N —coa})T

e Two actions not related by happens-before relation are said to be
concurrent

* A send action and its matching receive action are concurrent!

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

e Establishes both intra- and inter-thread dependences:

(—>p0 U —¢qg U
{(a, B) | @ = o o Ao —po B} U
{(B;a) | B—=po @ N —coa})T

e Two actions not related by happens-before relation are said to be
concurrent

* A send action and its matching receive action are concurrent!

m Cco !
5t 6V e——> 1) ¢

L4
’
’
L4
*
’
’
’
L4
L4
’
’
L4

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

e Establishes both intra- and inter-thread dependences:

(—>p0 U —¢qg U
{(a, B) | @ = o o Ao —po B} U
{(B;a) | B—=po @ N —coa})T

e Two actions not related by happens-before relation are said to be
concurrent

* A send action and its matching receive action are concurrent!

m Cco !
5t 6V e——> 1) ¢

L4
’
’
L4
*
’
’
’
L4
L4
’
’
L4

PURDUE }) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

T1 T2 T3

send(cl,vl) recv(c2) || send(c2,v3)

fO *]@) h() . : .
send(c2,v2) || recv(cl) || recv(c) o Letf, g, h = print 1, print 2, print 3

e Assume T1 spawns T2 and T3

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

T1 T2 T3

e Assume T1 spawns T2 and T3

send(cl,vl) recv(c2) || send(c2,v3)

fO *]@) h() . : .
send(c2,v2) || recv(cl) || recv(c) o Letf, g, h = print 1, print 2, print 3

(*) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

T1 T2 T3

e Assume T1 spawns T2 and T3

send(cl,vl) recv(c2) || send(c2,v3)

fO *]@) h() . : .
send(c2,v2) || recv(cl) || recv(c) o Letf, g, h = print 1, print 2, print 3

(> MultiMLton

UNIVERSITY

Tuesday, January 21, 14

Obs (Well-formed Execution of P) € {Obs (CML Execution of P)}

all executions

well-formed
executions

CML
executions

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

Obs (Well-formed Execution of P) € {Obs (CML Execution of P)}

all executions

well-formed
executions

1. Sensible intra-thread semantics

2. Acyclic happens-before relation CML

3. No outstanding communication action executions

preceding an observable action

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

Track executions to see if they become
ill-formed (rollback) or turn into CML executions (commit)

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

Track executions to see if they become
ill-formed (rollback) or turn into CML executions (commit)

A CML execution

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

Track executions to see if they become
ill-formed (rollback) or turn into CML executions (commit)

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

Track executions to see if they become
ill-formed (rollback) or turn into CML executions (commit)

A well-formed execution that
can lead to a CML execution

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

Track executions to see if they become
ill-formed (rollback) or turn into CML executions (commit)

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

Track executions to see if they become
ill-formed (rollback) or turn into CML executions (commit)

Not a well-formed
execution

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

¢ R-CML: RelaXed CML
* MultiMLton with distribution support

Rx-CML application = {Instances}
Supports full CML

Transport layer is ZeroMQ

PURDUE

UNIVERSITY

Tuesday, January 21, 14

RME Instance

User-level
threads

Communication
Manager

Cycle
Detector

Serialization Support

ZeroMQ Pub/Sub

Built-in serialization (immutable values and function closures)

SZ

MultiMLton

e RK-CML: RelaXed CML
* MultiMLton with distribution support
* Rx-CML application = {Instances}
* Supports full CML

* Transport layer is ZeroMQ

RME Instance

User-level
threads

Communication
Manager

Cycle
Detector

Serialization Support

ZeroMQ Pub/Sub

* Built-in serialization (immutable values and function closures)

e Check the integrity of the speculative actions on-the-fly

PURDUE

UNIVERSITY

Tuesday, January 21, 14

SZ

MultiMLton

RME Instance

® R-CML: Relaxed CML User-level | |Communication Cycle

threads Manager Detector
"

* MultiMLton with distribution support Serialization Suppor
Rx-CML application = {Instances} ZeroMQ Pub/Sub

Supports full CML

Built-in serialization (immutable values and function closures)

*
*
*
* Transport layer is ZeroMQ

e Check the integrity of the speculative actions on-the-fly

* Build a dependence graph that captures happens-before relation

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

RME Instance

® R-CML: Relaxed CML User-level | |Communication Cycle

threads Manager Detector

* MultiMLton with distribution support Serialization Suppor

ZeroMQ Pub/Sub

* Rx-CML application = {Instances}

* Supports full CML

* Built-in serialization (immutable values and function closures)

* Transport layer is ZeroMQ
e Check the integrity of the speculative actions on-the-fly

* Build a dependence graph that captures happens-before relation

+ Same structure as an axiomatic execution

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

e RK-CML: RelaXed CML
* MultiMLton with distribution support
* Rx-CML application = {Instances}
* Supports full CML

* Transport layer is ZeroMQ

RME Instance

User-level
threads

Communication
Manager

Cycle
Detector

Serialization Support

ZeroMQ Pub/Sub

* Built-in serialization (immutable values and function closures)

e Check the integrity of the speculative actions on-the-fly

* Build a dependence graph that captures happens-before relation

+ Same structure as an axiomatic execution

* Automatically check dependence graph integrity before an observable action (ref
cell accesses, system calls, FFI, etc)

PURDUE

UNIVERSITY

Tuesday, January 21, 14

SZ

MultiMLton

RME Instance

® R-CML: Relaxed CML User-level | |Communication Cycle

threads Manager Detector

* MultiMLton with distribution support Serialization Suppor

*x Rx-CML application = {Instances} ZeroMQ Pub/Sub

* Supports full CML

* Built-in serialization (immutable values and function closures)
* Transport layer is ZeroMQ
e Check the integrity of the speculative actions on-the-fly
* Build a dependence graph that captures happens-before relation
+ Same structure as an axiomatic execution

* Automatically check dependence graph integrity before an observable action (ref
cell accesses, system calls, FFI, etc)

* Roll-back ill-formed executions, re-execute non-speculatively

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

e Single consistent channel image across all instances without coherence?

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

e Single consistent channel image across all instances without coherence?

* Communication manager thread @ every instance

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

e Single consistent channel image across all instances without coherence?

* Communication manager thread @ every instance

* Maintains a replica of CML channel

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

e Single consistent channel image across all instances without coherence?

* Communication manager thread @ every instance
* Maintains a replica of CML channel

*x Ultilize speculative execution to recover from inconsistent state

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

e Single consistent channel image across all instances without coherence?

* Communication manager thread @ every instance
* Maintains a replica of CML channel

*x Ultilize speculative execution to recover from inconsistent state

Instance 1 Instance 2 Instance 3

tcl:[],c2:[1}

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

e Single consistent channel image across all instances without coherence?

* Communication manager thread @ every instance
* Maintains a replica of CML channel

*x Ultilize speculative execution to recover from inconsistent state

Instance 1 Instance 2 Instance 3

{c1:[s(@)],c2:[1}

{c1:[s(@>],c2:[1}

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

e Single consistent channel image across all instances without coherence?

* Communication manager thread @ every instance
* Maintains a replica of CML channel

*x Ultilize speculative execution to recover from inconsistent state

Instance 1 Instance 2 Instance 3

{c1:[s(@)],c2:[1}

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

e Single consistent channel image across all instances without coherence?

* Communication manager thread @ every instance
* Maintains a replica of CML channel

*x Ultilize speculative execution to recover from inconsistent state

Instance 1 Instance 2 Instance 3

{c1:[s(@)],c2:[1}

{c1:[],c2:[1}

match (s(cl,0) + r(cl))
{C1:[1,c2:[1} @-vamatnznznzsesmemememcmsmmamamamnns >&

___ o) {c1:[1,c2:[1}

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

e Single consistent channel image across all instances without coherence?

* Communication manager thread @ every instance
* Maintains a replica of CML channel

*x Ultilize speculative execution to recover from inconsistent state

Instance 1 Instance 2 Instance 3

{c1:[s(@)],c2:[1}

Y
{cl:[1,c2:[1}
match (s(cl,0) + r(cl)) -
{C1:[1,c2:[1} @-vamatnznznzsesmemememcmsmmamamamnns >&

................................... >‘ {cl:[1,c2:[1}

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

e Single consistent channel image across all instances without coherence?

* Communication manager thread @ every instance
* Maintains a replica of CML channel

*x Ultilize speculative execution to recover from inconsistent state

Instance 1 Instance 2 Instance 3

{c1:[s(@)],c2:[1}

{c1:[1,c2:[1} 3 [FIUSh uncc:jr:sumeﬂ
send:!
match (s(cl,0) + r(cl)) -
{C1:[1,c2:[1} @-vamatnznznzsesmemememcmsmmamamamnns >& /4

................................... >‘ {cl:[1,c2:[1}

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

Instance 1 Instance 2 Instance 3

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

Instance 1 Instance 2 Instance 3

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

Instance 1 Instance 2 Instance 3

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

Instance 1

PURDUE

UNIVERSITY

Tuesday, January 21, 14

Instance 2

Instance 3

{c1:[1,c2:[s(1D]1}

{cl:[1,c2:[1}

-

(*) MultiMLton

Instance 1

PURDUE

UNIVERSITY

Tuesday, January 21, 14

Instance 2

Instance 3

{c1:[1,c2:[s(1D]1}

{cl:[1,c2:[1}

-

(*) MultiMLton

Instance 1

{c1:[1,c2:[r2,r3]} “

First-come first-
match

PURDUE

UNIVERSITY

Tuesday, January 21, 14

request_to_match(c2)

Instance 2

Instance 3

{c1:[1,c2:[s(1D]1}

{cl:[1,c2:[1}

-

(*) MultiMLton

Instance 1 Instance 2 Instance 3

{c1:[d,c2:[s(1)]1}

e eeemmmememmmmmmmeem > @ {c1:[],c2:[s(1)]}
QO {cl:[1,c2:[13

© {cl:[1,c2:[1}
{c1:[1,c2:[r2,r3]} “

Cirst-come é " match (s(c2,1) + r2(c2))
match -

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

e Consistent, replicated dependence graph @ each instance
* Snoop on match messages from communication manager

* Broadcast thread spawn and thread join messages

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

e Consistent, replicated dependence graph @ each instance
* Snoop on match messages from communication manager
* Broadcast thread spawn and thread join messages

e Well-formedness check is local to the instance!

* GC dependence graph on successful well-formedness check

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

e Consistent, replicated dependence graph @ each instance
* Snoop on match messages from communication manager

* Broadcast thread spawn and thread join messages

e Well-formedness check is local to the instance!

* GC dependence graph on successful well-formedness check

e Automatic checkpointing
* 1 continuation per thread

* Uncoordinated! - thread local - does not require barriers

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

Consistent, replicated dependence graph @ each instance

* Snoop on match messages from communication manager

* Broadcast thread spawn and thread join messages

Well-formedness check is local to the instance!

*

GC dependence graph on successful well-formedness check

Automatic checkpointing

*

*

1 continuation per thread

Uncoordinated! - thread local - does not require barriers

Remediation

*

*
*
*

Uncoordinated! - Transitively inform each mis-speculated thread to rollback
Check-point (Continuation) + Log-based (Dependence graph) recovery
Rollback to last checkpoint, replay correct speculative actions

Continues non-speculatively until next observable action = Progress

PURDUE

UNIVERSITY

Tuesday, January 21, 14

MultiMLton

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

e Optimistic OLTP
Distributed version of STAMP Vacation benchmark
Database split into 64 shards, with concurrent transaction requests from geo-distributed
clients
Uses explicit lock servers -> Rx-CML executes transactions optimistically

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

e Optimistic OLTP
*x Distributed version of STAMP Vacation benchmark
* Database split into 64 shards, with concurrent transaction requests from geo-distributed
clients
* Uses explicit lock servers -> Rx-CML executes transactions optimistically
e P2P Collaborative editing

* Simulates concurrent document editing (operational transformation)
*x Total order broadcast - built out of synchronous events + choice combinator.

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

e Optimistic OLTP
*x Distributed version of STAMP Vacation benchmark
* Database split into 64 shards, with concurrent transaction requests from geo-distributed

clients
* Uses explicit lock servers -> Rx-CML executes transactions optimistically

e P2P Collaborative editing
* Simulates concurrent document editing (operational transformation)

*x Total order broadcast - built out of synchronous events + choice combinator.
. . 7 ; . .

w0

W

Time (X 1000 Secs)
N

Clients # Authors

OLTP Collaborative Editing

e Rx-CML was 5.8X to 7.6X faster than the synchronous version
* 9-17% of communications were mis-speculated.

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

e Composable synchronous events vs. High latency compute cloud

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

e Composable synchronous events vs. High latency compute cloud

e Rx-CML (Relaxed CML)

* optimistic concurrency control for CML
* reason synchronously, but implement asynchronously

*x retain simplicity and composability, but gain performance

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

e Composable synchronous events vs. High latency compute cloud

e Rx-CML (Relaxed CML)

* optimistic concurrency control for CML

* reason synchronously, but implement asynchronously

*x retain simplicity and composability, but gain performance
e Distributed implementation of MultiMLton

*x Case studies demonstrate effectiveness of the approach

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

Composable synchronous events vs. High latency compute cloud

Rx-CML (Relaxed CML)

* optimistic concurrency control for CML

* reason synchronously, but implement asynchronously

*x retain simplicity and composability, but gain performance
Distributed implementation of MultiMLton

*x Case studies demonstrate effectiveness of the approach
Future Work - Fault tolerance

* Make checkpoints and dependence graph resilient

* Treat failures as mis-speculations -> rollback to last saved checkpoint

PURDUE) MultiMLton

UNIVERSITY

Tuesday, January 21, 14

§*) MultiMLton
http://multimlton.cs.purdue.edu

(*) MultiMLton

Tuesday, January 21, 14

http://multimlton.cs.purdue.edu
http://multimlton.cs.purdue.edu

