
℞-CML
: A Prescription for Safely Relaxing Synchrony

Lukasz Ziarek                     Suresh Jagannathan
SUNY Buffalo                                                Purdue University

KC Sivaramakrishnan

1

Tuesday, January 21, 14



Introduction
Two often competing goals when designing and 

implementing concurrency abstractions

2

Tuesday, January 21, 14



Introduction

Performance 
Functionality

Simplicity
Safety

Two often competing goals when designing and 
implementing concurrency abstractions

2

Tuesday, January 21, 14



Introduction

Performance 
Functionality

Simplicity
Safety

Two often competing goals when designing and 
implementing concurrency abstractions

Always desirable to marry the two whenever possible

2

Tuesday, January 21, 14



Big Picture

3

Tuesday, January 21, 14



Big Picture
• Functional language + Synchronous message passing

★ Communication = Data transfer + Synchronization

3

Tuesday, January 21, 14



Big Picture
• Functional language + Synchronous message passing

★ Communication = Data transfer + Synchronization

• However, in the cloud,

Synchrony latency

3

Tuesday, January 21, 14



Big Picture
• Functional language + Synchronous message passing

★ Communication = Data transfer + Synchronization

• However, in the cloud,

Synchrony latency

★ Explicit asynchrony complicates reasoning

3

Tuesday, January 21, 14



Big Picture
• Functional language + Synchronous message passing

★ Communication = Data transfer + Synchronization

• However, in the cloud,

Synchrony latency

Can we discharge synchronous communications asynchronously 
while ensuring observable equivalence?

★ Explicit asynchrony complicates reasoning

3

Tuesday, January 21, 14



Goal

4

Tuesday, January 21, 14



Goal
1. Formalize the conditions under which the following equivalence 

holds:

�CML: A Prescription for Safely Relaxing Synchrony

KC Sivaramakrishnan
Purdue University

chandras@cs.purdue.edu

Lukasz Ziarek
SUNY Buffalo

lziarek@buffalo.edu

Suresh Jagannathan
Purdue University

suresh@cs.purdue.edu

Abstract
One way to ease the burden of concurrent programming is to have
threads communicate synchronously via message-passing, making
explicit the program points where data is transferred from one
thread to another. In a language like Concurrent ML (CML), this
philosophy leads to strong guarantees on the ordering and visibility
of communicated data, simplifying program reasoning. The cost of
synchrony comes with a high price in performance, however, par-
ticularly in distributed environments where communication latency
is high. To ameliorate these costs, we might allow communication
to be asynchronous, having senders buffer data without waiting for
the availability of a matching receiver, thereby allowing execution
of the sender’s continuation to overlap data transmission. However,
while the use of asynchrony can help reclaim performance, it also
complicates program structure and understanding.

In this paper, we investigate an alternative semantics for CML
that implements sends asynchronously, but guarantees that the re-
sulting execution nonetheless exhibits behavior observably equiva-
lent to one in which all communication is performed synchronously.
Our goal is to retain the expressivity and simplicity of CML’s syn-
chronous operations in writing concurrent programs and reasoning
about them, but give implementations the flexibility to safely regain
performance using asynchronous communication.

We formalize the conditions under which this equivalence
holds, and present an implementation that builds a decentralized de-
pendence graph whose structure can be used to check the integrity
of an execution with respect to this equivalence. We integrate a no-
tion of speculation to allow ill-formed executions to be rolled-back
and re-executed, replacing offending asynchronous actions with
safe synchronous ones. Several realistic case studies deployed in a
cloud environment demonstrate the utility of our approach.

1. Introduction
Concurrent ML [20] (CML) provides an expressive concurrency
mechanism through its use of first-class composable synchronous
events. When synchronized, events allow threads to communicate
data via message-passing over first-class channels. Synchronous
communication simplifies program reasoning because every com-
munication action is also a synchronization point; thus, the contin-
uation of a message-send is guaranteed that the data being sent has
been successfully transmitted to a receiver. The cost of synchrony
comes at a high price in performance, however; recent proposals

[Copyright notice will appear here once ’preprint’ option is removed.]

therefore suggest the use of asynchronous variants of CML’s syn-
chronous events [30] to overcome this cost. While asynchronous
extensions can be used to gain performance, they sacrifice the sim-
plicity provided by synchronous communication in favor of a more
complex and sophisticated set of primitives.

One way to enhance performance without requiring new addi-
tions to the core set of event combinators CML supports, is to give
the underlying runtime the freedom to allow a sender to communi-
cate data asynchronously. In this way, the cost of synchronous com-
munication can be masked by allowing the sender’s continuation to
begin execution even if a matching receiver is not yet available. Be-
cause asynchrony is introduced only by the runtime, applications
do not have to be restructured to explicitly account for new be-
haviors introduced by this additional concurrency. Thus, we wish
to have the runtime enforce the equivalence: [[ send (c, v)]]k ⌘
[[ asend (c, v)]]k where k is a continuation, send is CML’s syn-
chronous send operation that communicates value v on channel c,
and asend is an asynchronous variant that buffers v on c and does
not synchronize on a matching receiver.

To illustrate, consider the following simple program:

send(c1,v1)
f()
send(c2,v2)

g()
recv(c1)

recv(c2)
h()

T1 T2 T3

Thread T1 performs a synchronous send on channel c1 that is re-
ceived by thread T2, after it computes g() . After the communica-
tion is performed, T1 evaluates f() , and then sends v2 on chan-
nel c2 , which is received by thread T3. Upon receipt, T3 evaluates
h() . Assuming f , g , and h perform no communication action of
their own, the synchronous communication on c1 by T1 could have
been safely converted into an asynchronous action in which v1 is
buffered, and read by T2 later upon evaluation of g() . The observ-
able behavior of the program in both cases (i.e., treating the initial
send synchronously or asynchronously) would be the same.

Unfortunately, naı̈vely replacing synchronous communication
with an asynchronous one is not usually meaning-preserving as the
example in Figure 1 illustrates. Under a synchronous evaluation
protocol, T2 would necessarily communicate first with T3, receiv-
ing v3 on channel c2 . It is then able to receive v1 from T1; finally,
T1 can communicate v2 to T3. If the send(c1,v1) operation by
T1 were replaced by asend(c1,v1) , the first receive on T2 has, in
addition to the first send on T3, a new potential matching opportu-
nity – the send of v2 on channel c2 . If the receive by T2 matches

send(c1,v1)
f()
send(c2,v2)

recv(c2)
g()
recv(c1)

send(c2,v3)
h()
recv(c2)

T1 T2 T3

Figure 1: Performing the first send in T1 asynchronously is not
meaning preserving with respect to synchronous evaluation.

1 2013/3/28

�CML: A Prescription for Safely Relaxing Synchrony

KC Sivaramakrishnan
Purdue University

chandras@cs.purdue.edu

Lukasz Ziarek
SUNY Buffalo

lziarek@buffalo.edu

Suresh Jagannathan
Purdue University

suresh@cs.purdue.edu

Abstract
One way to ease the burden of concurrent programming is to have
threads communicate synchronously via message-passing, making
explicit the program points where data is transferred from one
thread to another. In a language like Concurrent ML (CML), this
philosophy leads to strong guarantees on the ordering and visibility
of communicated data, simplifying program reasoning. The cost of
synchrony comes with a high price in performance, however, par-
ticularly in distributed environments where communication latency
is high. To ameliorate these costs, we might allow communication
to be asynchronous, having senders buffer data without waiting for
the availability of a matching receiver, thereby allowing execution
of the sender’s continuation to overlap data transmission. However,
while the use of asynchrony can help reclaim performance, it also
complicates program structure and understanding.

In this paper, we investigate an alternative semantics for CML
that implements sends asynchronously, but guarantees that the re-
sulting execution nonetheless exhibits behavior observably equiva-
lent to one in which all communication is performed synchronously.
Our goal is to retain the expressivity and simplicity of CML’s syn-
chronous operations in writing concurrent programs and reasoning
about them, but give implementations the flexibility to safely regain
performance using asynchronous communication.

We formalize the conditions under which this equivalence
holds, and present an implementation that builds a decentralized de-
pendence graph whose structure can be used to check the integrity
of an execution with respect to this equivalence. We integrate a no-
tion of speculation to allow ill-formed executions to be rolled-back
and re-executed, replacing offending asynchronous actions with
safe synchronous ones. Several realistic case studies deployed in a
cloud environment demonstrate the utility of our approach.

1. Introduction
Concurrent ML [20] (CML) provides an expressive concurrency
mechanism through its use of first-class composable synchronous
events. When synchronized, events allow threads to communicate
data via message-passing over first-class channels. Synchronous
communication simplifies program reasoning because every com-
munication action is also a synchronization point; thus, the contin-
uation of a message-send is guaranteed that the data being sent has
been successfully transmitted to a receiver. The cost of synchrony
comes at a high price in performance, however; recent proposals

[Copyright notice will appear here once ’preprint’ option is removed.]

therefore suggest the use of asynchronous variants of CML’s syn-
chronous events [30] to overcome this cost. While asynchronous
extensions can be used to gain performance, they sacrifice the sim-
plicity provided by synchronous communication in favor of a more
complex and sophisticated set of primitives.

One way to enhance performance without requiring new addi-
tions to the core set of event combinators CML supports, is to give
the underlying runtime the freedom to allow a sender to communi-
cate data asynchronously. In this way, the cost of synchronous com-
munication can be masked by allowing the sender’s continuation to
begin execution even if a matching receiver is not yet available. Be-
cause asynchrony is introduced only by the runtime, applications
do not have to be restructured to explicitly account for new be-
haviors introduced by this additional concurrency. Thus, we wish
to have the runtime enforce the equivalence: [[ send (c, v)]]k ⌘
[[ asend (c, v)]]k where k is a continuation, send is CML’s syn-
chronous send operation that communicates value v on channel c,
and asend is an asynchronous variant that buffers v on c and does
not synchronize on a matching receiver.

To illustrate, consider the following simple program:

send(c1,v1)
f()
send(c2,v2)

g()
recv(c1)

recv(c2)
h()

T1 T2 T3

Thread T1 performs a synchronous send on channel c1 that is re-
ceived by thread T2, after it computes g() . After the communica-
tion is performed, T1 evaluates f() , and then sends v2 on chan-
nel c2 , which is received by thread T3. Upon receipt, T3 evaluates
h() . Assuming f , g , and h perform no communication action of
their own, the synchronous communication on c1 by T1 could have
been safely converted into an asynchronous action in which v1 is
buffered, and read by T2 later upon evaluation of g() . The observ-
able behavior of the program in both cases (i.e., treating the initial
send synchronously or asynchronously) would be the same.

Unfortunately, naı̈vely replacing synchronous communication
with an asynchronous one is not usually meaning-preserving as the
example in Figure 1 illustrates. Under a synchronous evaluation
protocol, T2 would necessarily communicate first with T3, receiv-
ing v3 on channel c2 . It is then able to receive v1 from T1; finally,
T1 can communicate v2 to T3. If the send(c1,v1) operation by
T1 were replaced by asend(c1,v1) , the first receive on T2 has, in
addition to the first send on T3, a new potential matching opportu-
nity – the send of v2 on channel c2 . If the receive by T2 matches

send(c1,v1)
f()
send(c2,v2)

recv(c2)
g()
recv(c1)

send(c2,v3)
h()
recv(c2)

T1 T2 T3

Figure 1: Performing the first send in T1 asynchronously is not
meaning preserving with respect to synchronous evaluation.

1 2013/3/28

4

Tuesday, January 21, 14



Goal
1. Formalize the conditions under which the following equivalence 

holds:

�CML: A Prescription for Safely Relaxing Synchrony

KC Sivaramakrishnan
Purdue University

chandras@cs.purdue.edu

Lukasz Ziarek
SUNY Buffalo

lziarek@buffalo.edu

Suresh Jagannathan
Purdue University

suresh@cs.purdue.edu

Abstract
One way to ease the burden of concurrent programming is to have
threads communicate synchronously via message-passing, making
explicit the program points where data is transferred from one
thread to another. In a language like Concurrent ML (CML), this
philosophy leads to strong guarantees on the ordering and visibility
of communicated data, simplifying program reasoning. The cost of
synchrony comes with a high price in performance, however, par-
ticularly in distributed environments where communication latency
is high. To ameliorate these costs, we might allow communication
to be asynchronous, having senders buffer data without waiting for
the availability of a matching receiver, thereby allowing execution
of the sender’s continuation to overlap data transmission. However,
while the use of asynchrony can help reclaim performance, it also
complicates program structure and understanding.

In this paper, we investigate an alternative semantics for CML
that implements sends asynchronously, but guarantees that the re-
sulting execution nonetheless exhibits behavior observably equiva-
lent to one in which all communication is performed synchronously.
Our goal is to retain the expressivity and simplicity of CML’s syn-
chronous operations in writing concurrent programs and reasoning
about them, but give implementations the flexibility to safely regain
performance using asynchronous communication.

We formalize the conditions under which this equivalence
holds, and present an implementation that builds a decentralized de-
pendence graph whose structure can be used to check the integrity
of an execution with respect to this equivalence. We integrate a no-
tion of speculation to allow ill-formed executions to be rolled-back
and re-executed, replacing offending asynchronous actions with
safe synchronous ones. Several realistic case studies deployed in a
cloud environment demonstrate the utility of our approach.

1. Introduction
Concurrent ML [20] (CML) provides an expressive concurrency
mechanism through its use of first-class composable synchronous
events. When synchronized, events allow threads to communicate
data via message-passing over first-class channels. Synchronous
communication simplifies program reasoning because every com-
munication action is also a synchronization point; thus, the contin-
uation of a message-send is guaranteed that the data being sent has
been successfully transmitted to a receiver. The cost of synchrony
comes at a high price in performance, however; recent proposals

[Copyright notice will appear here once ’preprint’ option is removed.]

therefore suggest the use of asynchronous variants of CML’s syn-
chronous events [30] to overcome this cost. While asynchronous
extensions can be used to gain performance, they sacrifice the sim-
plicity provided by synchronous communication in favor of a more
complex and sophisticated set of primitives.

One way to enhance performance without requiring new addi-
tions to the core set of event combinators CML supports, is to give
the underlying runtime the freedom to allow a sender to communi-
cate data asynchronously. In this way, the cost of synchronous com-
munication can be masked by allowing the sender’s continuation to
begin execution even if a matching receiver is not yet available. Be-
cause asynchrony is introduced only by the runtime, applications
do not have to be restructured to explicitly account for new be-
haviors introduced by this additional concurrency. Thus, we wish
to have the runtime enforce the equivalence: [[ send (c, v)]]k ⌘
[[ asend (c, v)]]k where k is a continuation, send is CML’s syn-
chronous send operation that communicates value v on channel c,
and asend is an asynchronous variant that buffers v on c and does
not synchronize on a matching receiver.

To illustrate, consider the following simple program:

send(c1,v1)
f()
send(c2,v2)

g()
recv(c1)

recv(c2)
h()

T1 T2 T3

Thread T1 performs a synchronous send on channel c1 that is re-
ceived by thread T2, after it computes g() . After the communica-
tion is performed, T1 evaluates f() , and then sends v2 on chan-
nel c2 , which is received by thread T3. Upon receipt, T3 evaluates
h() . Assuming f , g , and h perform no communication action of
their own, the synchronous communication on c1 by T1 could have
been safely converted into an asynchronous action in which v1 is
buffered, and read by T2 later upon evaluation of g() . The observ-
able behavior of the program in both cases (i.e., treating the initial
send synchronously or asynchronously) would be the same.

Unfortunately, naı̈vely replacing synchronous communication
with an asynchronous one is not usually meaning-preserving as the
example in Figure 1 illustrates. Under a synchronous evaluation
protocol, T2 would necessarily communicate first with T3, receiv-
ing v3 on channel c2 . It is then able to receive v1 from T1; finally,
T1 can communicate v2 to T3. If the send(c1,v1) operation by
T1 were replaced by asend(c1,v1) , the first receive on T2 has, in
addition to the first send on T3, a new potential matching opportu-
nity – the send of v2 on channel c2 . If the receive by T2 matches

send(c1,v1)
f()
send(c2,v2)

recv(c2)
g()
recv(c1)

send(c2,v3)
h()
recv(c2)

T1 T2 T3

Figure 1: Performing the first send in T1 asynchronously is not
meaning preserving with respect to synchronous evaluation.

1 2013/3/28

�CML: A Prescription for Safely Relaxing Synchrony

KC Sivaramakrishnan
Purdue University

chandras@cs.purdue.edu

Lukasz Ziarek
SUNY Buffalo

lziarek@buffalo.edu

Suresh Jagannathan
Purdue University

suresh@cs.purdue.edu

Abstract
One way to ease the burden of concurrent programming is to have
threads communicate synchronously via message-passing, making
explicit the program points where data is transferred from one
thread to another. In a language like Concurrent ML (CML), this
philosophy leads to strong guarantees on the ordering and visibility
of communicated data, simplifying program reasoning. The cost of
synchrony comes with a high price in performance, however, par-
ticularly in distributed environments where communication latency
is high. To ameliorate these costs, we might allow communication
to be asynchronous, having senders buffer data without waiting for
the availability of a matching receiver, thereby allowing execution
of the sender’s continuation to overlap data transmission. However,
while the use of asynchrony can help reclaim performance, it also
complicates program structure and understanding.

In this paper, we investigate an alternative semantics for CML
that implements sends asynchronously, but guarantees that the re-
sulting execution nonetheless exhibits behavior observably equiva-
lent to one in which all communication is performed synchronously.
Our goal is to retain the expressivity and simplicity of CML’s syn-
chronous operations in writing concurrent programs and reasoning
about them, but give implementations the flexibility to safely regain
performance using asynchronous communication.

We formalize the conditions under which this equivalence
holds, and present an implementation that builds a decentralized de-
pendence graph whose structure can be used to check the integrity
of an execution with respect to this equivalence. We integrate a no-
tion of speculation to allow ill-formed executions to be rolled-back
and re-executed, replacing offending asynchronous actions with
safe synchronous ones. Several realistic case studies deployed in a
cloud environment demonstrate the utility of our approach.

1. Introduction
Concurrent ML [20] (CML) provides an expressive concurrency
mechanism through its use of first-class composable synchronous
events. When synchronized, events allow threads to communicate
data via message-passing over first-class channels. Synchronous
communication simplifies program reasoning because every com-
munication action is also a synchronization point; thus, the contin-
uation of a message-send is guaranteed that the data being sent has
been successfully transmitted to a receiver. The cost of synchrony
comes at a high price in performance, however; recent proposals

[Copyright notice will appear here once ’preprint’ option is removed.]

therefore suggest the use of asynchronous variants of CML’s syn-
chronous events [30] to overcome this cost. While asynchronous
extensions can be used to gain performance, they sacrifice the sim-
plicity provided by synchronous communication in favor of a more
complex and sophisticated set of primitives.

One way to enhance performance without requiring new addi-
tions to the core set of event combinators CML supports, is to give
the underlying runtime the freedom to allow a sender to communi-
cate data asynchronously. In this way, the cost of synchronous com-
munication can be masked by allowing the sender’s continuation to
begin execution even if a matching receiver is not yet available. Be-
cause asynchrony is introduced only by the runtime, applications
do not have to be restructured to explicitly account for new be-
haviors introduced by this additional concurrency. Thus, we wish
to have the runtime enforce the equivalence: [[ send (c, v)]]k ⌘
[[ asend (c, v)]]k where k is a continuation, send is CML’s syn-
chronous send operation that communicates value v on channel c,
and asend is an asynchronous variant that buffers v on c and does
not synchronize on a matching receiver.

To illustrate, consider the following simple program:

send(c1,v1)
f()
send(c2,v2)

g()
recv(c1)

recv(c2)
h()

T1 T2 T3

Thread T1 performs a synchronous send on channel c1 that is re-
ceived by thread T2, after it computes g() . After the communica-
tion is performed, T1 evaluates f() , and then sends v2 on chan-
nel c2 , which is received by thread T3. Upon receipt, T3 evaluates
h() . Assuming f , g , and h perform no communication action of
their own, the synchronous communication on c1 by T1 could have
been safely converted into an asynchronous action in which v1 is
buffered, and read by T2 later upon evaluation of g() . The observ-
able behavior of the program in both cases (i.e., treating the initial
send synchronously or asynchronously) would be the same.

Unfortunately, naı̈vely replacing synchronous communication
with an asynchronous one is not usually meaning-preserving as the
example in Figure 1 illustrates. Under a synchronous evaluation
protocol, T2 would necessarily communicate first with T3, receiv-
ing v3 on channel c2 . It is then able to receive v1 from T1; finally,
T1 can communicate v2 to T3. If the send(c1,v1) operation by
T1 were replaced by asend(c1,v1) , the first receive on T2 has, in
addition to the first send on T3, a new potential matching opportu-
nity – the send of v2 on channel c2 . If the receive by T2 matches

send(c1,v1)
f()
send(c2,v2)

recv(c2)
g()
recv(c1)

send(c2,v3)
h()
recv(c2)

T1 T2 T3

Figure 1: Performing the first send in T1 asynchronously is not
meaning preserving with respect to synchronous evaluation.

1 2013/3/28

2. A cloud infrastructure + speculative execution framework
a. discharges synchronous sends asynchronously

b. detects when the equivalence fails, and 

c. repairs failed executions

4

Tuesday, January 21, 14



Context

5

Tuesday, January 21, 14



Context
• A distributed extension of MultiMLton - MLton for scalable 

architectures

5

Tuesday, January 21, 14



Context
• A distributed extension of MultiMLton - MLton for scalable 

architectures

• Parallel extension of Concurrent ML
★ Dynamic lightweight threads
★ Synchronous message passing

★ First-class events
✦ Composable synchronous protocols

5

Tuesday, January 21, 14



Context
• A distributed extension of MultiMLton - MLton for scalable 

architectures

• Parallel extension of Concurrent ML
★ Dynamic lightweight threads
★ Synchronous message passing

★ First-class events
✦ Composable synchronous protocols

val	
  channel	
  :	
  unit	
  -­‐>	
  ‘a	
  chan
val	
  spawn	
  	
  	
  :	
  (unit	
  -­‐>	
  unit)	
  -­‐>	
  thread_id
val	
  send	
  	
  	
  	
  :	
  ‘a	
  chan	
  *	
  ‘a	
  -­‐>	
  unit
val	
  recv	
  	
  	
  	
  :	
  ‘a	
  chan	
  -­‐>	
  ‘a
val	
  sendEvt	
  :	
  ‘a	
  chan	
  *	
  ‘a	
  -­‐>	
  unit	
  event
val	
  recvEvt	
  :	
  ‘a	
  chan	
  -­‐>	
  ‘a	
  event
val	
  sync	
  	
  	
  	
  :	
  ‘a	
  event	
  -­‐>	
  ‘a

val	
  never	
  	
  	
  	
  	
  :	
  ‘a	
  event
val	
  alwaysEvt	
  :	
  ‘a	
  -­‐>	
  ‘a	
  event
val	
  wrap	
  	
  :	
  ‘a	
  event	
  -­‐>	
  (‘a	
  -­‐>	
  ‘b)	
  -­‐>	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ‘b	
  event
val	
  guard	
  :	
  (unit	
  -­‐>	
  ‘a	
  event)	
  -­‐>	
  ‘a	
  event
val	
  choose	
  :	
  ‘a	
  event	
  list	
  -­‐>	
  ‘a	
  event
...

5

Tuesday, January 21, 14



Basic Idea (1)

�CML: A Prescription for Safely Relaxing Synchrony

KC Sivaramakrishnan
Purdue University

chandras@cs.purdue.edu

Lukasz Ziarek
SUNY Buffalo

lziarek@buffalo.edu

Suresh Jagannathan
Purdue University

suresh@cs.purdue.edu

Abstract
One way to ease the burden of concurrent programming is to have
threads communicate synchronously via message-passing, making
explicit the program points where data is transferred from one
thread to another. In a language like Concurrent ML (CML), this
philosophy leads to strong guarantees on the ordering and visibility
of communicated data, simplifying program reasoning. The cost of
synchrony comes with a high price in performance, however, par-
ticularly in distributed environments where communication latency
is high. To ameliorate these costs, we might allow communication
to be asynchronous, having senders buffer data without waiting for
the availability of a matching receiver, thereby allowing execution
of the sender’s continuation to overlap data transmission. However,
while the use of asynchrony can help reclaim performance, it also
complicates program structure and understanding.

In this paper, we investigate an alternative semantics for CML
that implements sends asynchronously, but guarantees that the re-
sulting execution nonetheless exhibits behavior observably equiva-
lent to one in which all communication is performed synchronously.
Our goal is to retain the expressivity and simplicity of CML’s syn-
chronous operations in writing concurrent programs and reasoning
about them, but give implementations the flexibility to safely regain
performance using asynchronous communication.

We formalize the conditions under which this equivalence
holds, and present an implementation that builds a decentralized de-
pendence graph whose structure can be used to check the integrity
of an execution with respect to this equivalence. We integrate a no-
tion of speculation to allow ill-formed executions to be rolled-back
and re-executed, replacing offending asynchronous actions with
safe synchronous ones. Several realistic case studies deployed in a
cloud environment demonstrate the utility of our approach.

1. Introduction
Concurrent ML [20] (CML) provides an expressive concurrency
mechanism through its use of first-class composable synchronous
events. When synchronized, events allow threads to communicate
data via message-passing over first-class channels. Synchronous
communication simplifies program reasoning because every com-
munication action is also a synchronization point; thus, the contin-
uation of a message-send is guaranteed that the data being sent has
been successfully transmitted to a receiver. The cost of synchrony
comes at a high price in performance, however; recent proposals

[Copyright notice will appear here once ’preprint’ option is removed.]

therefore suggest the use of asynchronous variants of CML’s syn-
chronous events [30] to overcome this cost. While asynchronous
extensions can be used to gain performance, they sacrifice the sim-
plicity provided by synchronous communication in favor of a more
complex and sophisticated set of primitives.

One way to enhance performance without requiring new addi-
tions to the core set of event combinators CML supports, is to give
the underlying runtime the freedom to allow a sender to communi-
cate data asynchronously. In this way, the cost of synchronous com-
munication can be masked by allowing the sender’s continuation to
begin execution even if a matching receiver is not yet available. Be-
cause asynchrony is introduced only by the runtime, applications
do not have to be restructured to explicitly account for new be-
haviors introduced by this additional concurrency. Thus, we wish
to have the runtime enforce the equivalence: [[ send (c, v)]]k ⌘
[[ asend (c, v)]]k where k is a continuation, send is CML’s syn-
chronous send operation that communicates value v on channel c,
and asend is an asynchronous variant that buffers v on c and does
not synchronize on a matching receiver.

To illustrate, consider the following simple program:

send(c1,v1)
f()
send(c2,v2)

g()
recv(c1)

recv(c2)
h()

T1 T2 T3

Thread T1 performs a synchronous send on channel c1 that is re-
ceived by thread T2, after it computes g() . After the communica-
tion is performed, T1 evaluates f() , and then sends v2 on chan-
nel c2 , which is received by thread T3. Upon receipt, T3 evaluates
h() . Assuming f , g , and h perform no communication action of
their own, the synchronous communication on c1 by T1 could have
been safely converted into an asynchronous action in which v1 is
buffered, and read by T2 later upon evaluation of g() . The observ-
able behavior of the program in both cases (i.e., treating the initial
send synchronously or asynchronously) would be the same.

Unfortunately, naı̈vely replacing synchronous communication
with an asynchronous one is not usually meaning-preserving as the
example in Figure 1 illustrates. Under a synchronous evaluation
protocol, T2 would necessarily communicate first with T3, receiv-
ing v3 on channel c2 . It is then able to receive v1 from T1; finally,
T1 can communicate v2 to T3. If the send(c1,v1) operation by
T1 were replaced by asend(c1,v1) , the first receive on T2 has, in
addition to the first send on T3, a new potential matching opportu-
nity – the send of v2 on channel c2 . If the receive by T2 matches

send(c1,v1)
f()
send(c2,v2)

recv(c2)
g()
recv(c1)

send(c2,v3)
h()
recv(c2)

T1 T2 T3

Figure 1: Performing the first send in T1 asynchronously is not
meaning preserving with respect to synchronous evaluation.

1 2013/3/28

T1

send(c1,v1)

f()

send(c2,v2)

T2

recv(c2)

g()

recv(c1)

T3

send(c2,v3)

h()

recv(c2)

Synchronous 
Execution

6

Tuesday, January 21, 14



Basic Idea (1)

�CML: A Prescription for Safely Relaxing Synchrony

KC Sivaramakrishnan
Purdue University

chandras@cs.purdue.edu

Lukasz Ziarek
SUNY Buffalo

lziarek@buffalo.edu

Suresh Jagannathan
Purdue University

suresh@cs.purdue.edu

Abstract
One way to ease the burden of concurrent programming is to have
threads communicate synchronously via message-passing, making
explicit the program points where data is transferred from one
thread to another. In a language like Concurrent ML (CML), this
philosophy leads to strong guarantees on the ordering and visibility
of communicated data, simplifying program reasoning. The cost of
synchrony comes with a high price in performance, however, par-
ticularly in distributed environments where communication latency
is high. To ameliorate these costs, we might allow communication
to be asynchronous, having senders buffer data without waiting for
the availability of a matching receiver, thereby allowing execution
of the sender’s continuation to overlap data transmission. However,
while the use of asynchrony can help reclaim performance, it also
complicates program structure and understanding.

In this paper, we investigate an alternative semantics for CML
that implements sends asynchronously, but guarantees that the re-
sulting execution nonetheless exhibits behavior observably equiva-
lent to one in which all communication is performed synchronously.
Our goal is to retain the expressivity and simplicity of CML’s syn-
chronous operations in writing concurrent programs and reasoning
about them, but give implementations the flexibility to safely regain
performance using asynchronous communication.

We formalize the conditions under which this equivalence
holds, and present an implementation that builds a decentralized de-
pendence graph whose structure can be used to check the integrity
of an execution with respect to this equivalence. We integrate a no-
tion of speculation to allow ill-formed executions to be rolled-back
and re-executed, replacing offending asynchronous actions with
safe synchronous ones. Several realistic case studies deployed in a
cloud environment demonstrate the utility of our approach.

1. Introduction
Concurrent ML [20] (CML) provides an expressive concurrency
mechanism through its use of first-class composable synchronous
events. When synchronized, events allow threads to communicate
data via message-passing over first-class channels. Synchronous
communication simplifies program reasoning because every com-
munication action is also a synchronization point; thus, the contin-
uation of a message-send is guaranteed that the data being sent has
been successfully transmitted to a receiver. The cost of synchrony
comes at a high price in performance, however; recent proposals

[Copyright notice will appear here once ’preprint’ option is removed.]

therefore suggest the use of asynchronous variants of CML’s syn-
chronous events [30] to overcome this cost. While asynchronous
extensions can be used to gain performance, they sacrifice the sim-
plicity provided by synchronous communication in favor of a more
complex and sophisticated set of primitives.

One way to enhance performance without requiring new addi-
tions to the core set of event combinators CML supports, is to give
the underlying runtime the freedom to allow a sender to communi-
cate data asynchronously. In this way, the cost of synchronous com-
munication can be masked by allowing the sender’s continuation to
begin execution even if a matching receiver is not yet available. Be-
cause asynchrony is introduced only by the runtime, applications
do not have to be restructured to explicitly account for new be-
haviors introduced by this additional concurrency. Thus, we wish
to have the runtime enforce the equivalence: [[ send (c, v)]]k ⌘
[[ asend (c, v)]]k where k is a continuation, send is CML’s syn-
chronous send operation that communicates value v on channel c,
and asend is an asynchronous variant that buffers v on c and does
not synchronize on a matching receiver.

To illustrate, consider the following simple program:

send(c1,v1)
f()
send(c2,v2)

g()
recv(c1)

recv(c2)
h()

T1 T2 T3

Thread T1 performs a synchronous send on channel c1 that is re-
ceived by thread T2, after it computes g() . After the communica-
tion is performed, T1 evaluates f() , and then sends v2 on chan-
nel c2 , which is received by thread T3. Upon receipt, T3 evaluates
h() . Assuming f , g , and h perform no communication action of
their own, the synchronous communication on c1 by T1 could have
been safely converted into an asynchronous action in which v1 is
buffered, and read by T2 later upon evaluation of g() . The observ-
able behavior of the program in both cases (i.e., treating the initial
send synchronously or asynchronously) would be the same.

Unfortunately, naı̈vely replacing synchronous communication
with an asynchronous one is not usually meaning-preserving as the
example in Figure 1 illustrates. Under a synchronous evaluation
protocol, T2 would necessarily communicate first with T3, receiv-
ing v3 on channel c2 . It is then able to receive v1 from T1; finally,
T1 can communicate v2 to T3. If the send(c1,v1) operation by
T1 were replaced by asend(c1,v1) , the first receive on T2 has, in
addition to the first send on T3, a new potential matching opportu-
nity – the send of v2 on channel c2 . If the receive by T2 matches

send(c1,v1)
f()
send(c2,v2)

recv(c2)
g()
recv(c1)

send(c2,v3)
h()
recv(c2)

T1 T2 T3

Figure 1: Performing the first send in T1 asynchronously is not
meaning preserving with respect to synchronous evaluation.

1 2013/3/28

T1

send(c1,v1)

f()

send(c2,v2)

T2

recv(c2)

g()

recv(c1)

T3

send(c2,v3)

h()

recv(c2)

A

Synchronous 
Execution

6

Tuesday, January 21, 14



Basic Idea (1)

�CML: A Prescription for Safely Relaxing Synchrony

KC Sivaramakrishnan
Purdue University

chandras@cs.purdue.edu

Lukasz Ziarek
SUNY Buffalo

lziarek@buffalo.edu

Suresh Jagannathan
Purdue University

suresh@cs.purdue.edu

Abstract
One way to ease the burden of concurrent programming is to have
threads communicate synchronously via message-passing, making
explicit the program points where data is transferred from one
thread to another. In a language like Concurrent ML (CML), this
philosophy leads to strong guarantees on the ordering and visibility
of communicated data, simplifying program reasoning. The cost of
synchrony comes with a high price in performance, however, par-
ticularly in distributed environments where communication latency
is high. To ameliorate these costs, we might allow communication
to be asynchronous, having senders buffer data without waiting for
the availability of a matching receiver, thereby allowing execution
of the sender’s continuation to overlap data transmission. However,
while the use of asynchrony can help reclaim performance, it also
complicates program structure and understanding.

In this paper, we investigate an alternative semantics for CML
that implements sends asynchronously, but guarantees that the re-
sulting execution nonetheless exhibits behavior observably equiva-
lent to one in which all communication is performed synchronously.
Our goal is to retain the expressivity and simplicity of CML’s syn-
chronous operations in writing concurrent programs and reasoning
about them, but give implementations the flexibility to safely regain
performance using asynchronous communication.

We formalize the conditions under which this equivalence
holds, and present an implementation that builds a decentralized de-
pendence graph whose structure can be used to check the integrity
of an execution with respect to this equivalence. We integrate a no-
tion of speculation to allow ill-formed executions to be rolled-back
and re-executed, replacing offending asynchronous actions with
safe synchronous ones. Several realistic case studies deployed in a
cloud environment demonstrate the utility of our approach.

1. Introduction
Concurrent ML [20] (CML) provides an expressive concurrency
mechanism through its use of first-class composable synchronous
events. When synchronized, events allow threads to communicate
data via message-passing over first-class channels. Synchronous
communication simplifies program reasoning because every com-
munication action is also a synchronization point; thus, the contin-
uation of a message-send is guaranteed that the data being sent has
been successfully transmitted to a receiver. The cost of synchrony
comes at a high price in performance, however; recent proposals

[Copyright notice will appear here once ’preprint’ option is removed.]

therefore suggest the use of asynchronous variants of CML’s syn-
chronous events [30] to overcome this cost. While asynchronous
extensions can be used to gain performance, they sacrifice the sim-
plicity provided by synchronous communication in favor of a more
complex and sophisticated set of primitives.

One way to enhance performance without requiring new addi-
tions to the core set of event combinators CML supports, is to give
the underlying runtime the freedom to allow a sender to communi-
cate data asynchronously. In this way, the cost of synchronous com-
munication can be masked by allowing the sender’s continuation to
begin execution even if a matching receiver is not yet available. Be-
cause asynchrony is introduced only by the runtime, applications
do not have to be restructured to explicitly account for new be-
haviors introduced by this additional concurrency. Thus, we wish
to have the runtime enforce the equivalence: [[ send (c, v)]]k ⌘
[[ asend (c, v)]]k where k is a continuation, send is CML’s syn-
chronous send operation that communicates value v on channel c,
and asend is an asynchronous variant that buffers v on c and does
not synchronize on a matching receiver.

To illustrate, consider the following simple program:

send(c1,v1)
f()
send(c2,v2)

g()
recv(c1)

recv(c2)
h()

T1 T2 T3

Thread T1 performs a synchronous send on channel c1 that is re-
ceived by thread T2, after it computes g() . After the communica-
tion is performed, T1 evaluates f() , and then sends v2 on chan-
nel c2 , which is received by thread T3. Upon receipt, T3 evaluates
h() . Assuming f , g , and h perform no communication action of
their own, the synchronous communication on c1 by T1 could have
been safely converted into an asynchronous action in which v1 is
buffered, and read by T2 later upon evaluation of g() . The observ-
able behavior of the program in both cases (i.e., treating the initial
send synchronously or asynchronously) would be the same.

Unfortunately, naı̈vely replacing synchronous communication
with an asynchronous one is not usually meaning-preserving as the
example in Figure 1 illustrates. Under a synchronous evaluation
protocol, T2 would necessarily communicate first with T3, receiv-
ing v3 on channel c2 . It is then able to receive v1 from T1; finally,
T1 can communicate v2 to T3. If the send(c1,v1) operation by
T1 were replaced by asend(c1,v1) , the first receive on T2 has, in
addition to the first send on T3, a new potential matching opportu-
nity – the send of v2 on channel c2 . If the receive by T2 matches

send(c1,v1)
f()
send(c2,v2)

recv(c2)
g()
recv(c1)

send(c2,v3)
h()
recv(c2)

T1 T2 T3

Figure 1: Performing the first send in T1 asynchronously is not
meaning preserving with respect to synchronous evaluation.

1 2013/3/28

T1

send(c1,v1)

f()

send(c2,v2)

T2

recv(c2)

g()

recv(c1)

T3

send(c2,v3)

h()

recv(c2)

A

BSynchronous 
Execution

6

Tuesday, January 21, 14



Basic Idea (1)

�CML: A Prescription for Safely Relaxing Synchrony

KC Sivaramakrishnan
Purdue University

chandras@cs.purdue.edu

Lukasz Ziarek
SUNY Buffalo

lziarek@buffalo.edu

Suresh Jagannathan
Purdue University

suresh@cs.purdue.edu

Abstract
One way to ease the burden of concurrent programming is to have
threads communicate synchronously via message-passing, making
explicit the program points where data is transferred from one
thread to another. In a language like Concurrent ML (CML), this
philosophy leads to strong guarantees on the ordering and visibility
of communicated data, simplifying program reasoning. The cost of
synchrony comes with a high price in performance, however, par-
ticularly in distributed environments where communication latency
is high. To ameliorate these costs, we might allow communication
to be asynchronous, having senders buffer data without waiting for
the availability of a matching receiver, thereby allowing execution
of the sender’s continuation to overlap data transmission. However,
while the use of asynchrony can help reclaim performance, it also
complicates program structure and understanding.

In this paper, we investigate an alternative semantics for CML
that implements sends asynchronously, but guarantees that the re-
sulting execution nonetheless exhibits behavior observably equiva-
lent to one in which all communication is performed synchronously.
Our goal is to retain the expressivity and simplicity of CML’s syn-
chronous operations in writing concurrent programs and reasoning
about them, but give implementations the flexibility to safely regain
performance using asynchronous communication.

We formalize the conditions under which this equivalence
holds, and present an implementation that builds a decentralized de-
pendence graph whose structure can be used to check the integrity
of an execution with respect to this equivalence. We integrate a no-
tion of speculation to allow ill-formed executions to be rolled-back
and re-executed, replacing offending asynchronous actions with
safe synchronous ones. Several realistic case studies deployed in a
cloud environment demonstrate the utility of our approach.

1. Introduction
Concurrent ML [20] (CML) provides an expressive concurrency
mechanism through its use of first-class composable synchronous
events. When synchronized, events allow threads to communicate
data via message-passing over first-class channels. Synchronous
communication simplifies program reasoning because every com-
munication action is also a synchronization point; thus, the contin-
uation of a message-send is guaranteed that the data being sent has
been successfully transmitted to a receiver. The cost of synchrony
comes at a high price in performance, however; recent proposals

[Copyright notice will appear here once ’preprint’ option is removed.]

therefore suggest the use of asynchronous variants of CML’s syn-
chronous events [30] to overcome this cost. While asynchronous
extensions can be used to gain performance, they sacrifice the sim-
plicity provided by synchronous communication in favor of a more
complex and sophisticated set of primitives.

One way to enhance performance without requiring new addi-
tions to the core set of event combinators CML supports, is to give
the underlying runtime the freedom to allow a sender to communi-
cate data asynchronously. In this way, the cost of synchronous com-
munication can be masked by allowing the sender’s continuation to
begin execution even if a matching receiver is not yet available. Be-
cause asynchrony is introduced only by the runtime, applications
do not have to be restructured to explicitly account for new be-
haviors introduced by this additional concurrency. Thus, we wish
to have the runtime enforce the equivalence: [[ send (c, v)]]k ⌘
[[ asend (c, v)]]k where k is a continuation, send is CML’s syn-
chronous send operation that communicates value v on channel c,
and asend is an asynchronous variant that buffers v on c and does
not synchronize on a matching receiver.

To illustrate, consider the following simple program:

send(c1,v1)
f()
send(c2,v2)

g()
recv(c1)

recv(c2)
h()

T1 T2 T3

Thread T1 performs a synchronous send on channel c1 that is re-
ceived by thread T2, after it computes g() . After the communica-
tion is performed, T1 evaluates f() , and then sends v2 on chan-
nel c2 , which is received by thread T3. Upon receipt, T3 evaluates
h() . Assuming f , g , and h perform no communication action of
their own, the synchronous communication on c1 by T1 could have
been safely converted into an asynchronous action in which v1 is
buffered, and read by T2 later upon evaluation of g() . The observ-
able behavior of the program in both cases (i.e., treating the initial
send synchronously or asynchronously) would be the same.

Unfortunately, naı̈vely replacing synchronous communication
with an asynchronous one is not usually meaning-preserving as the
example in Figure 1 illustrates. Under a synchronous evaluation
protocol, T2 would necessarily communicate first with T3, receiv-
ing v3 on channel c2 . It is then able to receive v1 from T1; finally,
T1 can communicate v2 to T3. If the send(c1,v1) operation by
T1 were replaced by asend(c1,v1) , the first receive on T2 has, in
addition to the first send on T3, a new potential matching opportu-
nity – the send of v2 on channel c2 . If the receive by T2 matches

send(c1,v1)
f()
send(c2,v2)

recv(c2)
g()
recv(c1)

send(c2,v3)
h()
recv(c2)

T1 T2 T3

Figure 1: Performing the first send in T1 asynchronously is not
meaning preserving with respect to synchronous evaluation.

1 2013/3/28

T1

send(c1,v1)

f()

send(c2,v2)

T2

recv(c2)

g()

recv(c1)

T3

send(c2,v3)

h()

recv(c2)

A

B

C

Synchronous 
Execution

6

Tuesday, January 21, 14



Basic Idea (2)

�CML: A Prescription for Safely Relaxing Synchrony

KC Sivaramakrishnan
Purdue University

chandras@cs.purdue.edu

Lukasz Ziarek
SUNY Buffalo

lziarek@buffalo.edu

Suresh Jagannathan
Purdue University

suresh@cs.purdue.edu

Abstract
One way to ease the burden of concurrent programming is to have
threads communicate synchronously via message-passing, making
explicit the program points where data is transferred from one
thread to another. In a language like Concurrent ML (CML), this
philosophy leads to strong guarantees on the ordering and visibility
of communicated data, simplifying program reasoning. The cost of
synchrony comes with a high price in performance, however, par-
ticularly in distributed environments where communication latency
is high. To ameliorate these costs, we might allow communication
to be asynchronous, having senders buffer data without waiting for
the availability of a matching receiver, thereby allowing execution
of the sender’s continuation to overlap data transmission. However,
while the use of asynchrony can help reclaim performance, it also
complicates program structure and understanding.

In this paper, we investigate an alternative semantics for CML
that implements sends asynchronously, but guarantees that the re-
sulting execution nonetheless exhibits behavior observably equiva-
lent to one in which all communication is performed synchronously.
Our goal is to retain the expressivity and simplicity of CML’s syn-
chronous operations in writing concurrent programs and reasoning
about them, but give implementations the flexibility to safely regain
performance using asynchronous communication.

We formalize the conditions under which this equivalence
holds, and present an implementation that builds a decentralized de-
pendence graph whose structure can be used to check the integrity
of an execution with respect to this equivalence. We integrate a no-
tion of speculation to allow ill-formed executions to be rolled-back
and re-executed, replacing offending asynchronous actions with
safe synchronous ones. Several realistic case studies deployed in a
cloud environment demonstrate the utility of our approach.

1. Introduction
Concurrent ML [20] (CML) provides an expressive concurrency
mechanism through its use of first-class composable synchronous
events. When synchronized, events allow threads to communicate
data via message-passing over first-class channels. Synchronous
communication simplifies program reasoning because every com-
munication action is also a synchronization point; thus, the contin-
uation of a message-send is guaranteed that the data being sent has
been successfully transmitted to a receiver. The cost of synchrony
comes at a high price in performance, however; recent proposals

[Copyright notice will appear here once ’preprint’ option is removed.]

therefore suggest the use of asynchronous variants of CML’s syn-
chronous events [30] to overcome this cost. While asynchronous
extensions can be used to gain performance, they sacrifice the sim-
plicity provided by synchronous communication in favor of a more
complex and sophisticated set of primitives.

One way to enhance performance without requiring new addi-
tions to the core set of event combinators CML supports, is to give
the underlying runtime the freedom to allow a sender to communi-
cate data asynchronously. In this way, the cost of synchronous com-
munication can be masked by allowing the sender’s continuation to
begin execution even if a matching receiver is not yet available. Be-
cause asynchrony is introduced only by the runtime, applications
do not have to be restructured to explicitly account for new be-
haviors introduced by this additional concurrency. Thus, we wish
to have the runtime enforce the equivalence: [[ send (c, v)]]k ⌘
[[ asend (c, v)]]k where k is a continuation, send is CML’s syn-
chronous send operation that communicates value v on channel c,
and asend is an asynchronous variant that buffers v on c and does
not synchronize on a matching receiver.

To illustrate, consider the following simple program:

send(c1,v1)
f()
send(c2,v2)

g()
recv(c1)

recv(c2)
h()

T1 T2 T3

Thread T1 performs a synchronous send on channel c1 that is re-
ceived by thread T2, after it computes g() . After the communica-
tion is performed, T1 evaluates f() , and then sends v2 on chan-
nel c2 , which is received by thread T3. Upon receipt, T3 evaluates
h() . Assuming f , g , and h perform no communication action of
their own, the synchronous communication on c1 by T1 could have
been safely converted into an asynchronous action in which v1 is
buffered, and read by T2 later upon evaluation of g() . The observ-
able behavior of the program in both cases (i.e., treating the initial
send synchronously or asynchronously) would be the same.

Unfortunately, naı̈vely replacing synchronous communication
with an asynchronous one is not usually meaning-preserving as the
example in Figure 1 illustrates. Under a synchronous evaluation
protocol, T2 would necessarily communicate first with T3, receiv-
ing v3 on channel c2 . It is then able to receive v1 from T1; finally,
T1 can communicate v2 to T3. If the send(c1,v1) operation by
T1 were replaced by asend(c1,v1) , the first receive on T2 has, in
addition to the first send on T3, a new potential matching opportu-
nity – the send of v2 on channel c2 . If the receive by T2 matches

send(c1,v1)
f()
send(c2,v2)

recv(c2)
g()
recv(c1)

send(c2,v3)
h()
recv(c2)

T1 T2 T3

Figure 1: Performing the first send in T1 asynchronously is not
meaning preserving with respect to synchronous evaluation.

1 2013/3/28

T1

asend(c1,v1)

f()

send(c2,v2)

T2

recv(c2)

g()

recv(c1)

T3

send(c2,v3)Asynchronous 
Execution

7

Tuesday, January 21, 14



Basic Idea (2)

�CML: A Prescription for Safely Relaxing Synchrony

KC Sivaramakrishnan
Purdue University

chandras@cs.purdue.edu

Lukasz Ziarek
SUNY Buffalo

lziarek@buffalo.edu

Suresh Jagannathan
Purdue University

suresh@cs.purdue.edu

Abstract
One way to ease the burden of concurrent programming is to have
threads communicate synchronously via message-passing, making
explicit the program points where data is transferred from one
thread to another. In a language like Concurrent ML (CML), this
philosophy leads to strong guarantees on the ordering and visibility
of communicated data, simplifying program reasoning. The cost of
synchrony comes with a high price in performance, however, par-
ticularly in distributed environments where communication latency
is high. To ameliorate these costs, we might allow communication
to be asynchronous, having senders buffer data without waiting for
the availability of a matching receiver, thereby allowing execution
of the sender’s continuation to overlap data transmission. However,
while the use of asynchrony can help reclaim performance, it also
complicates program structure and understanding.

In this paper, we investigate an alternative semantics for CML
that implements sends asynchronously, but guarantees that the re-
sulting execution nonetheless exhibits behavior observably equiva-
lent to one in which all communication is performed synchronously.
Our goal is to retain the expressivity and simplicity of CML’s syn-
chronous operations in writing concurrent programs and reasoning
about them, but give implementations the flexibility to safely regain
performance using asynchronous communication.

We formalize the conditions under which this equivalence
holds, and present an implementation that builds a decentralized de-
pendence graph whose structure can be used to check the integrity
of an execution with respect to this equivalence. We integrate a no-
tion of speculation to allow ill-formed executions to be rolled-back
and re-executed, replacing offending asynchronous actions with
safe synchronous ones. Several realistic case studies deployed in a
cloud environment demonstrate the utility of our approach.

1. Introduction
Concurrent ML [20] (CML) provides an expressive concurrency
mechanism through its use of first-class composable synchronous
events. When synchronized, events allow threads to communicate
data via message-passing over first-class channels. Synchronous
communication simplifies program reasoning because every com-
munication action is also a synchronization point; thus, the contin-
uation of a message-send is guaranteed that the data being sent has
been successfully transmitted to a receiver. The cost of synchrony
comes at a high price in performance, however; recent proposals

[Copyright notice will appear here once ’preprint’ option is removed.]

therefore suggest the use of asynchronous variants of CML’s syn-
chronous events [30] to overcome this cost. While asynchronous
extensions can be used to gain performance, they sacrifice the sim-
plicity provided by synchronous communication in favor of a more
complex and sophisticated set of primitives.

One way to enhance performance without requiring new addi-
tions to the core set of event combinators CML supports, is to give
the underlying runtime the freedom to allow a sender to communi-
cate data asynchronously. In this way, the cost of synchronous com-
munication can be masked by allowing the sender’s continuation to
begin execution even if a matching receiver is not yet available. Be-
cause asynchrony is introduced only by the runtime, applications
do not have to be restructured to explicitly account for new be-
haviors introduced by this additional concurrency. Thus, we wish
to have the runtime enforce the equivalence: [[ send (c, v)]]k ⌘
[[ asend (c, v)]]k where k is a continuation, send is CML’s syn-
chronous send operation that communicates value v on channel c,
and asend is an asynchronous variant that buffers v on c and does
not synchronize on a matching receiver.

To illustrate, consider the following simple program:

send(c1,v1)
f()
send(c2,v2)

g()
recv(c1)

recv(c2)
h()

T1 T2 T3

Thread T1 performs a synchronous send on channel c1 that is re-
ceived by thread T2, after it computes g() . After the communica-
tion is performed, T1 evaluates f() , and then sends v2 on chan-
nel c2 , which is received by thread T3. Upon receipt, T3 evaluates
h() . Assuming f , g , and h perform no communication action of
their own, the synchronous communication on c1 by T1 could have
been safely converted into an asynchronous action in which v1 is
buffered, and read by T2 later upon evaluation of g() . The observ-
able behavior of the program in both cases (i.e., treating the initial
send synchronously or asynchronously) would be the same.

Unfortunately, naı̈vely replacing synchronous communication
with an asynchronous one is not usually meaning-preserving as the
example in Figure 1 illustrates. Under a synchronous evaluation
protocol, T2 would necessarily communicate first with T3, receiv-
ing v3 on channel c2 . It is then able to receive v1 from T1; finally,
T1 can communicate v2 to T3. If the send(c1,v1) operation by
T1 were replaced by asend(c1,v1) , the first receive on T2 has, in
addition to the first send on T3, a new potential matching opportu-
nity – the send of v2 on channel c2 . If the receive by T2 matches

send(c1,v1)
f()
send(c2,v2)

recv(c2)
g()
recv(c1)

send(c2,v3)
h()
recv(c2)

T1 T2 T3

Figure 1: Performing the first send in T1 asynchronously is not
meaning preserving with respect to synchronous evaluation.

1 2013/3/28

T1

asend(c1,v1)

f()

send(c2,v2)

T2

recv(c2)

g()

recv(c1)

T3

send(c2,v3)

A

Asynchronous 
Execution

7

Tuesday, January 21, 14



Basic Idea (2)

�CML: A Prescription for Safely Relaxing Synchrony

KC Sivaramakrishnan
Purdue University

chandras@cs.purdue.edu

Lukasz Ziarek
SUNY Buffalo

lziarek@buffalo.edu

Suresh Jagannathan
Purdue University

suresh@cs.purdue.edu

Abstract
One way to ease the burden of concurrent programming is to have
threads communicate synchronously via message-passing, making
explicit the program points where data is transferred from one
thread to another. In a language like Concurrent ML (CML), this
philosophy leads to strong guarantees on the ordering and visibility
of communicated data, simplifying program reasoning. The cost of
synchrony comes with a high price in performance, however, par-
ticularly in distributed environments where communication latency
is high. To ameliorate these costs, we might allow communication
to be asynchronous, having senders buffer data without waiting for
the availability of a matching receiver, thereby allowing execution
of the sender’s continuation to overlap data transmission. However,
while the use of asynchrony can help reclaim performance, it also
complicates program structure and understanding.

In this paper, we investigate an alternative semantics for CML
that implements sends asynchronously, but guarantees that the re-
sulting execution nonetheless exhibits behavior observably equiva-
lent to one in which all communication is performed synchronously.
Our goal is to retain the expressivity and simplicity of CML’s syn-
chronous operations in writing concurrent programs and reasoning
about them, but give implementations the flexibility to safely regain
performance using asynchronous communication.

We formalize the conditions under which this equivalence
holds, and present an implementation that builds a decentralized de-
pendence graph whose structure can be used to check the integrity
of an execution with respect to this equivalence. We integrate a no-
tion of speculation to allow ill-formed executions to be rolled-back
and re-executed, replacing offending asynchronous actions with
safe synchronous ones. Several realistic case studies deployed in a
cloud environment demonstrate the utility of our approach.

1. Introduction
Concurrent ML [20] (CML) provides an expressive concurrency
mechanism through its use of first-class composable synchronous
events. When synchronized, events allow threads to communicate
data via message-passing over first-class channels. Synchronous
communication simplifies program reasoning because every com-
munication action is also a synchronization point; thus, the contin-
uation of a message-send is guaranteed that the data being sent has
been successfully transmitted to a receiver. The cost of synchrony
comes at a high price in performance, however; recent proposals

[Copyright notice will appear here once ’preprint’ option is removed.]

therefore suggest the use of asynchronous variants of CML’s syn-
chronous events [30] to overcome this cost. While asynchronous
extensions can be used to gain performance, they sacrifice the sim-
plicity provided by synchronous communication in favor of a more
complex and sophisticated set of primitives.

One way to enhance performance without requiring new addi-
tions to the core set of event combinators CML supports, is to give
the underlying runtime the freedom to allow a sender to communi-
cate data asynchronously. In this way, the cost of synchronous com-
munication can be masked by allowing the sender’s continuation to
begin execution even if a matching receiver is not yet available. Be-
cause asynchrony is introduced only by the runtime, applications
do not have to be restructured to explicitly account for new be-
haviors introduced by this additional concurrency. Thus, we wish
to have the runtime enforce the equivalence: [[ send (c, v)]]k ⌘
[[ asend (c, v)]]k where k is a continuation, send is CML’s syn-
chronous send operation that communicates value v on channel c,
and asend is an asynchronous variant that buffers v on c and does
not synchronize on a matching receiver.

To illustrate, consider the following simple program:

send(c1,v1)
f()
send(c2,v2)

g()
recv(c1)

recv(c2)
h()

T1 T2 T3

Thread T1 performs a synchronous send on channel c1 that is re-
ceived by thread T2, after it computes g() . After the communica-
tion is performed, T1 evaluates f() , and then sends v2 on chan-
nel c2 , which is received by thread T3. Upon receipt, T3 evaluates
h() . Assuming f , g , and h perform no communication action of
their own, the synchronous communication on c1 by T1 could have
been safely converted into an asynchronous action in which v1 is
buffered, and read by T2 later upon evaluation of g() . The observ-
able behavior of the program in both cases (i.e., treating the initial
send synchronously or asynchronously) would be the same.

Unfortunately, naı̈vely replacing synchronous communication
with an asynchronous one is not usually meaning-preserving as the
example in Figure 1 illustrates. Under a synchronous evaluation
protocol, T2 would necessarily communicate first with T3, receiv-
ing v3 on channel c2 . It is then able to receive v1 from T1; finally,
T1 can communicate v2 to T3. If the send(c1,v1) operation by
T1 were replaced by asend(c1,v1) , the first receive on T2 has, in
addition to the first send on T3, a new potential matching opportu-
nity – the send of v2 on channel c2 . If the receive by T2 matches

send(c1,v1)
f()
send(c2,v2)

recv(c2)
g()
recv(c1)

send(c2,v3)
h()
recv(c2)

T1 T2 T3

Figure 1: Performing the first send in T1 asynchronously is not
meaning preserving with respect to synchronous evaluation.

1 2013/3/28

T1

asend(c1,v1)

f()

send(c2,v2)

T2

recv(c2)

g()

recv(c1)

T3

send(c2,v3)

A

B
Asynchronous 

Execution

7

Tuesday, January 21, 14



Basic Idea (2)

�CML: A Prescription for Safely Relaxing Synchrony

KC Sivaramakrishnan
Purdue University

chandras@cs.purdue.edu

Lukasz Ziarek
SUNY Buffalo

lziarek@buffalo.edu

Suresh Jagannathan
Purdue University

suresh@cs.purdue.edu

Abstract
One way to ease the burden of concurrent programming is to have
threads communicate synchronously via message-passing, making
explicit the program points where data is transferred from one
thread to another. In a language like Concurrent ML (CML), this
philosophy leads to strong guarantees on the ordering and visibility
of communicated data, simplifying program reasoning. The cost of
synchrony comes with a high price in performance, however, par-
ticularly in distributed environments where communication latency
is high. To ameliorate these costs, we might allow communication
to be asynchronous, having senders buffer data without waiting for
the availability of a matching receiver, thereby allowing execution
of the sender’s continuation to overlap data transmission. However,
while the use of asynchrony can help reclaim performance, it also
complicates program structure and understanding.

In this paper, we investigate an alternative semantics for CML
that implements sends asynchronously, but guarantees that the re-
sulting execution nonetheless exhibits behavior observably equiva-
lent to one in which all communication is performed synchronously.
Our goal is to retain the expressivity and simplicity of CML’s syn-
chronous operations in writing concurrent programs and reasoning
about them, but give implementations the flexibility to safely regain
performance using asynchronous communication.

We formalize the conditions under which this equivalence
holds, and present an implementation that builds a decentralized de-
pendence graph whose structure can be used to check the integrity
of an execution with respect to this equivalence. We integrate a no-
tion of speculation to allow ill-formed executions to be rolled-back
and re-executed, replacing offending asynchronous actions with
safe synchronous ones. Several realistic case studies deployed in a
cloud environment demonstrate the utility of our approach.

1. Introduction
Concurrent ML [20] (CML) provides an expressive concurrency
mechanism through its use of first-class composable synchronous
events. When synchronized, events allow threads to communicate
data via message-passing over first-class channels. Synchronous
communication simplifies program reasoning because every com-
munication action is also a synchronization point; thus, the contin-
uation of a message-send is guaranteed that the data being sent has
been successfully transmitted to a receiver. The cost of synchrony
comes at a high price in performance, however; recent proposals

[Copyright notice will appear here once ’preprint’ option is removed.]

therefore suggest the use of asynchronous variants of CML’s syn-
chronous events [30] to overcome this cost. While asynchronous
extensions can be used to gain performance, they sacrifice the sim-
plicity provided by synchronous communication in favor of a more
complex and sophisticated set of primitives.

One way to enhance performance without requiring new addi-
tions to the core set of event combinators CML supports, is to give
the underlying runtime the freedom to allow a sender to communi-
cate data asynchronously. In this way, the cost of synchronous com-
munication can be masked by allowing the sender’s continuation to
begin execution even if a matching receiver is not yet available. Be-
cause asynchrony is introduced only by the runtime, applications
do not have to be restructured to explicitly account for new be-
haviors introduced by this additional concurrency. Thus, we wish
to have the runtime enforce the equivalence: [[ send (c, v)]]k ⌘
[[ asend (c, v)]]k where k is a continuation, send is CML’s syn-
chronous send operation that communicates value v on channel c,
and asend is an asynchronous variant that buffers v on c and does
not synchronize on a matching receiver.

To illustrate, consider the following simple program:

send(c1,v1)
f()
send(c2,v2)

g()
recv(c1)

recv(c2)
h()

T1 T2 T3

Thread T1 performs a synchronous send on channel c1 that is re-
ceived by thread T2, after it computes g() . After the communica-
tion is performed, T1 evaluates f() , and then sends v2 on chan-
nel c2 , which is received by thread T3. Upon receipt, T3 evaluates
h() . Assuming f , g , and h perform no communication action of
their own, the synchronous communication on c1 by T1 could have
been safely converted into an asynchronous action in which v1 is
buffered, and read by T2 later upon evaluation of g() . The observ-
able behavior of the program in both cases (i.e., treating the initial
send synchronously or asynchronously) would be the same.

Unfortunately, naı̈vely replacing synchronous communication
with an asynchronous one is not usually meaning-preserving as the
example in Figure 1 illustrates. Under a synchronous evaluation
protocol, T2 would necessarily communicate first with T3, receiv-
ing v3 on channel c2 . It is then able to receive v1 from T1; finally,
T1 can communicate v2 to T3. If the send(c1,v1) operation by
T1 were replaced by asend(c1,v1) , the first receive on T2 has, in
addition to the first send on T3, a new potential matching opportu-
nity – the send of v2 on channel c2 . If the receive by T2 matches

send(c1,v1)
f()
send(c2,v2)

recv(c2)
g()
recv(c1)

send(c2,v3)
h()
recv(c2)

T1 T2 T3

Figure 1: Performing the first send in T1 asynchronously is not
meaning preserving with respect to synchronous evaluation.

1 2013/3/28

T1

asend(c1,v1)

f()

send(c2,v2)

T2

recv(c2)

g()

recv(c1)

T3

send(c2,v3)

A

B

C
✘Asynchronous 

Execution

7

Tuesday, January 21, 14



Basic Idea (2)

�CML: A Prescription for Safely Relaxing Synchrony

KC Sivaramakrishnan
Purdue University

chandras@cs.purdue.edu

Lukasz Ziarek
SUNY Buffalo

lziarek@buffalo.edu

Suresh Jagannathan
Purdue University

suresh@cs.purdue.edu

Abstract
One way to ease the burden of concurrent programming is to have
threads communicate synchronously via message-passing, making
explicit the program points where data is transferred from one
thread to another. In a language like Concurrent ML (CML), this
philosophy leads to strong guarantees on the ordering and visibility
of communicated data, simplifying program reasoning. The cost of
synchrony comes with a high price in performance, however, par-
ticularly in distributed environments where communication latency
is high. To ameliorate these costs, we might allow communication
to be asynchronous, having senders buffer data without waiting for
the availability of a matching receiver, thereby allowing execution
of the sender’s continuation to overlap data transmission. However,
while the use of asynchrony can help reclaim performance, it also
complicates program structure and understanding.

In this paper, we investigate an alternative semantics for CML
that implements sends asynchronously, but guarantees that the re-
sulting execution nonetheless exhibits behavior observably equiva-
lent to one in which all communication is performed synchronously.
Our goal is to retain the expressivity and simplicity of CML’s syn-
chronous operations in writing concurrent programs and reasoning
about them, but give implementations the flexibility to safely regain
performance using asynchronous communication.

We formalize the conditions under which this equivalence
holds, and present an implementation that builds a decentralized de-
pendence graph whose structure can be used to check the integrity
of an execution with respect to this equivalence. We integrate a no-
tion of speculation to allow ill-formed executions to be rolled-back
and re-executed, replacing offending asynchronous actions with
safe synchronous ones. Several realistic case studies deployed in a
cloud environment demonstrate the utility of our approach.

1. Introduction
Concurrent ML [20] (CML) provides an expressive concurrency
mechanism through its use of first-class composable synchronous
events. When synchronized, events allow threads to communicate
data via message-passing over first-class channels. Synchronous
communication simplifies program reasoning because every com-
munication action is also a synchronization point; thus, the contin-
uation of a message-send is guaranteed that the data being sent has
been successfully transmitted to a receiver. The cost of synchrony
comes at a high price in performance, however; recent proposals

[Copyright notice will appear here once ’preprint’ option is removed.]

therefore suggest the use of asynchronous variants of CML’s syn-
chronous events [30] to overcome this cost. While asynchronous
extensions can be used to gain performance, they sacrifice the sim-
plicity provided by synchronous communication in favor of a more
complex and sophisticated set of primitives.

One way to enhance performance without requiring new addi-
tions to the core set of event combinators CML supports, is to give
the underlying runtime the freedom to allow a sender to communi-
cate data asynchronously. In this way, the cost of synchronous com-
munication can be masked by allowing the sender’s continuation to
begin execution even if a matching receiver is not yet available. Be-
cause asynchrony is introduced only by the runtime, applications
do not have to be restructured to explicitly account for new be-
haviors introduced by this additional concurrency. Thus, we wish
to have the runtime enforce the equivalence: [[ send (c, v)]]k ⌘
[[ asend (c, v)]]k where k is a continuation, send is CML’s syn-
chronous send operation that communicates value v on channel c,
and asend is an asynchronous variant that buffers v on c and does
not synchronize on a matching receiver.

To illustrate, consider the following simple program:

send(c1,v1)
f()
send(c2,v2)

g()
recv(c1)

recv(c2)
h()

T1 T2 T3

Thread T1 performs a synchronous send on channel c1 that is re-
ceived by thread T2, after it computes g() . After the communica-
tion is performed, T1 evaluates f() , and then sends v2 on chan-
nel c2 , which is received by thread T3. Upon receipt, T3 evaluates
h() . Assuming f , g , and h perform no communication action of
their own, the synchronous communication on c1 by T1 could have
been safely converted into an asynchronous action in which v1 is
buffered, and read by T2 later upon evaluation of g() . The observ-
able behavior of the program in both cases (i.e., treating the initial
send synchronously or asynchronously) would be the same.

Unfortunately, naı̈vely replacing synchronous communication
with an asynchronous one is not usually meaning-preserving as the
example in Figure 1 illustrates. Under a synchronous evaluation
protocol, T2 would necessarily communicate first with T3, receiv-
ing v3 on channel c2 . It is then able to receive v1 from T1; finally,
T1 can communicate v2 to T3. If the send(c1,v1) operation by
T1 were replaced by asend(c1,v1) , the first receive on T2 has, in
addition to the first send on T3, a new potential matching opportu-
nity – the send of v2 on channel c2 . If the receive by T2 matches

send(c1,v1)
f()
send(c2,v2)

recv(c2)
g()
recv(c1)

send(c2,v3)
h()
recv(c2)

T1 T2 T3

Figure 1: Performing the first send in T1 asynchronously is not
meaning preserving with respect to synchronous evaluation.

1 2013/3/28

T1

asend(c1,v1)

f()

send(c2,v2)

T2

recv(c2)

g()

recv(c1)

T3

send(c2,v3)

A

B

C
✘Asynchronous 

Execution

7

• Synchronous evaluation never results in cyclic dependence
★ Cyclic dependence => divergent behavior w.r.t synchronous evaluation

Tuesday, January 21, 14



Example: Distributed Group Chat

8

Tuesday, January 21, 14



Example: Distributed Group Chat
• No central server + Preserve causal dependence

8

Tuesday, January 21, 14



Example: Distributed Group Chat
• No central server + Preserve causal dependence

★ Causal broadcast primitive: If message A is generated as a response to message B, then A is 
delivered after B at every site

8

Tuesday, January 21, 14



Example: Distributed Group Chat
• No central server + Preserve causal dependence

★ Causal broadcast primitive: If message A is generated as a response to message B, then A is 
delivered after B at every site

★ Asynchronous messaging => explicitly manage vector clocks and buffering on receiver side

8

Tuesday, January 21, 14



Example: Distributed Group Chat
• No central server + Preserve causal dependence

★ Causal broadcast primitive: If message A is generated as a response to message B, then A is 
delivered after B at every site

★ Asynchronous messaging => explicitly manage vector clocks and buffering on receiver side

★ Synchronous messaging => directly using point-to-point messaging

8

Tuesday, January 21, 14



Example: Distributed Group Chat
• No central server + Preserve causal dependence

★ Causal broadcast primitive: If message A is generated as a response to message B, then A is 
delivered after B at every site

★ Asynchronous messaging => explicitly manage vector clocks and buffering on receiver side

★ Synchronous messaging => directly using point-to-point messaging

if a matching receiver is not yet available. Because asynchrony is introduced only by
the runtime, applications do not have to be restructured to explicitly account for new
behaviors introduced by this additional concurrency. Thus, we wish to have the runtime
enforce the equivalence: [[ send (c, v)]]k ⌘ [[ asend (c, v)]]k where k is a continuation,
send is CML’s synchronous send operation that communicates value v on channel c,
and asend is an asynchronous variant that buffers v on c and does not synchronize with
matching receiver.

Motivation. To motivate the utility of safe relaxation of synchronous behavior, con-
sider the problem of building a distributed chat application. The application consists of
a number of participants, each of whom can broadcast a message to every other mem-
ber in the group. The invariant that must be observed is that any two messages sent by
a participant must appear in the same order to all members. Moreover, any message
Y broadcast in response to a previously received message X must always appear af-
ter message X to every member. Here, message Y is said to be causally dependent on
message X .

datatype ’a bchan = BCHAN of (’a chan list (* val *) * unit chan list (* ack *))

fun newBChan (n: int) (* number of participants *) =
BCHAN(tabulate(n,fn _ => channel ()), tabulate(n,fn _ => channel ()))

fun bsend (BCHAN (vcList , acList), v: ’a, id: int) : unit =
let

val _ = map (fn vc => if (vc = nth (vcList , id)) then () else send (vc, v))
vcList (* phase 1 -- Value distribution *)

val _ = map (fn ac => if (ac = nth (acList , id)) then () else recv ac)
acList (* phase 2 -- Acknowledgments *)

in ()
end

fun brecv (BCHAN (vcList , acList), id: int) : ’a=
let val v = recv (nth (vcList , id))

val _ = send (nth (acList , id), ())
in v
end

Fig. 1: Synchronous broadcast channel

Building such an application using a centralized server is straightforward, but hin-
ders scalability. In the absence of central mediation, a causal broadcast protocol [2] is
required. One possible encoding of causal broadcast using CML primitives is shown
in Figure 1. A broadcast operation involves two phases. In the first phase, values (i.e.,
messages) are synchronously communicated to all receivers (except to the sender). In
the second phase, the sender simulates a barrier by synchronously receiving acknowl-
edgments from all recipients.

The synchronous nature of the broadcast protocol along with the fact that the ac-
knowledgment phase occurs only after message distribution ensure that no member
can proceed immediately after receiving a message until all other members have also
received the message. This achieves the desired causal ordering between broadcast
messages since every member would have received a message before the subsequent
causally ordered message is generated. We can build a distributed group chat server
using the broadcast channel as shown below.

synchronously send values prevent receivers from proceeding until 
all members have received the value

8

Tuesday, January 21, 14



Example: Distributed Group Chat
• No central server + Preserve causal dependence

★ Causal broadcast primitive: If message A is generated as a response to message B, then A is 
delivered after B at every site

★ Asynchronous messaging => explicitly manage vector clocks and buffering on receiver side

★ Synchronous messaging => directly using point-to-point messaging

if a matching receiver is not yet available. Because asynchrony is introduced only by
the runtime, applications do not have to be restructured to explicitly account for new
behaviors introduced by this additional concurrency. Thus, we wish to have the runtime
enforce the equivalence: [[ send (c, v)]]k ⌘ [[ asend (c, v)]]k where k is a continuation,
send is CML’s synchronous send operation that communicates value v on channel c,
and asend is an asynchronous variant that buffers v on c and does not synchronize with
matching receiver.

Motivation. To motivate the utility of safe relaxation of synchronous behavior, con-
sider the problem of building a distributed chat application. The application consists of
a number of participants, each of whom can broadcast a message to every other mem-
ber in the group. The invariant that must be observed is that any two messages sent by
a participant must appear in the same order to all members. Moreover, any message
Y broadcast in response to a previously received message X must always appear af-
ter message X to every member. Here, message Y is said to be causally dependent on
message X .

datatype ’a bchan = BCHAN of (’a chan list (* val *) * unit chan list (* ack *))

fun newBChan (n: int) (* number of participants *) =
BCHAN(tabulate(n,fn _ => channel ()), tabulate(n,fn _ => channel ()))

fun bsend (BCHAN (vcList , acList), v: ’a, id: int) : unit =
let

val _ = map (fn vc => if (vc = nth (vcList , id)) then () else send (vc, v))
vcList (* phase 1 -- Value distribution *)

val _ = map (fn ac => if (ac = nth (acList , id)) then () else recv ac)
acList (* phase 2 -- Acknowledgments *)

in ()
end

fun brecv (BCHAN (vcList , acList), id: int) : ’a=
let val v = recv (nth (vcList , id))

val _ = send (nth (acList , id), ())
in v
end

Fig. 1: Synchronous broadcast channel

Building such an application using a centralized server is straightforward, but hin-
ders scalability. In the absence of central mediation, a causal broadcast protocol [2] is
required. One possible encoding of causal broadcast using CML primitives is shown
in Figure 1. A broadcast operation involves two phases. In the first phase, values (i.e.,
messages) are synchronously communicated to all receivers (except to the sender). In
the second phase, the sender simulates a barrier by synchronously receiving acknowl-
edgments from all recipients.

The synchronous nature of the broadcast protocol along with the fact that the ac-
knowledgment phase occurs only after message distribution ensure that no member
can proceed immediately after receiving a message until all other members have also
received the message. This achieves the desired causal ordering between broadcast
messages since every member would have received a message before the subsequent
causally ordered message is generated. We can build a distributed group chat server
using the broadcast channel as shown below.

synchronously send values prevent receivers from proceeding until 
all members have received the value

8

• Simple but likely to be inefficient - phase 2 is a global barrier!

Tuesday, January 21, 14



Example: Distributed Group Chat
• No central server + Preserve causal dependence

★ Causal broadcast primitive: If message A is generated as a response to message B, then A is 
delivered after B at every site

★ Asynchronous messaging => explicitly manage vector clocks and buffering on receiver side

★ Synchronous messaging => directly using point-to-point messaging

if a matching receiver is not yet available. Because asynchrony is introduced only by
the runtime, applications do not have to be restructured to explicitly account for new
behaviors introduced by this additional concurrency. Thus, we wish to have the runtime
enforce the equivalence: [[ send (c, v)]]k ⌘ [[ asend (c, v)]]k where k is a continuation,
send is CML’s synchronous send operation that communicates value v on channel c,
and asend is an asynchronous variant that buffers v on c and does not synchronize with
matching receiver.

Motivation. To motivate the utility of safe relaxation of synchronous behavior, con-
sider the problem of building a distributed chat application. The application consists of
a number of participants, each of whom can broadcast a message to every other mem-
ber in the group. The invariant that must be observed is that any two messages sent by
a participant must appear in the same order to all members. Moreover, any message
Y broadcast in response to a previously received message X must always appear af-
ter message X to every member. Here, message Y is said to be causally dependent on
message X .

datatype ’a bchan = BCHAN of (’a chan list (* val *) * unit chan list (* ack *))

fun newBChan (n: int) (* number of participants *) =
BCHAN(tabulate(n,fn _ => channel ()), tabulate(n,fn _ => channel ()))

fun bsend (BCHAN (vcList , acList), v: ’a, id: int) : unit =
let

val _ = map (fn vc => if (vc = nth (vcList , id)) then () else send (vc, v))
vcList (* phase 1 -- Value distribution *)

val _ = map (fn ac => if (ac = nth (acList , id)) then () else recv ac)
acList (* phase 2 -- Acknowledgments *)

in ()
end

fun brecv (BCHAN (vcList , acList), id: int) : ’a=
let val v = recv (nth (vcList , id))

val _ = send (nth (acList , id), ())
in v
end

Fig. 1: Synchronous broadcast channel

Building such an application using a centralized server is straightforward, but hin-
ders scalability. In the absence of central mediation, a causal broadcast protocol [2] is
required. One possible encoding of causal broadcast using CML primitives is shown
in Figure 1. A broadcast operation involves two phases. In the first phase, values (i.e.,
messages) are synchronously communicated to all receivers (except to the sender). In
the second phase, the sender simulates a barrier by synchronously receiving acknowl-
edgments from all recipients.

The synchronous nature of the broadcast protocol along with the fact that the ac-
knowledgment phase occurs only after message distribution ensure that no member
can proceed immediately after receiving a message until all other members have also
received the message. This achieves the desired causal ordering between broadcast
messages since every member would have received a message before the subsequent
causally ordered message is generated. We can build a distributed group chat server
using the broadcast channel as shown below.

synchronously send values prevent receivers from proceeding until 
all members have received the value

8

• Simple but likely to be inefficient - phase 2 is a global barrier!

★ Discharging asynchronously breaks causal ordering

Tuesday, January 21, 14



Example: Distributed Group Chat
• No central server + Preserve causal dependence

★ Causal broadcast primitive: If message A is generated as a response to message B, then A is 
delivered after B at every site

★ Asynchronous messaging => explicitly manage vector clocks and buffering on receiver side

★ Synchronous messaging => directly using point-to-point messaging

if a matching receiver is not yet available. Because asynchrony is introduced only by
the runtime, applications do not have to be restructured to explicitly account for new
behaviors introduced by this additional concurrency. Thus, we wish to have the runtime
enforce the equivalence: [[ send (c, v)]]k ⌘ [[ asend (c, v)]]k where k is a continuation,
send is CML’s synchronous send operation that communicates value v on channel c,
and asend is an asynchronous variant that buffers v on c and does not synchronize with
matching receiver.

Motivation. To motivate the utility of safe relaxation of synchronous behavior, con-
sider the problem of building a distributed chat application. The application consists of
a number of participants, each of whom can broadcast a message to every other mem-
ber in the group. The invariant that must be observed is that any two messages sent by
a participant must appear in the same order to all members. Moreover, any message
Y broadcast in response to a previously received message X must always appear af-
ter message X to every member. Here, message Y is said to be causally dependent on
message X .

datatype ’a bchan = BCHAN of (’a chan list (* val *) * unit chan list (* ack *))

fun newBChan (n: int) (* number of participants *) =
BCHAN(tabulate(n,fn _ => channel ()), tabulate(n,fn _ => channel ()))

fun bsend (BCHAN (vcList , acList), v: ’a, id: int) : unit =
let

val _ = map (fn vc => if (vc = nth (vcList , id)) then () else send (vc, v))
vcList (* phase 1 -- Value distribution *)

val _ = map (fn ac => if (ac = nth (acList , id)) then () else recv ac)
acList (* phase 2 -- Acknowledgments *)

in ()
end

fun brecv (BCHAN (vcList , acList), id: int) : ’a=
let val v = recv (nth (vcList , id))

val _ = send (nth (acList , id), ())
in v
end

Fig. 1: Synchronous broadcast channel

Building such an application using a centralized server is straightforward, but hin-
ders scalability. In the absence of central mediation, a causal broadcast protocol [2] is
required. One possible encoding of causal broadcast using CML primitives is shown
in Figure 1. A broadcast operation involves two phases. In the first phase, values (i.e.,
messages) are synchronously communicated to all receivers (except to the sender). In
the second phase, the sender simulates a barrier by synchronously receiving acknowl-
edgments from all recipients.

The synchronous nature of the broadcast protocol along with the fact that the ac-
knowledgment phase occurs only after message distribution ensure that no member
can proceed immediately after receiving a message until all other members have also
received the message. This achieves the desired causal ordering between broadcast
messages since every member would have received a message before the subsequent
causally ordered message is generated. We can build a distributed group chat server
using the broadcast channel as shown below.

synchronously send values prevent receivers from proceeding until 
all members have received the value

8

• Simple but likely to be inefficient - phase 2 is a global barrier!

★ Discharging asynchronously breaks causal ordering

★ Our idea: program synchronously, discharge asynchronously, detect and remediate causal 
ordering violations

Tuesday, January 21, 14



Example: Distributed Group Chat

Display thread

IP thread

Daemon thread

broadcast 
message

Receive 
message

9

• A distributed group chat program = {Node}
• Node = MultiMLton process = {CML threads}

Tuesday, January 21, 14



Distributed Group Chat - Run 1

Display IP Daemon Display IP Daemon

10

Tuesday, January 21, 14



Distributed Group Chat - Run 1

Display IP Daemon Display IP Daemon

show (X)

X
bcast (X)

10

Tuesday, January 21, 14



Distributed Group Chat - Run 1

Display IP Daemon Display IP Daemon

show (X)

X
bcast (X)

show (Y)

Y
bcast (Y)

10

Tuesday, January 21, 14



Distributed Group Chat - Run 1

Display IP Daemon Display IP Daemon

show (X)

X
bcast (X)

show (Y)

Y
bcast (Y)

brecv (X)

10

Tuesday, January 21, 14



Distributed Group Chat - Run 1

Display IP Daemon Display IP Daemon

show (X)

X
bcast (X)

show (Y)

Y
bcast (Y)

brecv (Y) brecv (X)

10

Tuesday, January 21, 14



Distributed Group Chat - Run 1

Display IP Daemon Display IP Daemon

show (X)

X
bcast (X)

show (Y)

Y
bcast (Y)

brecv (Y) brecv (X)

show (X)
X

10

Tuesday, January 21, 14



Distributed Group Chat - Run 1

Display IP Daemon Display IP Daemon

show (X)

X
bcast (X)

show (Y)

Y
bcast (Y)

brecv (Y) brecv (X)

show (Y) show (X)
Y X

10

Tuesday, January 21, 14



Distributed Group Chat - Run 1

Display IP Daemon Display IP Daemon

show (X)

X
bcast (X)

show (Y)

Y
bcast (Y)

brecv (Y) brecv (X)

show (Y) show (X)
Y X

• Observations
★  X and Y independently generated => No causal dependence between bcast (X) 

and bcast (Y)

• No Cycles => Correct execution!

10

Tuesday, January 21, 14



Distributed Group Chat - Run 2

Display IP Daemon Display IP Daemon Display IP Daemon

11

Tuesday, January 21, 14



Distributed Group Chat - Run 2

Display IP Daemon Display IP Daemon Display IP Daemon

show (X)

X
bcast (X)

11

Tuesday, January 21, 14



Distributed Group Chat - Run 2

Display IP Daemon Display IP Daemon Display IP Daemon

show (X)

X
bcast (X)

brecv (X)

X

show (X)

11

Tuesday, January 21, 14



Distributed Group Chat - Run 2

Display IP Daemon Display IP Daemon Display IP Daemon

show (X)

X
bcast (X)

brecv (X)

X
show (Y)

show (X)

Presume causal 
dependence X → Y

11

Tuesday, January 21, 14



Distributed Group Chat - Run 2

Display IP Daemon Display IP Daemon Display IP Daemon

show (X)

X
bcast (X)

brecv (X)

X
show (Y)

Y

show (X)

bcast (Y)

11

Tuesday, January 21, 14



Distributed Group Chat - Run 2

Display IP Daemon Display IP Daemon Display IP Daemon

show (X)

X
bcast (X)

brecv (X)

X
show (Y)

Y

show (X)

bcast (Y)

brecv (Y)

Y

show (Y)

11

Tuesday, January 21, 14



Distributed Group Chat - Run 2

Display IP Daemon Display IP Daemon Display IP Daemon

show (X)

X
bcast (X)

brecv (X)

X
show (Y)

Y

show (X)

bcast (Y)

brecv (Y)

Y

show (Y)

brecv (X)

show (X)

X

11

Tuesday, January 21, 14



Distributed Group Chat - Run 2

Display IP Daemon Display IP Daemon Display IP Daemon

show (X)

X
bcast (X)

brecv (X)

X
show (Y)

Y

show (X)

bcast (Y)

brecv (Y)

Y

show (Y)

brecv (X)

show (X)

XCausal 
dependence violated!

11

Tuesday, January 21, 14



Distributed Group Chat - Run 2

Display IP Daemon Display IP Daemon Display IP Daemon

show (X)

X
bcast (X)

brecv (X)

X
show (Y)

Y

show (X)

bcast (Y)

brecv (Y)

Y

show (Y)

brecv (X)

show (X)

X

11

Tuesday, January 21, 14



Cycle Detected!

Distributed Group Chat - Run 2

Display IP Daemon Display IP Daemon Display IP Daemon

show (X)

X
bcast (X)

brecv (X)

X
show (Y)

Y

show (X)

bcast (Y)

brecv (Y)

Y

show (Y)

brecv (X)

show (X)

X

11

Tuesday, January 21, 14



Distributed Group Chat - Results
• Simulation on 3 geo-distributed Amazon EC2 instances

• Measure time between message initiation and receipt by all parties over 
1000 iterations

display(X)

S

S

R

R

S

display(Y)

Participant 1
UI Daemon

display(Y)

S

S

R

R

R

S

display(X)

Participant 2
UI Daemon

R

S

display(Y)

Participant 3
UI Daemon

Time

X

X
ack

Y

ack

Y

ack

Figure 3: Incorrect execution due to unsafe relaxation of sends
during broadcast. Dotted arrow represents in-flight message.

message. This achieves the desired causal ordering between broad-
cast messages since every member would have received a message
before the subsequent causally ordered message is generated. We
can build a distributed group chat server using the broadcast chan-
nel as shown below.

1 (* bc -- broadcast chan *)
2 fun daemon id =
3 let val _ = display (brecv (bc, id))
4 in daemon id
5 end
6

7 fun newMessage (m, id) =
8 let val _ = display (m)
9 in bsend (bc, m, id)

10 end

Assume that there are n participants in the group, each with a
unique identifier id between 0 and n � 1. Each participant runs
a local daemon thread that waits for incoming messages on the
broadcast channel bc . On a reception of a message, the daemon
displays the message and continues waiting. The clients broadcast
a message using newMessage after displaying the message locally.
Observe that remote messages are only displayed after all other
participants have also received the message. In a geo-distributed
environment, where the communication latency is very high, this
protocol results in a poor user experience that degrades as the
number of participants increases.

Without making wholesale (ideally, zero!) changes to this rel-
atively simple protocol implementation, we would like to improve
responsiveness, while preserving correctness. One obvious way of
reducing latency overheads is to convert the synchronous sends in
bsend to an asynchronous variant that buffers the message, but does
not synchronize with a matching receiver. There are two opportu-
nities where asynchrony could be introduced, either during value
distribution or during acknowledgment reception. Unfortunately,
injecting asynchrony at either point is not guaranteed to preserve
causal ordering on the semantics of the program.

Consider the case where the value is distributed asynchronously.
Assume that there are three participants. Participant 1 first types
message X , which is seen by participant 2, who in turn types
the message Y after sending an acknowledgment. Since there is
a causal order between the message X and Y, participant 3 must
see X followed by Y. Figure 3 shows an execution where this is not
the case. In the figure, uninteresting messages have been elided for
clarity.

The key observation is that asynchrony can result in message
X sent by the participant 1 to participant 3 to be in-flight, while
the message Y sent by participant 2 reaches participant 3 out-of-
order, leading to a violation of the protocol’s invariants. Similarly,
it is easy to see that sending acknowledgments messages asyn-

chronously is also incorrect because it would allow a participant
that receives a message to proceed without assurance that all other
participants have received the same message, leading to a broken
causal dependence.

To quantify these issues, we implemented a group chat simula-
tor application using a distributed extension of the MLton Standard
ML compiler, using ZeroMQ [28] as the transport layer, and Con-
current ML as the source language. We launched three Amazon
EC2 instances, each simulating a participant in the group chat ap-
plication, with the same communication pattern described in the
discussion. In order to capture the geo-distributed nature of the
application, participants were placed in three different availability
zones – EU West (Ireland), US West (Oregon), and Asia Pacific
(Tokyo), resp.

During each run, participant 1 broadcasts a message X , fol-
lowed by participant 2 broadcasting Y . We consider the run to be
successful if the participants see the messages X , Y , in that order.
The experiment was repeated for 1K iterations. We record the time
between protocol initiation and the time at which each participant
gets the message Y . We consider the largest of the times at each
participant to be the running time. The results are presented below.

Execution Avg.time (ms) Errors
Sync 1540 0
Unsafe Async 520 7
Safe Async (�CML) 533 0

The Unsafe Async row describes the variant where both value
and acknowledgment distribution is performed asynchronously; it
is three times as fast as the synchronous variant. However, over the
total set of 1K runs, it produced seven erroneous executions.

The Safe Async row illustrates our implementation, �CML, that
detects erroneous executions on-the-fly and remediates them. The
results indicate that the cost of ensuring safe asynchronous execu-
tions is quite low for this application, incurring only roughly 2.5%
overhead above the unsafe version. Thus, in this application, we
can gain the performance benefits and responsiveness of the asyn-
chronous version, while retaining the simplicity of reasoning about
program behavior synchronously. Formalizing the mechanism by
which errors due to injecting asynchrony can be detected and re-
paired, without forgoing the benefits of asynchronous execution, is
the focus of the remainder of the paper.

3. Axiomatic Semantics
We introduce an axiomatic formalization for reasoning about
message-passing communication behavior that specifies the val-
ues that can be sent and received on channels; not surprisingly, our
formulation is similar in structure to axiomatic formalizations used
to describe, for example, relaxed memory models [7, 21, 23]. We
split the execution of a program into thread-local and inter-thread
actions. These actions abstract the relevant behaviors possible in
a CML execution, relaxed or otherwise. Relations that dictate the
sequential order in which a thread executes, or that specify a com-
munication match between a send and recv operation, define
dependencies that any sensible execution must respect.

A happens-before relation can be then given as the transitive
closure over the constructed dependencies built using program and
communication orderings that captures the set of possible inter-
leavings a program may exhibit. There may be more behaviors
that satisfy happens-before than realizable when executing a CML
program because the relation does not enforce temporal relation-
ships between communication actions that would manifest in a syn-
chronous execution. Therefore, to understand the validity of exe-
cutions, we define a well-formedness condition that imposes addi-
tional constraints on executions to ensure their observable effects
correspond to correct CML behavior.

3 2013/3/28

12

Tuesday, January 21, 14



Formalization Overview

13

Tuesday, January 21, 14



Formalization Overview
• Reason axiomatically about executions (relaxed or otherwise) 

★  Similar to formalizations used in relaxed memory models

★  Declarative characterization of (relaxed) CML behavior

13

Tuesday, January 21, 14



Formalization Overview
• Reason axiomatically about executions (relaxed or otherwise) 

★  Similar to formalizations used in relaxed memory models

★  Declarative characterization of (relaxed) CML behavior

• Actions + happens-before relation
★ Captures visibility and dependence properties

13

Tuesday, January 21, 14



Formalization Overview
• Reason axiomatically about executions (relaxed or otherwise) 

★  Similar to formalizations used in relaxed memory models

★  Declarative characterization of (relaxed) CML behavior

• Actions + happens-before relation
★ Captures visibility and dependence properties

• Happens-before is intentionally relaxed: may define more 
behaviors than possible in CML
★  Strengthen the relation with well-formedness conditions

13

Tuesday, January 21, 14



Actions and Execution
• Actions:

We assume a set of T threads, C channels, and V values. The
set of inter-thread actions is provided below. Superscripts m and n
denote a unique identifier for the action.
ACTIONS:

A := b
t

(thread t starts)
| e

t

(thread t ends)
| jm

t

t0 (thread t detects thread t’ has terminated)
| fm

t

t0 (thread t creates a new thread t’)
| sm

t

c, v (thread t sends value v on channel c
| rm

t

c (thread t receives a value on channel c)
| pm

t

v (thread t outputs an observable value v)

c 2 C t, t0 2 T v 2 V m,n 2 N
Action b

t

signals the initiation of a new thread with identifier t;
action e

t

indicates that thread t has terminated. A join action, jm
t

t0,
defines an action that recognizes the point where thread t detects
that another thread t0 has completed. A thread creation action,
where thread t spawns a thread t0, is given by fm

t

t0. Observe that
there may be an arbitrary number of actions performed between
the point where a thread is created, and the point where it begins
execution. Action sm

t

c, v denotes the communication of data v on
channel c by thread t, and rm

t

c denotes the receipt of data from
channel c. An external action (e.g., printing) that emits value v is
denoted as pm

t

v. We can generalize these individuals actions into a
family of related actions:

ACTION CLASSES:
A

s

= {sm
t

c, v | t 2 T, v 2 V} (Sends)
A

r

= {rm
t

c | t 2 T} (Receives)
A

c

= A
s

[ A
r

(Communication)
A

o

= {pm
t

v | t 2 T, v 2 V} (Observables)

Notation. Given an action class a, we write a to represent a list of
elements drawn from a. We write T (↵) to indicate the thread in
which action ↵ occurs, and write V (sm

t

c, v) to extract the value
v communicated by a send action. Given a set of actions A 2 2A,
A

x

= A\A
x

, where A
x

represents one of the action classes defined
above.

An interleaving is a total order on actions that reflects the oc-
currence of one action before another in global time. Interleavings
are derived from a preorder1 called happens-before [12] that relates
causal dependencies between actions.

Definition 1 (Axiomatic Execution). An axiomatic execution is
defined by the tuple E := hP,A,!

po

,Mi where:

• P is a program.
• A is a set of actions.
• !

po

✓ A ⇥ A is the program order, a disjoint union of the
sequential actions of each thread (which is a total order).

• M 2 (A
s

* A
r

) [ (A
r

* A
s

) is a communication-match
function that maps each send and receive to its matching com-
munication action (i.e, if ↵ = M(↵0) then ↵0 = M(↵)). More-
over, a send and its matching receive must operate on the same
channel and operate in different threads (i.e., if M(sm

t

c, v) =
rn
t

0c0 or M(rn
t

0c0) = sm
t

c, v then t 6= t0 and c = c0).

Definition 2 (Communication Order). A communication order
is established between matching communication actions. If � =
M(↵), then ↵ !

co

� and � !
co

↵.

There is also an obvious ordering on thread creation and execu-
tion, as well as the visibility of thread termination by other threads:

1 A preorder is a reflexive transitive binary relation. Unlike partial orders,
preorders are not necessarily anti-symmetric, i.e. they may contain cycles.

bt1
po

po

po

po

po

po

po

po

po

po

po

po

po

po

ft1t2

ft1t3

st1c1, v2

pt11

et1

st1c2, v2

td

td

bt2

rt2c2

pt22

rt2c1

et2

co

co

co

bt3

st3c2, v3

pt33

rt2c2

et3

bt1
po

po

po

po

po

po

po

po

po

po

po
ft1t2

ft1t3

st1c1, v2

pt11

et1

st1c2, v2

td

td

bt2

rt2c2

pt22

rt2c1

et2

bt3

st3c2, v3

co

co

Figure 4: Two possible axiomatic executions from Figure 1. We
omit join actions for brevity.

Definition 3 (Thread Dependence). If ↵ = fm

t

t0 and � = b
t

0 or
↵ = e

t

and � = jm
t

0 t then ↵ !
td

� holds.

Definition 4 (Happens-before relation). The happens-before order
of an execution is the transitive closure of the union of program
order, thread dependence order, and actions related by communi-
cation and program order:

!
hb

= (!
po

[ !
td

[
{(↵,�) | ↵ !

co

↵0 ^ ↵0 !
po

�} [
{(�,↵) | � !

po

↵0 ^ ↵0 !
co

↵})+

For any two actions ↵,� 2 A, if ↵ =
hb

�, then ↵ and � are said
to be concurrent actions.

Definition 5 (Happens-before Cycle). A cycle exists in a happens-
before relation if for any two actions ↵,� and ↵ !

hb

� !
hb

↵.

To illustrate these definitions, Figure 4 shows two axiomatic
executions of the program depicted in Figure 1. We assume thread
T1 spawns T2 and T3 , and we replace calls to f , g , and h found
in the original program, with an observable action, like a print
statement. The execution on the left imposes no causal dependence
between the observable actions in T2 or T3 ; thus, an interleaving
derived from this execution may permute the order in which these
statements execute. All interleavings derivable from this execution
correspond to valid CML behavior.

In contrast, the execution depicted on the right-hand side of
the figure, which corresponds to the erroneous execution discussed
in the introduction, exhibits a happens-before cycle between T1

and T2 . The cycle occurs because program order edges in T1 can
be traversed to reach the second send action, a communication
order edge can be traversed to then execute T2 via its program
order edges until control reaches the second receive, whereupon
a communication edge can be traversed again back to T1 . Such
cyclic dependences never manifest in any correct CML execution.
We must therefore strengthen our notion of executions to discard
those that contain such cycles.

To do so, we first note that the semantics as currently presented
is concerned only with actions that introduce some form of causal
dependence either within a thread (via program order) or across
threads (via thread dependence or communication order). However,
a real program also does computation, and reasoning about an
execution’s correctness will require us to specify these actions as
well. Indeed, to facilitate relating an operational definition of CML
that expresses our notion of a relaxed execution (see Section 4) with
the axiomatic semantics, we parameterize the latter with the ability
to reason about intra-thread behavior.

Intra-thread semantics. The intra-thread semantics of a thread
is abstracted in our formulation via a labeled transition system. Let
Stateintra denote the intra-thread state of a thread; its specific struc-

4 2013/3/28

• Execution:

program

a set of
actions

program order:
sequential actions of a thread

communication match: relates sends and receives:
    (a) matching actions operate on same channel  
    (b) execute in different threads

communication order: 
relates matching communication actions

14

E := hP,A,!
po

,!
co

i

Tuesday, January 21, 14



Communication and Thread Dependence

↵ !td � if:

(1) ↵ = fm
t t0 and � = bt0 or

(2) ↵ = et and � = jmt0 t

• Synchronous communication → communication order is 
symmetric:

• Thread dependence order:

15

a !
co

b =) b !
co

a

Tuesday, January 21, 14



Happens-before Relation

We assume a set of T threads, C channels, and V values. The
set of inter-thread actions is provided below. Superscripts m and n
denote a unique identifier for the action.
ACTIONS:

A := b
t

(thread t starts)
| e

t

(thread t ends)
| jm

t

t0 (thread t detects thread t’ has terminated)
| fm

t

t0 (thread t creates a new thread t’)
| sm

t

c, v (thread t sends value v on channel c
| rm

t

c (thread t receives a value on channel c)
| pm

t

v (thread t outputs an observable value v)

c 2 C t, t0 2 T v 2 V m,n 2 N
Action b

t

signals the initiation of a new thread with identifier t;
action e

t

indicates that thread t has terminated. A join action, jm
t

t0,
defines an action that recognizes the point where thread t detects
that another thread t0 has completed. A thread creation action,
where thread t spawns a thread t0, is given by fm

t

t0. Observe that
there may be an arbitrary number of actions performed between
the point where a thread is created, and the point where it begins
execution. Action sm

t

c, v denotes the communication of data v on
channel c by thread t, and rm

t

c denotes the receipt of data from
channel c. An external action (e.g., printing) that emits value v is
denoted as pm

t

v. We can generalize these individuals actions into a
family of related actions:

ACTION CLASSES:
A

s

= {sm
t

c, v | t 2 T, v 2 V} (Sends)
A

r

= {rm
t

c | t 2 T} (Receives)
A

c

= A
s

[ A
r

(Communication)
A

o

= {pm
t

v | t 2 T, v 2 V} (Observables)

Notation. Given an action class a, we write a to represent a list of
elements drawn from a. We write T (↵) to indicate the thread in
which action ↵ occurs, and write V (sm

t

c, v) to extract the value
v communicated by a send action. Given a set of actions A 2 2A,
A

x

= A\A
x

, where A
x

represents one of the action classes defined
above.

An interleaving is a total order on actions that reflects the oc-
currence of one action before another in global time. Interleavings
are derived from a preorder1 called happens-before [12] that relates
causal dependencies between actions.

Definition 1 (Axiomatic Execution). An axiomatic execution is
defined by the tuple E := hP,A,!

po

,Mi where:

• P is a program.
• A is a set of actions.
• !

po

✓ A ⇥ A is the program order, a disjoint union of the
sequential actions of each thread (which is a total order).

• M 2 (A
s

* A
r

) [ (A
r

* A
s

) is a communication-match
function that maps each send and receive to its matching com-
munication action (i.e, if ↵ = M(↵0) then ↵0 = M(↵)). More-
over, a send and its matching receive must operate on the same
channel and operate in different threads (i.e., if M(sm

t

c, v) =
rn
t

0c0 or M(rn
t

0c0) = sm
t

c, v then t 6= t0 and c = c0).

Definition 2 (Communication Order). A communication order
is established between matching communication actions. If � =
M(↵), then ↵ !

co

� and � !
co

↵.

There is also an obvious ordering on thread creation and execu-
tion, as well as the visibility of thread termination by other threads:

1 A preorder is a reflexive transitive binary relation. Unlike partial orders,
preorders are not necessarily anti-symmetric, i.e. they may contain cycles.

bt1
po

po

po

po

po

po

po

po

po

po

po

po

po

po

ft1t2

ft1t3

st1c1, v2

pt11

et1

st1c2, v2

td

td

bt2

rt2c2

pt22

rt2c1

et2

co

co

co

bt3

st3c2, v3

pt33

rt2c2

et3

bt1
po

po

po

po

po

po

po

po

po

po

po
ft1t2

ft1t3

st1c1, v2

pt11

et1

st1c2, v2

td

td

bt2

rt2c2

pt22

rt2c1

et2

bt3

st3c2, v3

co

co

Figure 4: Two possible axiomatic executions from Figure 1. We
omit join actions for brevity.

Definition 3 (Thread Dependence). If ↵ = fm

t

t0 and � = b
t

0 or
↵ = e

t

and � = jm
t

0 t then ↵ !
td

� holds.

Definition 4 (Happens-before relation). The happens-before order
of an execution is the transitive closure of the union of program
order, thread dependence order, and actions related by communi-
cation and program order:

!
hb

= (!
po

[ !
td

[
{(↵,�) | ↵ !

co

↵0 ^ ↵0 !
po

�} [
{(�,↵) | � !

po

↵0 ^ ↵0 !
co

↵})+

For any two actions ↵,� 2 A, if ↵ =
hb

�, then ↵ and � are said
to be concurrent actions.

Definition 5 (Happens-before Cycle). A cycle exists in a happens-
before relation if for any two actions ↵,� and ↵ !

hb

� !
hb

↵.

To illustrate these definitions, Figure 4 shows two axiomatic
executions of the program depicted in Figure 1. We assume thread
T1 spawns T2 and T3 , and we replace calls to f , g , and h found
in the original program, with an observable action, like a print
statement. The execution on the left imposes no causal dependence
between the observable actions in T2 or T3 ; thus, an interleaving
derived from this execution may permute the order in which these
statements execute. All interleavings derivable from this execution
correspond to valid CML behavior.

In contrast, the execution depicted on the right-hand side of
the figure, which corresponds to the erroneous execution discussed
in the introduction, exhibits a happens-before cycle between T1

and T2 . The cycle occurs because program order edges in T1 can
be traversed to reach the second send action, a communication
order edge can be traversed to then execute T2 via its program
order edges until control reaches the second receive, whereupon
a communication edge can be traversed again back to T1 . Such
cyclic dependences never manifest in any correct CML execution.
We must therefore strengthen our notion of executions to discard
those that contain such cycles.

To do so, we first note that the semantics as currently presented
is concerned only with actions that introduce some form of causal
dependence either within a thread (via program order) or across
threads (via thread dependence or communication order). However,
a real program also does computation, and reasoning about an
execution’s correctness will require us to specify these actions as
well. Indeed, to facilitate relating an operational definition of CML
that expresses our notion of a relaxed execution (see Section 4) with
the axiomatic semantics, we parameterize the latter with the ability
to reason about intra-thread behavior.

Intra-thread semantics. The intra-thread semantics of a thread
is abstracted in our formulation via a labeled transition system. Let
Stateintra denote the intra-thread state of a thread; its specific struc-

4 2013/3/28

• Establishes both intra- and inter-thread dependences:

16

Tuesday, January 21, 14



Happens-before Relation

We assume a set of T threads, C channels, and V values. The
set of inter-thread actions is provided below. Superscripts m and n
denote a unique identifier for the action.
ACTIONS:

A := b
t

(thread t starts)
| e

t

(thread t ends)
| jm

t

t0 (thread t detects thread t’ has terminated)
| fm

t

t0 (thread t creates a new thread t’)
| sm

t

c, v (thread t sends value v on channel c
| rm

t

c (thread t receives a value on channel c)
| pm

t

v (thread t outputs an observable value v)

c 2 C t, t0 2 T v 2 V m,n 2 N
Action b

t

signals the initiation of a new thread with identifier t;
action e

t

indicates that thread t has terminated. A join action, jm
t

t0,
defines an action that recognizes the point where thread t detects
that another thread t0 has completed. A thread creation action,
where thread t spawns a thread t0, is given by fm

t

t0. Observe that
there may be an arbitrary number of actions performed between
the point where a thread is created, and the point where it begins
execution. Action sm

t

c, v denotes the communication of data v on
channel c by thread t, and rm

t

c denotes the receipt of data from
channel c. An external action (e.g., printing) that emits value v is
denoted as pm

t

v. We can generalize these individuals actions into a
family of related actions:

ACTION CLASSES:
A

s

= {sm
t

c, v | t 2 T, v 2 V} (Sends)
A

r

= {rm
t

c | t 2 T} (Receives)
A

c

= A
s

[ A
r

(Communication)
A

o

= {pm
t

v | t 2 T, v 2 V} (Observables)

Notation. Given an action class a, we write a to represent a list of
elements drawn from a. We write T (↵) to indicate the thread in
which action ↵ occurs, and write V (sm

t

c, v) to extract the value
v communicated by a send action. Given a set of actions A 2 2A,
A

x

= A\A
x

, where A
x

represents one of the action classes defined
above.

An interleaving is a total order on actions that reflects the oc-
currence of one action before another in global time. Interleavings
are derived from a preorder1 called happens-before [12] that relates
causal dependencies between actions.

Definition 1 (Axiomatic Execution). An axiomatic execution is
defined by the tuple E := hP,A,!

po

,Mi where:

• P is a program.
• A is a set of actions.
• !

po

✓ A ⇥ A is the program order, a disjoint union of the
sequential actions of each thread (which is a total order).

• M 2 (A
s

* A
r

) [ (A
r

* A
s

) is a communication-match
function that maps each send and receive to its matching com-
munication action (i.e, if ↵ = M(↵0) then ↵0 = M(↵)). More-
over, a send and its matching receive must operate on the same
channel and operate in different threads (i.e., if M(sm

t

c, v) =
rn
t

0c0 or M(rn
t

0c0) = sm
t

c, v then t 6= t0 and c = c0).

Definition 2 (Communication Order). A communication order
is established between matching communication actions. If � =
M(↵), then ↵ !

co

� and � !
co

↵.

There is also an obvious ordering on thread creation and execu-
tion, as well as the visibility of thread termination by other threads:

1 A preorder is a reflexive transitive binary relation. Unlike partial orders,
preorders are not necessarily anti-symmetric, i.e. they may contain cycles.

bt1
po

po

po

po

po

po

po

po

po

po

po

po

po

po

ft1t2

ft1t3

st1c1, v2

pt11

et1

st1c2, v2

td

td

bt2

rt2c2

pt22

rt2c1

et2

co

co

co

bt3

st3c2, v3

pt33

rt2c2

et3

bt1
po

po

po

po

po

po

po

po

po

po

po
ft1t2

ft1t3

st1c1, v2

pt11

et1

st1c2, v2

td

td

bt2

rt2c2

pt22

rt2c1

et2

bt3

st3c2, v3

co

co

Figure 4: Two possible axiomatic executions from Figure 1. We
omit join actions for brevity.

Definition 3 (Thread Dependence). If ↵ = fm

t

t0 and � = b
t

0 or
↵ = e

t

and � = jm
t

0 t then ↵ !
td

� holds.

Definition 4 (Happens-before relation). The happens-before order
of an execution is the transitive closure of the union of program
order, thread dependence order, and actions related by communi-
cation and program order:

!
hb

= (!
po

[ !
td

[
{(↵,�) | ↵ !

co

↵0 ^ ↵0 !
po

�} [
{(�,↵) | � !

po

↵0 ^ ↵0 !
co

↵})+

For any two actions ↵,� 2 A, if ↵ =
hb

�, then ↵ and � are said
to be concurrent actions.

Definition 5 (Happens-before Cycle). A cycle exists in a happens-
before relation if for any two actions ↵,� and ↵ !

hb

� !
hb

↵.

To illustrate these definitions, Figure 4 shows two axiomatic
executions of the program depicted in Figure 1. We assume thread
T1 spawns T2 and T3 , and we replace calls to f , g , and h found
in the original program, with an observable action, like a print
statement. The execution on the left imposes no causal dependence
between the observable actions in T2 or T3 ; thus, an interleaving
derived from this execution may permute the order in which these
statements execute. All interleavings derivable from this execution
correspond to valid CML behavior.

In contrast, the execution depicted on the right-hand side of
the figure, which corresponds to the erroneous execution discussed
in the introduction, exhibits a happens-before cycle between T1

and T2 . The cycle occurs because program order edges in T1 can
be traversed to reach the second send action, a communication
order edge can be traversed to then execute T2 via its program
order edges until control reaches the second receive, whereupon
a communication edge can be traversed again back to T1 . Such
cyclic dependences never manifest in any correct CML execution.
We must therefore strengthen our notion of executions to discard
those that contain such cycles.

To do so, we first note that the semantics as currently presented
is concerned only with actions that introduce some form of causal
dependence either within a thread (via program order) or across
threads (via thread dependence or communication order). However,
a real program also does computation, and reasoning about an
execution’s correctness will require us to specify these actions as
well. Indeed, to facilitate relating an operational definition of CML
that expresses our notion of a relaxed execution (see Section 4) with
the axiomatic semantics, we parameterize the latter with the ability
to reason about intra-thread behavior.

Intra-thread semantics. The intra-thread semantics of a thread
is abstracted in our formulation via a labeled transition system. Let
Stateintra denote the intra-thread state of a thread; its specific struc-

4 2013/3/28

• Establishes both intra- and inter-thread dependences:

• Two actions not related by happens-before relation are said to be 
concurrent
★ A send action and its matching receive action are concurrent!

16

Tuesday, January 21, 14



Happens-before Relation

We assume a set of T threads, C channels, and V values. The
set of inter-thread actions is provided below. Superscripts m and n
denote a unique identifier for the action.
ACTIONS:

A := b
t

(thread t starts)
| e

t

(thread t ends)
| jm

t

t0 (thread t detects thread t’ has terminated)
| fm

t

t0 (thread t creates a new thread t’)
| sm

t

c, v (thread t sends value v on channel c
| rm

t

c (thread t receives a value on channel c)
| pm

t

v (thread t outputs an observable value v)

c 2 C t, t0 2 T v 2 V m,n 2 N
Action b

t

signals the initiation of a new thread with identifier t;
action e

t

indicates that thread t has terminated. A join action, jm
t

t0,
defines an action that recognizes the point where thread t detects
that another thread t0 has completed. A thread creation action,
where thread t spawns a thread t0, is given by fm

t

t0. Observe that
there may be an arbitrary number of actions performed between
the point where a thread is created, and the point where it begins
execution. Action sm

t

c, v denotes the communication of data v on
channel c by thread t, and rm

t

c denotes the receipt of data from
channel c. An external action (e.g., printing) that emits value v is
denoted as pm

t

v. We can generalize these individuals actions into a
family of related actions:

ACTION CLASSES:
A

s

= {sm
t

c, v | t 2 T, v 2 V} (Sends)
A

r

= {rm
t

c | t 2 T} (Receives)
A

c

= A
s

[ A
r

(Communication)
A

o

= {pm
t

v | t 2 T, v 2 V} (Observables)

Notation. Given an action class a, we write a to represent a list of
elements drawn from a. We write T (↵) to indicate the thread in
which action ↵ occurs, and write V (sm

t

c, v) to extract the value
v communicated by a send action. Given a set of actions A 2 2A,
A

x

= A\A
x

, where A
x

represents one of the action classes defined
above.

An interleaving is a total order on actions that reflects the oc-
currence of one action before another in global time. Interleavings
are derived from a preorder1 called happens-before [12] that relates
causal dependencies between actions.

Definition 1 (Axiomatic Execution). An axiomatic execution is
defined by the tuple E := hP,A,!

po

,Mi where:

• P is a program.
• A is a set of actions.
• !

po

✓ A ⇥ A is the program order, a disjoint union of the
sequential actions of each thread (which is a total order).

• M 2 (A
s

* A
r

) [ (A
r

* A
s

) is a communication-match
function that maps each send and receive to its matching com-
munication action (i.e, if ↵ = M(↵0) then ↵0 = M(↵)). More-
over, a send and its matching receive must operate on the same
channel and operate in different threads (i.e., if M(sm

t

c, v) =
rn
t

0c0 or M(rn
t

0c0) = sm
t

c, v then t 6= t0 and c = c0).

Definition 2 (Communication Order). A communication order
is established between matching communication actions. If � =
M(↵), then ↵ !

co

� and � !
co

↵.

There is also an obvious ordering on thread creation and execu-
tion, as well as the visibility of thread termination by other threads:

1 A preorder is a reflexive transitive binary relation. Unlike partial orders,
preorders are not necessarily anti-symmetric, i.e. they may contain cycles.

bt1
po

po

po

po

po

po

po

po

po

po

po

po

po

po

ft1t2

ft1t3

st1c1, v2

pt11

et1

st1c2, v2

td

td

bt2

rt2c2

pt22

rt2c1

et2

co

co

co

bt3

st3c2, v3

pt33

rt2c2

et3

bt1
po

po

po

po

po

po

po

po

po

po

po
ft1t2

ft1t3

st1c1, v2

pt11

et1

st1c2, v2

td

td

bt2

rt2c2

pt22

rt2c1

et2

bt3

st3c2, v3

co

co

Figure 4: Two possible axiomatic executions from Figure 1. We
omit join actions for brevity.

Definition 3 (Thread Dependence). If ↵ = fm

t

t0 and � = b
t

0 or
↵ = e

t

and � = jm
t

0 t then ↵ !
td

� holds.

Definition 4 (Happens-before relation). The happens-before order
of an execution is the transitive closure of the union of program
order, thread dependence order, and actions related by communi-
cation and program order:

!
hb

= (!
po

[ !
td

[
{(↵,�) | ↵ !

co

↵0 ^ ↵0 !
po

�} [
{(�,↵) | � !

po

↵0 ^ ↵0 !
co

↵})+

For any two actions ↵,� 2 A, if ↵ =
hb

�, then ↵ and � are said
to be concurrent actions.

Definition 5 (Happens-before Cycle). A cycle exists in a happens-
before relation if for any two actions ↵,� and ↵ !

hb

� !
hb

↵.

To illustrate these definitions, Figure 4 shows two axiomatic
executions of the program depicted in Figure 1. We assume thread
T1 spawns T2 and T3 , and we replace calls to f , g , and h found
in the original program, with an observable action, like a print
statement. The execution on the left imposes no causal dependence
between the observable actions in T2 or T3 ; thus, an interleaving
derived from this execution may permute the order in which these
statements execute. All interleavings derivable from this execution
correspond to valid CML behavior.

In contrast, the execution depicted on the right-hand side of
the figure, which corresponds to the erroneous execution discussed
in the introduction, exhibits a happens-before cycle between T1

and T2 . The cycle occurs because program order edges in T1 can
be traversed to reach the second send action, a communication
order edge can be traversed to then execute T2 via its program
order edges until control reaches the second receive, whereupon
a communication edge can be traversed again back to T1 . Such
cyclic dependences never manifest in any correct CML execution.
We must therefore strengthen our notion of executions to discard
those that contain such cycles.

To do so, we first note that the semantics as currently presented
is concerned only with actions that introduce some form of causal
dependence either within a thread (via program order) or across
threads (via thread dependence or communication order). However,
a real program also does computation, and reasoning about an
execution’s correctness will require us to specify these actions as
well. Indeed, to facilitate relating an operational definition of CML
that expresses our notion of a relaxed execution (see Section 4) with
the axiomatic semantics, we parameterize the latter with the ability
to reason about intra-thread behavior.

Intra-thread semantics. The intra-thread semantics of a thread
is abstracted in our formulation via a labeled transition system. Let
Stateintra denote the intra-thread state of a thread; its specific struc-

4 2013/3/28

smt c, v co

�

po hb

rm
0

t0 c

• Establishes both intra- and inter-thread dependences:

• Two actions not related by happens-before relation are said to be 
concurrent
★ A send action and its matching receive action are concurrent!

16

Tuesday, January 21, 14



Happens-before Relation

We assume a set of T threads, C channels, and V values. The
set of inter-thread actions is provided below. Superscripts m and n
denote a unique identifier for the action.
ACTIONS:

A := b
t

(thread t starts)
| e

t

(thread t ends)
| jm

t

t0 (thread t detects thread t’ has terminated)
| fm

t

t0 (thread t creates a new thread t’)
| sm

t

c, v (thread t sends value v on channel c
| rm

t

c (thread t receives a value on channel c)
| pm

t

v (thread t outputs an observable value v)

c 2 C t, t0 2 T v 2 V m,n 2 N
Action b

t

signals the initiation of a new thread with identifier t;
action e

t

indicates that thread t has terminated. A join action, jm
t

t0,
defines an action that recognizes the point where thread t detects
that another thread t0 has completed. A thread creation action,
where thread t spawns a thread t0, is given by fm

t

t0. Observe that
there may be an arbitrary number of actions performed between
the point where a thread is created, and the point where it begins
execution. Action sm

t

c, v denotes the communication of data v on
channel c by thread t, and rm

t

c denotes the receipt of data from
channel c. An external action (e.g., printing) that emits value v is
denoted as pm

t

v. We can generalize these individuals actions into a
family of related actions:

ACTION CLASSES:
A

s

= {sm
t

c, v | t 2 T, v 2 V} (Sends)
A

r

= {rm
t

c | t 2 T} (Receives)
A

c

= A
s

[ A
r

(Communication)
A

o

= {pm
t

v | t 2 T, v 2 V} (Observables)

Notation. Given an action class a, we write a to represent a list of
elements drawn from a. We write T (↵) to indicate the thread in
which action ↵ occurs, and write V (sm

t

c, v) to extract the value
v communicated by a send action. Given a set of actions A 2 2A,
A

x

= A\A
x

, where A
x

represents one of the action classes defined
above.

An interleaving is a total order on actions that reflects the oc-
currence of one action before another in global time. Interleavings
are derived from a preorder1 called happens-before [12] that relates
causal dependencies between actions.

Definition 1 (Axiomatic Execution). An axiomatic execution is
defined by the tuple E := hP,A,!

po

,Mi where:

• P is a program.
• A is a set of actions.
• !

po

✓ A ⇥ A is the program order, a disjoint union of the
sequential actions of each thread (which is a total order).

• M 2 (A
s

* A
r

) [ (A
r

* A
s

) is a communication-match
function that maps each send and receive to its matching com-
munication action (i.e, if ↵ = M(↵0) then ↵0 = M(↵)). More-
over, a send and its matching receive must operate on the same
channel and operate in different threads (i.e., if M(sm

t

c, v) =
rn
t

0c0 or M(rn
t

0c0) = sm
t

c, v then t 6= t0 and c = c0).

Definition 2 (Communication Order). A communication order
is established between matching communication actions. If � =
M(↵), then ↵ !

co

� and � !
co

↵.

There is also an obvious ordering on thread creation and execu-
tion, as well as the visibility of thread termination by other threads:

1 A preorder is a reflexive transitive binary relation. Unlike partial orders,
preorders are not necessarily anti-symmetric, i.e. they may contain cycles.

bt1
po

po

po

po

po

po

po

po

po

po

po

po

po

po

ft1t2

ft1t3

st1c1, v2

pt11

et1

st1c2, v2

td

td

bt2

rt2c2

pt22

rt2c1

et2

co

co

co

bt3

st3c2, v3

pt33

rt2c2

et3

bt1
po

po

po

po

po

po

po

po

po

po

po
ft1t2

ft1t3

st1c1, v2

pt11

et1

st1c2, v2

td

td

bt2

rt2c2

pt22

rt2c1

et2

bt3

st3c2, v3

co

co

Figure 4: Two possible axiomatic executions from Figure 1. We
omit join actions for brevity.

Definition 3 (Thread Dependence). If ↵ = fm

t

t0 and � = b
t

0 or
↵ = e

t

and � = jm
t

0 t then ↵ !
td

� holds.

Definition 4 (Happens-before relation). The happens-before order
of an execution is the transitive closure of the union of program
order, thread dependence order, and actions related by communi-
cation and program order:

!
hb

= (!
po

[ !
td

[
{(↵,�) | ↵ !

co

↵0 ^ ↵0 !
po

�} [
{(�,↵) | � !

po

↵0 ^ ↵0 !
co

↵})+

For any two actions ↵,� 2 A, if ↵ =
hb

�, then ↵ and � are said
to be concurrent actions.

Definition 5 (Happens-before Cycle). A cycle exists in a happens-
before relation if for any two actions ↵,� and ↵ !

hb

� !
hb

↵.

To illustrate these definitions, Figure 4 shows two axiomatic
executions of the program depicted in Figure 1. We assume thread
T1 spawns T2 and T3 , and we replace calls to f , g , and h found
in the original program, with an observable action, like a print
statement. The execution on the left imposes no causal dependence
between the observable actions in T2 or T3 ; thus, an interleaving
derived from this execution may permute the order in which these
statements execute. All interleavings derivable from this execution
correspond to valid CML behavior.

In contrast, the execution depicted on the right-hand side of
the figure, which corresponds to the erroneous execution discussed
in the introduction, exhibits a happens-before cycle between T1

and T2 . The cycle occurs because program order edges in T1 can
be traversed to reach the second send action, a communication
order edge can be traversed to then execute T2 via its program
order edges until control reaches the second receive, whereupon
a communication edge can be traversed again back to T1 . Such
cyclic dependences never manifest in any correct CML execution.
We must therefore strengthen our notion of executions to discard
those that contain such cycles.

To do so, we first note that the semantics as currently presented
is concerned only with actions that introduce some form of causal
dependence either within a thread (via program order) or across
threads (via thread dependence or communication order). However,
a real program also does computation, and reasoning about an
execution’s correctness will require us to specify these actions as
well. Indeed, to facilitate relating an operational definition of CML
that expresses our notion of a relaxed execution (see Section 4) with
the axiomatic semantics, we parameterize the latter with the ability
to reason about intra-thread behavior.

Intra-thread semantics. The intra-thread semantics of a thread
is abstracted in our formulation via a labeled transition system. Let
Stateintra denote the intra-thread state of a thread; its specific struc-

4 2013/3/28

smt c, v
co

�

po
hb

rm
0

t0 c

smt c, v co

�

po hb

rm
0

t0 c

• Establishes both intra- and inter-thread dependences:

• Two actions not related by happens-before relation are said to be 
concurrent
★ A send action and its matching receive action are concurrent!

16

Tuesday, January 21, 14



Example

�CML: A Prescription for Safely Relaxing Synchrony

KC Sivaramakrishnan
Purdue University

chandras@cs.purdue.edu

Lukasz Ziarek
SUNY Buffalo

lziarek@buffalo.edu

Suresh Jagannathan
Purdue University

suresh@cs.purdue.edu

Abstract
One way to ease the burden of concurrent programming is to have
threads communicate synchronously via message-passing, making
explicit the program points where data is transferred from one
thread to another. In a language like Concurrent ML (CML), this
philosophy leads to strong guarantees on the ordering and visibility
of communicated data, simplifying program reasoning. The cost of
synchrony comes with a high price in performance, however, par-
ticularly in distributed environments where communication latency
is high. To ameliorate these costs, we might allow communication
to be asynchronous, having senders buffer data without waiting for
the availability of a matching receiver, thereby allowing execution
of the sender’s continuation to overlap data transmission. However,
while the use of asynchrony can help reclaim performance, it also
complicates program structure and understanding.

In this paper, we investigate an alternative semantics for CML
that implements sends asynchronously, but guarantees that the re-
sulting execution nonetheless exhibits behavior observably equiva-
lent to one in which all communication is performed synchronously.
Our goal is to retain the expressivity and simplicity of CML’s syn-
chronous operations in writing concurrent programs and reasoning
about them, but give implementations the flexibility to safely regain
performance using asynchronous communication.

We formalize the conditions under which this equivalence
holds, and present an implementation that builds a decentralized de-
pendence graph whose structure can be used to check the integrity
of an execution with respect to this equivalence. We integrate a no-
tion of speculation to allow ill-formed executions to be rolled-back
and re-executed, replacing offending asynchronous actions with
safe synchronous ones. Several realistic case studies deployed in a
cloud environment demonstrate the utility of our approach.

1. Introduction
Concurrent ML [20] (CML) provides an expressive concurrency
mechanism through its use of first-class composable synchronous
events. When synchronized, events allow threads to communicate
data via message-passing over first-class channels. Synchronous
communication simplifies program reasoning because every com-
munication action is also a synchronization point; thus, the contin-
uation of a message-send is guaranteed that the data being sent has
been successfully transmitted to a receiver. The cost of synchrony
comes at a high price in performance, however; recent proposals

[Copyright notice will appear here once ’preprint’ option is removed.]

therefore suggest the use of asynchronous variants of CML’s syn-
chronous events [30] to overcome this cost. While asynchronous
extensions can be used to gain performance, they sacrifice the sim-
plicity provided by synchronous communication in favor of a more
complex and sophisticated set of primitives.

One way to enhance performance without requiring new addi-
tions to the core set of event combinators CML supports, is to give
the underlying runtime the freedom to allow a sender to communi-
cate data asynchronously. In this way, the cost of synchronous com-
munication can be masked by allowing the sender’s continuation to
begin execution even if a matching receiver is not yet available. Be-
cause asynchrony is introduced only by the runtime, applications
do not have to be restructured to explicitly account for new be-
haviors introduced by this additional concurrency. Thus, we wish
to have the runtime enforce the equivalence: [[ send (c, v)]]k ⌘
[[ asend (c, v)]]k where k is a continuation, send is CML’s syn-
chronous send operation that communicates value v on channel c,
and asend is an asynchronous variant that buffers v on c and does
not synchronize on a matching receiver.

To illustrate, consider the following simple program:

send(c1,v1)
f()
send(c2,v2)

g()
recv(c1)

recv(c2)
h()

T1 T2 T3

Thread T1 performs a synchronous send on channel c1 that is re-
ceived by thread T2, after it computes g() . After the communica-
tion is performed, T1 evaluates f() , and then sends v2 on chan-
nel c2 , which is received by thread T3. Upon receipt, T3 evaluates
h() . Assuming f , g , and h perform no communication action of
their own, the synchronous communication on c1 by T1 could have
been safely converted into an asynchronous action in which v1 is
buffered, and read by T2 later upon evaluation of g() . The observ-
able behavior of the program in both cases (i.e., treating the initial
send synchronously or asynchronously) would be the same.

Unfortunately, naı̈vely replacing synchronous communication
with an asynchronous one is not usually meaning-preserving as the
example in Figure 1 illustrates. Under a synchronous evaluation
protocol, T2 would necessarily communicate first with T3, receiv-
ing v3 on channel c2 . It is then able to receive v1 from T1; finally,
T1 can communicate v2 to T3. If the send(c1,v1) operation by
T1 were replaced by asend(c1,v1) , the first receive on T2 has, in
addition to the first send on T3, a new potential matching opportu-
nity – the send of v2 on channel c2 . If the receive by T2 matches

send(c1,v1)
f()
send(c2,v2)

recv(c2)
g()
recv(c1)

send(c2,v3)
h()
recv(c2)

T1 T2 T3

Figure 1: Performing the first send in T1 asynchronously is not
meaning preserving with respect to synchronous evaluation.

1 2013/3/28

• Assume T1 spawns T2 and T3
• Let f, g, h = print 1, print 2, print 3

17

Tuesday, January 21, 14



Example

�CML: A Prescription for Safely Relaxing Synchrony

KC Sivaramakrishnan
Purdue University

chandras@cs.purdue.edu

Lukasz Ziarek
SUNY Buffalo

lziarek@buffalo.edu

Suresh Jagannathan
Purdue University

suresh@cs.purdue.edu

Abstract
One way to ease the burden of concurrent programming is to have
threads communicate synchronously via message-passing, making
explicit the program points where data is transferred from one
thread to another. In a language like Concurrent ML (CML), this
philosophy leads to strong guarantees on the ordering and visibility
of communicated data, simplifying program reasoning. The cost of
synchrony comes with a high price in performance, however, par-
ticularly in distributed environments where communication latency
is high. To ameliorate these costs, we might allow communication
to be asynchronous, having senders buffer data without waiting for
the availability of a matching receiver, thereby allowing execution
of the sender’s continuation to overlap data transmission. However,
while the use of asynchrony can help reclaim performance, it also
complicates program structure and understanding.

In this paper, we investigate an alternative semantics for CML
that implements sends asynchronously, but guarantees that the re-
sulting execution nonetheless exhibits behavior observably equiva-
lent to one in which all communication is performed synchronously.
Our goal is to retain the expressivity and simplicity of CML’s syn-
chronous operations in writing concurrent programs and reasoning
about them, but give implementations the flexibility to safely regain
performance using asynchronous communication.

We formalize the conditions under which this equivalence
holds, and present an implementation that builds a decentralized de-
pendence graph whose structure can be used to check the integrity
of an execution with respect to this equivalence. We integrate a no-
tion of speculation to allow ill-formed executions to be rolled-back
and re-executed, replacing offending asynchronous actions with
safe synchronous ones. Several realistic case studies deployed in a
cloud environment demonstrate the utility of our approach.

1. Introduction
Concurrent ML [20] (CML) provides an expressive concurrency
mechanism through its use of first-class composable synchronous
events. When synchronized, events allow threads to communicate
data via message-passing over first-class channels. Synchronous
communication simplifies program reasoning because every com-
munication action is also a synchronization point; thus, the contin-
uation of a message-send is guaranteed that the data being sent has
been successfully transmitted to a receiver. The cost of synchrony
comes at a high price in performance, however; recent proposals

[Copyright notice will appear here once ’preprint’ option is removed.]

therefore suggest the use of asynchronous variants of CML’s syn-
chronous events [30] to overcome this cost. While asynchronous
extensions can be used to gain performance, they sacrifice the sim-
plicity provided by synchronous communication in favor of a more
complex and sophisticated set of primitives.

One way to enhance performance without requiring new addi-
tions to the core set of event combinators CML supports, is to give
the underlying runtime the freedom to allow a sender to communi-
cate data asynchronously. In this way, the cost of synchronous com-
munication can be masked by allowing the sender’s continuation to
begin execution even if a matching receiver is not yet available. Be-
cause asynchrony is introduced only by the runtime, applications
do not have to be restructured to explicitly account for new be-
haviors introduced by this additional concurrency. Thus, we wish
to have the runtime enforce the equivalence: [[ send (c, v)]]k ⌘
[[ asend (c, v)]]k where k is a continuation, send is CML’s syn-
chronous send operation that communicates value v on channel c,
and asend is an asynchronous variant that buffers v on c and does
not synchronize on a matching receiver.

To illustrate, consider the following simple program:

send(c1,v1)
f()
send(c2,v2)

g()
recv(c1)

recv(c2)
h()

T1 T2 T3

Thread T1 performs a synchronous send on channel c1 that is re-
ceived by thread T2, after it computes g() . After the communica-
tion is performed, T1 evaluates f() , and then sends v2 on chan-
nel c2 , which is received by thread T3. Upon receipt, T3 evaluates
h() . Assuming f , g , and h perform no communication action of
their own, the synchronous communication on c1 by T1 could have
been safely converted into an asynchronous action in which v1 is
buffered, and read by T2 later upon evaluation of g() . The observ-
able behavior of the program in both cases (i.e., treating the initial
send synchronously or asynchronously) would be the same.

Unfortunately, naı̈vely replacing synchronous communication
with an asynchronous one is not usually meaning-preserving as the
example in Figure 1 illustrates. Under a synchronous evaluation
protocol, T2 would necessarily communicate first with T3, receiv-
ing v3 on channel c2 . It is then able to receive v1 from T1; finally,
T1 can communicate v2 to T3. If the send(c1,v1) operation by
T1 were replaced by asend(c1,v1) , the first receive on T2 has, in
addition to the first send on T3, a new potential matching opportu-
nity – the send of v2 on channel c2 . If the receive by T2 matches

send(c1,v1)
f()
send(c2,v2)

recv(c2)
g()
recv(c1)

send(c2,v3)
h()
recv(c2)

T1 T2 T3

Figure 1: Performing the first send in T1 asynchronously is not
meaning preserving with respect to synchronous evaluation.

1 2013/3/28

• Assume T1 spawns T2 and T3
• Let f, g, h = print 1, print 2, print 3

We assume a set of T threads, C channels, and V values. The
set of inter-thread actions is provided below. Superscripts m and n
denote a unique identifier for the action.
ACTIONS:

A := b
t

(thread t starts)
| e

t

(thread t ends)
| jm

t

t0 (thread t detects thread t’ has terminated)
| fm

t

t0 (thread t creates a new thread t’)
| sm

t

c, v (thread t sends value v on channel c
| rm

t

c (thread t receives a value on channel c)
| pm

t

v (thread t outputs an observable value v)

c 2 C t, t0 2 T v 2 V m,n 2 N
Action b

t

signals the initiation of a new thread with identifier t;
action e

t

indicates that thread t has terminated. A join action, jm
t

t0,
defines an action that recognizes the point where thread t detects
that another thread t0 has completed. A thread creation action,
where thread t spawns a thread t0, is given by fm

t

t0. Observe that
there may be an arbitrary number of actions performed between
the point where a thread is created, and the point where it begins
execution. Action sm

t

c, v denotes the communication of data v on
channel c by thread t, and rm

t

c denotes the receipt of data from
channel c. An external action (e.g., printing) that emits value v is
denoted as pm

t

v. We can generalize these individuals actions into a
family of related actions:

ACTION CLASSES:
A

s

= {sm
t

c, v | t 2 T, v 2 V} (Sends)
A

r

= {rm
t

c | t 2 T} (Receives)
A

c

= A
s

[ A
r

(Communication)
A

o

= {pm
t

v | t 2 T, v 2 V} (Observables)

Notation. Given an action class a, we write a to represent a list of
elements drawn from a. We write T (↵) to indicate the thread in
which action ↵ occurs, and write V (sm

t

c, v) to extract the value
v communicated by a send action. Given a set of actions A 2 2A,
A

x

= A\A
x

, where A
x

represents one of the action classes defined
above.

An interleaving is a total order on actions that reflects the oc-
currence of one action before another in global time. Interleavings
are derived from a preorder1 called happens-before [12] that relates
causal dependencies between actions.

Definition 1 (Axiomatic Execution). An axiomatic execution is
defined by the tuple E := hP,A,!

po

,Mi where:

• P is a program.
• A is a set of actions.
• !

po

✓ A ⇥ A is the program order, a disjoint union of the
sequential actions of each thread (which is a total order).

• M 2 (A
s

* A
r

) [ (A
r

* A
s

) is a communication-match
function that maps each send and receive to its matching com-
munication action (i.e, if ↵ = M(↵0) then ↵0 = M(↵)). More-
over, a send and its matching receive must operate on the same
channel and operate in different threads (i.e., if M(sm

t

c, v) =
rn
t

0c0 or M(rn
t

0c0) = sm
t

c, v then t 6= t0 and c = c0).

Definition 2 (Communication Order). A communication order
is established between matching communication actions. If � =
M(↵), then ↵ !

co

� and � !
co

↵.

There is also an obvious ordering on thread creation and execu-
tion, as well as the visibility of thread termination by other threads:

1 A preorder is a reflexive transitive binary relation. Unlike partial orders,
preorders are not necessarily anti-symmetric, i.e. they may contain cycles.

bt1
po

po

po

po

po

po

po

po

po

po

po

po

po

po

ft1t2

ft1t3

st1c1, v2

pt11

et1

st1c2, v2

td

td

bt2

rt2c2

pt22

rt2c1

et2

co

co

co

bt3

st3c2, v3

pt33

rt2c2

et3

bt1
po

po

po

po

po

po

po

po

po

po

po
ft1t2

ft1t3

st1c1, v2

pt11

et1

st1c2, v2

td

td

bt2

rt2c2

pt22

rt2c1

et2

bt3

st3c2, v3

co

co

Figure 4: Two possible axiomatic executions from Figure 1. We
omit join actions for brevity.

Definition 3 (Thread Dependence). If ↵ = fm

t

t0 and � = b
t

0 or
↵ = e

t

and � = jm
t

0 t then ↵ !
td

� holds.

Definition 4 (Happens-before relation). The happens-before order
of an execution is the transitive closure of the union of program
order, thread dependence order, and actions related by communi-
cation and program order:

!
hb

= (!
po

[ !
td

[
{(↵,�) | ↵ !

co

↵0 ^ ↵0 !
po

�} [
{(�,↵) | � !

po

↵0 ^ ↵0 !
co

↵})+

For any two actions ↵,� 2 A, if ↵ =
hb

�, then ↵ and � are said
to be concurrent actions.

Definition 5 (Happens-before Cycle). A cycle exists in a happens-
before relation if for any two actions ↵,� and ↵ !

hb

� !
hb

↵.

To illustrate these definitions, Figure 4 shows two axiomatic
executions of the program depicted in Figure 1. We assume thread
T1 spawns T2 and T3 , and we replace calls to f , g , and h found
in the original program, with an observable action, like a print
statement. The execution on the left imposes no causal dependence
between the observable actions in T2 or T3 ; thus, an interleaving
derived from this execution may permute the order in which these
statements execute. All interleavings derivable from this execution
correspond to valid CML behavior.

In contrast, the execution depicted on the right-hand side of
the figure, which corresponds to the erroneous execution discussed
in the introduction, exhibits a happens-before cycle between T1

and T2 . The cycle occurs because program order edges in T1 can
be traversed to reach the second send action, a communication
order edge can be traversed to then execute T2 via its program
order edges until control reaches the second receive, whereupon
a communication edge can be traversed again back to T1 . Such
cyclic dependences never manifest in any correct CML execution.
We must therefore strengthen our notion of executions to discard
those that contain such cycles.

To do so, we first note that the semantics as currently presented
is concerned only with actions that introduce some form of causal
dependence either within a thread (via program order) or across
threads (via thread dependence or communication order). However,
a real program also does computation, and reasoning about an
execution’s correctness will require us to specify these actions as
well. Indeed, to facilitate relating an operational definition of CML
that expresses our notion of a relaxed execution (see Section 4) with
the axiomatic semantics, we parameterize the latter with the ability
to reason about intra-thread behavior.

Intra-thread semantics. The intra-thread semantics of a thread
is abstracted in our formulation via a labeled transition system. Let
Stateintra denote the intra-thread state of a thread; its specific struc-

4 2013/3/28

17

Tuesday, January 21, 14



Example

�CML: A Prescription for Safely Relaxing Synchrony

KC Sivaramakrishnan
Purdue University

chandras@cs.purdue.edu

Lukasz Ziarek
SUNY Buffalo

lziarek@buffalo.edu

Suresh Jagannathan
Purdue University

suresh@cs.purdue.edu

Abstract
One way to ease the burden of concurrent programming is to have
threads communicate synchronously via message-passing, making
explicit the program points where data is transferred from one
thread to another. In a language like Concurrent ML (CML), this
philosophy leads to strong guarantees on the ordering and visibility
of communicated data, simplifying program reasoning. The cost of
synchrony comes with a high price in performance, however, par-
ticularly in distributed environments where communication latency
is high. To ameliorate these costs, we might allow communication
to be asynchronous, having senders buffer data without waiting for
the availability of a matching receiver, thereby allowing execution
of the sender’s continuation to overlap data transmission. However,
while the use of asynchrony can help reclaim performance, it also
complicates program structure and understanding.

In this paper, we investigate an alternative semantics for CML
that implements sends asynchronously, but guarantees that the re-
sulting execution nonetheless exhibits behavior observably equiva-
lent to one in which all communication is performed synchronously.
Our goal is to retain the expressivity and simplicity of CML’s syn-
chronous operations in writing concurrent programs and reasoning
about them, but give implementations the flexibility to safely regain
performance using asynchronous communication.

We formalize the conditions under which this equivalence
holds, and present an implementation that builds a decentralized de-
pendence graph whose structure can be used to check the integrity
of an execution with respect to this equivalence. We integrate a no-
tion of speculation to allow ill-formed executions to be rolled-back
and re-executed, replacing offending asynchronous actions with
safe synchronous ones. Several realistic case studies deployed in a
cloud environment demonstrate the utility of our approach.

1. Introduction
Concurrent ML [20] (CML) provides an expressive concurrency
mechanism through its use of first-class composable synchronous
events. When synchronized, events allow threads to communicate
data via message-passing over first-class channels. Synchronous
communication simplifies program reasoning because every com-
munication action is also a synchronization point; thus, the contin-
uation of a message-send is guaranteed that the data being sent has
been successfully transmitted to a receiver. The cost of synchrony
comes at a high price in performance, however; recent proposals

[Copyright notice will appear here once ’preprint’ option is removed.]

therefore suggest the use of asynchronous variants of CML’s syn-
chronous events [30] to overcome this cost. While asynchronous
extensions can be used to gain performance, they sacrifice the sim-
plicity provided by synchronous communication in favor of a more
complex and sophisticated set of primitives.

One way to enhance performance without requiring new addi-
tions to the core set of event combinators CML supports, is to give
the underlying runtime the freedom to allow a sender to communi-
cate data asynchronously. In this way, the cost of synchronous com-
munication can be masked by allowing the sender’s continuation to
begin execution even if a matching receiver is not yet available. Be-
cause asynchrony is introduced only by the runtime, applications
do not have to be restructured to explicitly account for new be-
haviors introduced by this additional concurrency. Thus, we wish
to have the runtime enforce the equivalence: [[ send (c, v)]]k ⌘
[[ asend (c, v)]]k where k is a continuation, send is CML’s syn-
chronous send operation that communicates value v on channel c,
and asend is an asynchronous variant that buffers v on c and does
not synchronize on a matching receiver.

To illustrate, consider the following simple program:

send(c1,v1)
f()
send(c2,v2)

g()
recv(c1)

recv(c2)
h()

T1 T2 T3

Thread T1 performs a synchronous send on channel c1 that is re-
ceived by thread T2, after it computes g() . After the communica-
tion is performed, T1 evaluates f() , and then sends v2 on chan-
nel c2 , which is received by thread T3. Upon receipt, T3 evaluates
h() . Assuming f , g , and h perform no communication action of
their own, the synchronous communication on c1 by T1 could have
been safely converted into an asynchronous action in which v1 is
buffered, and read by T2 later upon evaluation of g() . The observ-
able behavior of the program in both cases (i.e., treating the initial
send synchronously or asynchronously) would be the same.

Unfortunately, naı̈vely replacing synchronous communication
with an asynchronous one is not usually meaning-preserving as the
example in Figure 1 illustrates. Under a synchronous evaluation
protocol, T2 would necessarily communicate first with T3, receiv-
ing v3 on channel c2 . It is then able to receive v1 from T1; finally,
T1 can communicate v2 to T3. If the send(c1,v1) operation by
T1 were replaced by asend(c1,v1) , the first receive on T2 has, in
addition to the first send on T3, a new potential matching opportu-
nity – the send of v2 on channel c2 . If the receive by T2 matches

send(c1,v1)
f()
send(c2,v2)

recv(c2)
g()
recv(c1)

send(c2,v3)
h()
recv(c2)

T1 T2 T3

Figure 1: Performing the first send in T1 asynchronously is not
meaning preserving with respect to synchronous evaluation.

1 2013/3/28

• Assume T1 spawns T2 and T3
• Let f, g, h = print 1, print 2, print 3

We assume a set of T threads, C channels, and V values. The
set of inter-thread actions is provided below. Superscripts m and n
denote a unique identifier for the action.
ACTIONS:

A := b
t

(thread t starts)
| e

t

(thread t ends)
| jm

t

t0 (thread t detects thread t’ has terminated)
| fm

t

t0 (thread t creates a new thread t’)
| sm

t

c, v (thread t sends value v on channel c
| rm

t

c (thread t receives a value on channel c)
| pm

t

v (thread t outputs an observable value v)

c 2 C t, t0 2 T v 2 V m,n 2 N
Action b

t

signals the initiation of a new thread with identifier t;
action e

t

indicates that thread t has terminated. A join action, jm
t

t0,
defines an action that recognizes the point where thread t detects
that another thread t0 has completed. A thread creation action,
where thread t spawns a thread t0, is given by fm

t

t0. Observe that
there may be an arbitrary number of actions performed between
the point where a thread is created, and the point where it begins
execution. Action sm

t

c, v denotes the communication of data v on
channel c by thread t, and rm

t

c denotes the receipt of data from
channel c. An external action (e.g., printing) that emits value v is
denoted as pm

t

v. We can generalize these individuals actions into a
family of related actions:

ACTION CLASSES:
A

s

= {sm
t

c, v | t 2 T, v 2 V} (Sends)
A

r

= {rm
t

c | t 2 T} (Receives)
A

c

= A
s

[ A
r

(Communication)
A

o

= {pm
t

v | t 2 T, v 2 V} (Observables)

Notation. Given an action class a, we write a to represent a list of
elements drawn from a. We write T (↵) to indicate the thread in
which action ↵ occurs, and write V (sm

t

c, v) to extract the value
v communicated by a send action. Given a set of actions A 2 2A,
A

x

= A\A
x

, where A
x

represents one of the action classes defined
above.

An interleaving is a total order on actions that reflects the oc-
currence of one action before another in global time. Interleavings
are derived from a preorder1 called happens-before [12] that relates
causal dependencies between actions.

Definition 1 (Axiomatic Execution). An axiomatic execution is
defined by the tuple E := hP,A,!

po

,Mi where:

• P is a program.
• A is a set of actions.
• !

po

✓ A ⇥ A is the program order, a disjoint union of the
sequential actions of each thread (which is a total order).

• M 2 (A
s

* A
r

) [ (A
r

* A
s

) is a communication-match
function that maps each send and receive to its matching com-
munication action (i.e, if ↵ = M(↵0) then ↵0 = M(↵)). More-
over, a send and its matching receive must operate on the same
channel and operate in different threads (i.e., if M(sm

t

c, v) =
rn
t

0c0 or M(rn
t

0c0) = sm
t

c, v then t 6= t0 and c = c0).

Definition 2 (Communication Order). A communication order
is established between matching communication actions. If � =
M(↵), then ↵ !

co

� and � !
co

↵.

There is also an obvious ordering on thread creation and execu-
tion, as well as the visibility of thread termination by other threads:

1 A preorder is a reflexive transitive binary relation. Unlike partial orders,
preorders are not necessarily anti-symmetric, i.e. they may contain cycles.

bt1
po

po

po

po

po

po

po

po

po

po

po

po

po

po

ft1t2

ft1t3

st1c1, v2

pt11

et1

st1c2, v2

td

td

bt2

rt2c2

pt22

rt2c1

et2

co

co

co

bt3

st3c2, v3

pt33

rt2c2

et3

bt1
po

po

po

po

po

po

po

po

po

po

po
ft1t2

ft1t3

st1c1, v2

pt11

et1

st1c2, v2

td

td

bt2

rt2c2

pt22

rt2c1

et2

bt3

st3c2, v3

co

co

Figure 4: Two possible axiomatic executions from Figure 1. We
omit join actions for brevity.

Definition 3 (Thread Dependence). If ↵ = fm

t

t0 and � = b
t

0 or
↵ = e

t

and � = jm
t

0 t then ↵ !
td

� holds.

Definition 4 (Happens-before relation). The happens-before order
of an execution is the transitive closure of the union of program
order, thread dependence order, and actions related by communi-
cation and program order:

!
hb

= (!
po

[ !
td

[
{(↵,�) | ↵ !

co

↵0 ^ ↵0 !
po

�} [
{(�,↵) | � !

po

↵0 ^ ↵0 !
co

↵})+

For any two actions ↵,� 2 A, if ↵ =
hb

�, then ↵ and � are said
to be concurrent actions.

Definition 5 (Happens-before Cycle). A cycle exists in a happens-
before relation if for any two actions ↵,� and ↵ !

hb

� !
hb

↵.

To illustrate these definitions, Figure 4 shows two axiomatic
executions of the program depicted in Figure 1. We assume thread
T1 spawns T2 and T3 , and we replace calls to f , g , and h found
in the original program, with an observable action, like a print
statement. The execution on the left imposes no causal dependence
between the observable actions in T2 or T3 ; thus, an interleaving
derived from this execution may permute the order in which these
statements execute. All interleavings derivable from this execution
correspond to valid CML behavior.

In contrast, the execution depicted on the right-hand side of
the figure, which corresponds to the erroneous execution discussed
in the introduction, exhibits a happens-before cycle between T1

and T2 . The cycle occurs because program order edges in T1 can
be traversed to reach the second send action, a communication
order edge can be traversed to then execute T2 via its program
order edges until control reaches the second receive, whereupon
a communication edge can be traversed again back to T1 . Such
cyclic dependences never manifest in any correct CML execution.
We must therefore strengthen our notion of executions to discard
those that contain such cycles.

To do so, we first note that the semantics as currently presented
is concerned only with actions that introduce some form of causal
dependence either within a thread (via program order) or across
threads (via thread dependence or communication order). However,
a real program also does computation, and reasoning about an
execution’s correctness will require us to specify these actions as
well. Indeed, to facilitate relating an operational definition of CML
that expresses our notion of a relaxed execution (see Section 4) with
the axiomatic semantics, we parameterize the latter with the ability
to reason about intra-thread behavior.

Intra-thread semantics. The intra-thread semantics of a thread
is abstracted in our formulation via a labeled transition system. Let
Stateintra denote the intra-thread state of a thread; its specific struc-

4 2013/3/28

We assume a set of T threads, C channels, and V values. The
set of inter-thread actions is provided below. Superscripts m and n
denote a unique identifier for the action.
ACTIONS:

A := b
t

(thread t starts)
| e

t

(thread t ends)
| jm

t

t0 (thread t detects thread t’ has terminated)
| fm

t

t0 (thread t creates a new thread t’)
| sm

t

c, v (thread t sends value v on channel c
| rm

t

c (thread t receives a value on channel c)
| pm

t

v (thread t outputs an observable value v)

c 2 C t, t0 2 T v 2 V m,n 2 N
Action b

t

signals the initiation of a new thread with identifier t;
action e

t

indicates that thread t has terminated. A join action, jm
t

t0,
defines an action that recognizes the point where thread t detects
that another thread t0 has completed. A thread creation action,
where thread t spawns a thread t0, is given by fm

t

t0. Observe that
there may be an arbitrary number of actions performed between
the point where a thread is created, and the point where it begins
execution. Action sm

t

c, v denotes the communication of data v on
channel c by thread t, and rm

t

c denotes the receipt of data from
channel c. An external action (e.g., printing) that emits value v is
denoted as pm

t

v. We can generalize these individuals actions into a
family of related actions:

ACTION CLASSES:
A

s

= {sm
t

c, v | t 2 T, v 2 V} (Sends)
A

r

= {rm
t

c | t 2 T} (Receives)
A

c

= A
s

[ A
r

(Communication)
A

o

= {pm
t

v | t 2 T, v 2 V} (Observables)

Notation. Given an action class a, we write a to represent a list of
elements drawn from a. We write T (↵) to indicate the thread in
which action ↵ occurs, and write V (sm

t

c, v) to extract the value
v communicated by a send action. Given a set of actions A 2 2A,
A

x

= A\A
x

, where A
x

represents one of the action classes defined
above.

An interleaving is a total order on actions that reflects the oc-
currence of one action before another in global time. Interleavings
are derived from a preorder1 called happens-before [12] that relates
causal dependencies between actions.

Definition 1 (Axiomatic Execution). An axiomatic execution is
defined by the tuple E := hP,A,!

po

,Mi where:

• P is a program.
• A is a set of actions.
• !

po

✓ A ⇥ A is the program order, a disjoint union of the
sequential actions of each thread (which is a total order).

• M 2 (A
s

* A
r

) [ (A
r

* A
s

) is a communication-match
function that maps each send and receive to its matching com-
munication action (i.e, if ↵ = M(↵0) then ↵0 = M(↵)). More-
over, a send and its matching receive must operate on the same
channel and operate in different threads (i.e., if M(sm

t

c, v) =
rn
t

0c0 or M(rn
t

0c0) = sm
t

c, v then t 6= t0 and c = c0).

Definition 2 (Communication Order). A communication order
is established between matching communication actions. If � =
M(↵), then ↵ !

co

� and � !
co

↵.

There is also an obvious ordering on thread creation and execu-
tion, as well as the visibility of thread termination by other threads:

1 A preorder is a reflexive transitive binary relation. Unlike partial orders,
preorders are not necessarily anti-symmetric, i.e. they may contain cycles.

bt1
po

po

po

po

po

po

po

po

po

po

po

po

po

po

ft1t2

ft1t3

st1c1, v2

pt11

et1

st1c2, v2

td

td

bt2

rt2c2

pt22

rt2c1

et2

co

co

co

bt3

st3c2, v3

pt33

rt2c2

et3

bt1
po

po

po

po

po

po

po

po

po

po

po
ft1t2

ft1t3

st1c1, v2

pt11

et1

st1c2, v2

td

td

bt2

rt2c2

pt22

rt2c1

et2

bt3

st3c2, v3

co

co

Figure 4: Two possible axiomatic executions from Figure 1. We
omit join actions for brevity.

Definition 3 (Thread Dependence). If ↵ = fm

t

t0 and � = b
t

0 or
↵ = e

t

and � = jm
t

0 t then ↵ !
td

� holds.

Definition 4 (Happens-before relation). The happens-before order
of an execution is the transitive closure of the union of program
order, thread dependence order, and actions related by communi-
cation and program order:

!
hb

= (!
po

[ !
td

[
{(↵,�) | ↵ !

co

↵0 ^ ↵0 !
po

�} [
{(�,↵) | � !

po

↵0 ^ ↵0 !
co

↵})+

For any two actions ↵,� 2 A, if ↵ =
hb

�, then ↵ and � are said
to be concurrent actions.

Definition 5 (Happens-before Cycle). A cycle exists in a happens-
before relation if for any two actions ↵,� and ↵ !

hb

� !
hb

↵.

To illustrate these definitions, Figure 4 shows two axiomatic
executions of the program depicted in Figure 1. We assume thread
T1 spawns T2 and T3 , and we replace calls to f , g , and h found
in the original program, with an observable action, like a print
statement. The execution on the left imposes no causal dependence
between the observable actions in T2 or T3 ; thus, an interleaving
derived from this execution may permute the order in which these
statements execute. All interleavings derivable from this execution
correspond to valid CML behavior.

In contrast, the execution depicted on the right-hand side of
the figure, which corresponds to the erroneous execution discussed
in the introduction, exhibits a happens-before cycle between T1

and T2 . The cycle occurs because program order edges in T1 can
be traversed to reach the second send action, a communication
order edge can be traversed to then execute T2 via its program
order edges until control reaches the second receive, whereupon
a communication edge can be traversed again back to T1 . Such
cyclic dependences never manifest in any correct CML execution.
We must therefore strengthen our notion of executions to discard
those that contain such cycles.

To do so, we first note that the semantics as currently presented
is concerned only with actions that introduce some form of causal
dependence either within a thread (via program order) or across
threads (via thread dependence or communication order). However,
a real program also does computation, and reasoning about an
execution’s correctness will require us to specify these actions as
well. Indeed, to facilitate relating an operational definition of CML
that expresses our notion of a relaxed execution (see Section 4) with
the axiomatic semantics, we parameterize the latter with the ability
to reason about intra-thread behavior.

Intra-thread semantics. The intra-thread semantics of a thread
is abstracted in our formulation via a labeled transition system. Let
Stateintra denote the intra-thread state of a thread; its specific struc-

4 2013/3/28

17

Tuesday, January 21, 14



Well-formed Executions

all executions

well-formed
executions

CML
executions

18

Obs (Well-formed Execution of P) ∈ {Obs (CML Execution of P)}

Tuesday, January 21, 14



Well-formed Executions

all executions

well-formed
executions

CML
executions

1. Sensible intra-thread semantics

2. Acyclic happens-before relation

3. No outstanding communication action 
preceding an observable action

18

Obs (Well-formed Execution of P) ∈ {Obs (CML Execution of P)}

Tuesday, January 21, 14



Well-formedness -> Speculation

po

st1c2, v2

st1c3, v3 rt2c3

po

po

po

po

st1c1, v1

pt10

rt2c1

pt21

po

Track executions to see if they become 
ill-formed (rollback) or turn into CML executions (commit)

19

rt1c2

Tuesday, January 21, 14



Well-formedness -> Speculation

po

st1c2, v2

st1c3, v3 rt2c3

po

po

po

po

st1c1, v1

pt10

rt2c1

pt21

po

A CML execution

Track executions to see if they become 
ill-formed (rollback) or turn into CML executions (commit)

19

rt1c2

Tuesday, January 21, 14



Well-formedness -> Speculation

po

st1c2, v2

st1c3, v3 rt2c3

po

po

po

po

st1c1, v1

pt10

rt2c1

pt21

po

Track executions to see if they become 
ill-formed (rollback) or turn into CML executions (commit)

19

rt1c2

Tuesday, January 21, 14



Well-formedness -> Speculation

A well-formed execution that 
can lead to a CML execution

po

st1c2, v2

st1c3, v3 rt2c3

po

po

po

po

st1c1, v1

pt10

rt2c1

pt21

po

Track executions to see if they become 
ill-formed (rollback) or turn into CML executions (commit)

19

rt1c2

Tuesday, January 21, 14



Well-formedness -> Speculation

po

st1c2, v2

st1c3, v3 rt2c3

po

po

po

po

st1c1, v1

pt10

rt2c1

pt21

po

Track executions to see if they become 
ill-formed (rollback) or turn into CML executions (commit)

19

rt1c2

Tuesday, January 21, 14



Well-formedness -> Speculation

Not a well-formed
execution

po

st1c2, v2

st1c3, v3 rt2c3

po

po

po

po

st1c1, v1

pt10

rt2c1

pt21

po

Track executions to see if they become 
ill-formed (rollback) or turn into CML executions (commit)

19

rt1c2

Tuesday, January 21, 14



Implementation: Overview

20

Tuesday, January 21, 14



Implementation: Overview
• ℞-CML: RelaXed CML

★ MultiMLton with distribution support

★ Rx-CML application = {Instances}

★ Supports full CML

★ Built-in serialization (immutable values and function closures)

★ Transport layer is ZeroMQ

would result in a match of the send operation with a recv ac-
tion on the same thread. The prohibition of such behavior is en-
capsulated within the definition of well-formedness found in the
antecedent of the COMMIT rule that we formalize below.

We reason about sensible (well-formed) relaxed executions by
transforming them into an equivalent axiomatic one. A well-formed
REL execution is one whose corresponding axiomatic execution is
well-formed. Since an axiomatic semantics is parameterized by an
intra-thread semantics, we first provide a translation that produces
this semantics given the transitions defined by the operational se-
mantics.

Definition 14 (Intra-thread semantics). Given a program P, let

Stateintra := READY | DONE | e

where e 2 P. For each labeled transition of the form h(t, s)kT , �i ↵�!
h(t, s0)kT 0

, �0i, where ↵ 6= ✏(P,tr), we define �
�

�⇣ �0, where
�, �0 2 Stateintra such that:

• if s = READY
op

(e), then � = READY, otherwise, � = s.
• if s0 = DONE

op

, then �0 = DONE, otherwise �0 = s0

• if ↵ = ((ri

t

c), (sj

t

0c, v)) then � = (ri

t

c; v)
• if ↵ = ⌧

t

then � = ⌧
• otherwise, ↵ = �

Definition 15 (T OP
AX operator). Let E

o

= (P, tr) be an operational
execution. T OP

AX is defined as T OP
AX (E

o

) = hP, A, !
po

, Mi parame-
terized with the intra-thread semantics �⇣ (Definition 14), where

• A is a set of non-silent, non-commit actions in tr.
• for all ↵, � 2 A, ↵ !

po

� iff T (↵) = T (�) and ↵ precedes �
in tr.

• for all pairs ((ri

t

c), (sj

t

0c, v)) in tr, M(ri

t

c) = sj

t

0c, v and
M(sj

t

0c, v) = ri

t

c.

For perspicuity, in the definition of A and !
po

above, a receive
operational action (a, b) 2 A

op

is simply treated as a 2 A
r

.

Definition 16 (Well-formed REL execution). Let E
o

= (P, tr) 2
REL(P) be an operational execution. If the axiomatic execution
E

ax

= T OP
AX (E

o

) is well-formed, then E
o

is well-formed.

Theorem 17. If E
o

= (P, tr) and WF(E
o

), then
(T OP

AX (E
o

), !
to

) 2 CML(P).

Proof Sketch. Details are provided in the supplementary material.

5. Implementation
The operational semantics defined in the previous section checks
whether an interleaving (expressed as a trace) conforms to a CML
execution. By translating the trace, which represents a history of
actions performed by the program, into an axiomatic execution that
subsumes the behavior of that trace, we can check if that execution
is well-formed, i.e., there are no cycles in the constructed happens-
before relation. However, in practice it is necessary to perform this
check on-the-fly; in other words, we need to build the relations
necessary to check the integrity of the interleaving as the program
executes. To do so, we construct a dependence graph that captures
the dependencies described by an axiomatic execution, and ensure
the graph has no cycles. If a cycle is detected, we rollback the
effects induced by the offending speculative action, and re-execute
it as a normal synchronous operation.

The context of our investigation is a distributed implementation
of CML called �CML(RELAXED CML)3 built on top of the Mul-
tiMLton SML compiler and runtime [16]. Before describing how

3 http://multimlton.cs.purdue.edu/mML/rx-cml.html

Cloud

ZeroMQ Pub/Sub

Serialization Support

     Instance
User-level 

threads
Communication

Manager
Cycle 

Detector

would result in a match of the send operation with a recv ac-
tion on the same thread. The prohibition of such behavior is en-
capsulated within the definition of well-formedness found in the
antecedent of the COMMIT rule that we formalize below.

We reason about sensible (well-formed) relaxed executions by
transforming them into an equivalent axiomatic one. A well-formed
REL execution is one whose corresponding axiomatic execution is
well-formed. Since an axiomatic semantics is parameterized by an
intra-thread semantics, we first provide a translation that produces
this semantics given the transitions defined by the operational se-
mantics.

Definition 14 (Intra-thread semantics). Given a program P, let

Stateintra := READY | DONE | e

where e 2 P. For each labeled transition of the form h(t, s)kT , �i ↵�!
h(t, s0)kT 0

, �0i, where ↵ 6= ✏(P,tr), we define �
�

�⇣ �0, where
�, �0 2 Stateintra such that:

• if s = READY
op

(e), then � = READY, otherwise, � = s.
• if s0 = DONE

op

, then �0 = DONE, otherwise �0 = s0

• if ↵ = ((ri

t

c), (sj

t

0c, v)) then � = (ri

t

c; v)
• if ↵ = ⌧

t

then � = ⌧
• otherwise, ↵ = �

Definition 15 (T OP
AX operator). Let E

o

= (P, tr) be an operational
execution. T OP

AX is defined as T OP
AX (E

o

) = hP, A, !
po

, Mi parame-
terized with the intra-thread semantics �⇣ (Definition 14), where

• A is a set of non-silent, non-commit actions in tr.
• for all ↵, � 2 A, ↵ !

po

� iff T (↵) = T (�) and ↵ precedes �
in tr.

• for all pairs ((ri

t

c), (sj

t

0c, v)) in tr, M(ri

t

c) = sj

t

0c, v and
M(sj

t

0c, v) = ri

t

c.

For perspicuity, in the definition of A and !
po

above, a receive
operational action (a, b) 2 A

op

is simply treated as a 2 A
r

.

Definition 16 (Well-formed REL execution). Let E
o

= (P, tr) 2
REL(P) be an operational execution. If the axiomatic execution
E

ax

= T OP
AX (E

o

) is well-formed, then E
o

is well-formed.

Theorem 17. If E
o

= (P, tr) and WF(E
o

), then
(T OP

AX (E
o

), !
to

) 2 CML(P).

Proof Sketch. Details are provided in the supplementary material.

5. Implementation
The operational semantics defined in the previous section checks
whether an interleaving (expressed as a trace) conforms to a CML
execution. By translating the trace, which represents a history of
actions performed by the program, into an axiomatic execution that
subsumes the behavior of that trace, we can check if that execution
is well-formed, i.e., there are no cycles in the constructed happens-
before relation. However, in practice it is necessary to perform this
check on-the-fly; in other words, we need to build the relations
necessary to check the integrity of the interleaving as the program
executes. To do so, we construct a dependence graph that captures
the dependencies described by an axiomatic execution, and ensure
the graph has no cycles. If a cycle is detected, we rollback the
effects induced by the offending speculative action, and re-execute
it as a normal synchronous operation.

The context of our investigation is a distributed implementation
of CML called �CML(RELAXED CML)3 built on top of the Mul-
tiMLton SML compiler and runtime [16]. Before describing how

3 http://multimlton.cs.purdue.edu/mML/rx-cml.html

Cloud

ZeroMQ Pub/Sub

Serialization Support

C-Rex Instance
User-level 

threads
Communication

Manager
Cycle 

Detector

Figure 6: �CML application stack.

we build, maintain, and check the distributed dependence graph, we
first describe some of the challenges, several of which have overlap-
ping concerns, in transplanting CML to a distributed environment:

• Absence of coherent shared memory: In a shared-memory
environment, CML channels can be implemented as a lock-
protected queues. This enables communicating threads to atom-
ically poll the channels for availability of a matching commu-
nication, and block on the channel if none is available. In a dis-
tributed setting, it is necessary to reason about multiple repli-
cated, yet globally consistent, versions of CML channels.

• Serialization: CML channels allow typesafe communication
of polymorphic values. Since CML imposes no restriction on
these values, which may be arbitrarily complex data structures,
a serialization mechanism that can communicate these values
across different machines is necessary.

• Transport layer: CML channels allow multiple producers
and consumers to operate over the same channel. Supporting
this functionality in a distributed setting requires an intelligent
transport layer that supports efficient broadcast as a primitive
operation.

• Speculative Execution: Central to �CML’s design is the specu-
lative execution of message sends that allows a synchronous
send to be transparently executed asynchronously. Because
speculations can be wrong, the implementation must provide
a low-cost mechanism to save application state, detect errors,
and rollback to a globally consistent state without requiring a
global barrier for error detection or rollback.
The ability to construct globally consistent checkpoints can also
effectively serve as a vehicle to handle process failures.

A schematic diagram of the �CML application stack is presented in
Figure 6. A �CML application consists of multiple instances, each
of which is the same MLton program. These instances might run
on the same node, on different nodes within the same datacenter,
or on nodes found in different data centers. Each instance has a
scheduler which preemptively multiplexes execution of user-level
CML threads.

5.1 System Architecture
5.1.1 Transport Layer
Communication between instances is performed through the Ze-
roMQ messaging library [28]. ZeroMQ is not a true message bro-
ker unlike other systems such as RabbitMQ [19], etc., and transmits
messages directly between processes that use ZeroMQ library with-
out the involvement of a broker process. In addition to providing
reliable and efficient point-to-point communication, ZeroMQ also
provides the ability to construct higher-level multicast patterns. In
particular, we leverage ZeroMQ’s publish/subscribe support to im-
plement CML channel communication.

7 2013/4/2

Figure 6: �CML application stack.

we build, maintain, and check the distributed dependence graph, we
first describe some of the challenges, several of which have overlap-
ping concerns, in transplanting CML to a distributed environment:

• Absence of coherent shared memory: In a shared-memory
environment, CML channels can be implemented as a lock-
protected queues. This enables communicating threads to atom-
ically poll the channels for availability of a matching commu-
nication, and block on the channel if none is available. In a dis-
tributed setting, it is necessary to reason about multiple repli-
cated, yet globally consistent, versions of CML channels.

• Serialization: CML channels allow typesafe communication
of polymorphic values. Since CML imposes no restriction on
these values, which may be arbitrarily complex data structures,
a serialization mechanism that can communicate these values
across different machines is necessary.

• Transport layer: CML channels allow multiple producers
and consumers to operate over the same channel. Supporting
this functionality in a distributed setting requires an intelligent
transport layer that supports efficient broadcast as a primitive
operation.

• Speculative Execution: Central to �CML’s design is the specu-
lative execution of message sends that allows a synchronous
send to be transparently executed asynchronously. Because
speculations can be wrong, the implementation must provide
a low-cost mechanism to save application state, detect errors,
and rollback to a globally consistent state without requiring a
global barrier for error detection or rollback.
The ability to construct globally consistent checkpoints can also
effectively serve as a vehicle to handle process failures.

A schematic diagram of the �CML application stack is presented in
Figure 6. A �CML application consists of multiple instances, each
of which is the same MLton program. These instances might run
on the same node, on different nodes within the same datacenter,
or on nodes found in different data centers. Each instance has a
scheduler which preemptively multiplexes execution of user-level
CML threads.

5.1 System Architecture
5.1.1 Transport Layer
Communication between instances is performed through the Ze-
roMQ messaging library [28]. ZeroMQ is not a true message bro-
ker unlike other systems such as RabbitMQ [19], etc., and transmits
messages directly between processes that use ZeroMQ library with-
out the involvement of a broker process. In addition to providing
reliable and efficient point-to-point communication, ZeroMQ also
provides the ability to construct higher-level multicast patterns. In
particular, we leverage ZeroMQ’s publish/subscribe support to im-
plement CML channel communication.

7 2013/4/12

20

Tuesday, January 21, 14



Implementation: Overview
• ℞-CML: RelaXed CML

★ MultiMLton with distribution support

★ Rx-CML application = {Instances}

★ Supports full CML

★ Built-in serialization (immutable values and function closures)

★ Transport layer is ZeroMQ

would result in a match of the send operation with a recv ac-
tion on the same thread. The prohibition of such behavior is en-
capsulated within the definition of well-formedness found in the
antecedent of the COMMIT rule that we formalize below.

We reason about sensible (well-formed) relaxed executions by
transforming them into an equivalent axiomatic one. A well-formed
REL execution is one whose corresponding axiomatic execution is
well-formed. Since an axiomatic semantics is parameterized by an
intra-thread semantics, we first provide a translation that produces
this semantics given the transitions defined by the operational se-
mantics.

Definition 14 (Intra-thread semantics). Given a program P, let

Stateintra := READY | DONE | e

where e 2 P. For each labeled transition of the form h(t, s)kT , �i ↵�!
h(t, s0)kT 0

, �0i, where ↵ 6= ✏(P,tr), we define �
�

�⇣ �0, where
�, �0 2 Stateintra such that:

• if s = READY
op

(e), then � = READY, otherwise, � = s.
• if s0 = DONE

op

, then �0 = DONE, otherwise �0 = s0

• if ↵ = ((ri

t

c), (sj

t

0c, v)) then � = (ri

t

c; v)
• if ↵ = ⌧

t

then � = ⌧
• otherwise, ↵ = �

Definition 15 (T OP
AX operator). Let E

o

= (P, tr) be an operational
execution. T OP

AX is defined as T OP
AX (E

o

) = hP, A, !
po

, Mi parame-
terized with the intra-thread semantics �⇣ (Definition 14), where

• A is a set of non-silent, non-commit actions in tr.
• for all ↵, � 2 A, ↵ !

po

� iff T (↵) = T (�) and ↵ precedes �
in tr.

• for all pairs ((ri

t

c), (sj

t

0c, v)) in tr, M(ri

t

c) = sj

t

0c, v and
M(sj

t

0c, v) = ri

t

c.

For perspicuity, in the definition of A and !
po

above, a receive
operational action (a, b) 2 A

op

is simply treated as a 2 A
r

.

Definition 16 (Well-formed REL execution). Let E
o

= (P, tr) 2
REL(P) be an operational execution. If the axiomatic execution
E

ax

= T OP
AX (E

o

) is well-formed, then E
o

is well-formed.

Theorem 17. If E
o

= (P, tr) and WF(E
o

), then
(T OP

AX (E
o

), !
to

) 2 CML(P).

Proof Sketch. Details are provided in the supplementary material.

5. Implementation
The operational semantics defined in the previous section checks
whether an interleaving (expressed as a trace) conforms to a CML
execution. By translating the trace, which represents a history of
actions performed by the program, into an axiomatic execution that
subsumes the behavior of that trace, we can check if that execution
is well-formed, i.e., there are no cycles in the constructed happens-
before relation. However, in practice it is necessary to perform this
check on-the-fly; in other words, we need to build the relations
necessary to check the integrity of the interleaving as the program
executes. To do so, we construct a dependence graph that captures
the dependencies described by an axiomatic execution, and ensure
the graph has no cycles. If a cycle is detected, we rollback the
effects induced by the offending speculative action, and re-execute
it as a normal synchronous operation.

The context of our investigation is a distributed implementation
of CML called �CML(RELAXED CML)3 built on top of the Mul-
tiMLton SML compiler and runtime [16]. Before describing how

3 http://multimlton.cs.purdue.edu/mML/rx-cml.html

Cloud

ZeroMQ Pub/Sub

Serialization Support

     Instance
User-level 

threads
Communication

Manager
Cycle 

Detector

would result in a match of the send operation with a recv ac-
tion on the same thread. The prohibition of such behavior is en-
capsulated within the definition of well-formedness found in the
antecedent of the COMMIT rule that we formalize below.

We reason about sensible (well-formed) relaxed executions by
transforming them into an equivalent axiomatic one. A well-formed
REL execution is one whose corresponding axiomatic execution is
well-formed. Since an axiomatic semantics is parameterized by an
intra-thread semantics, we first provide a translation that produces
this semantics given the transitions defined by the operational se-
mantics.

Definition 14 (Intra-thread semantics). Given a program P, let

Stateintra := READY | DONE | e

where e 2 P. For each labeled transition of the form h(t, s)kT , �i ↵�!
h(t, s0)kT 0

, �0i, where ↵ 6= ✏(P,tr), we define �
�

�⇣ �0, where
�, �0 2 Stateintra such that:

• if s = READY
op

(e), then � = READY, otherwise, � = s.
• if s0 = DONE

op

, then �0 = DONE, otherwise �0 = s0

• if ↵ = ((ri

t

c), (sj

t

0c, v)) then � = (ri

t

c; v)
• if ↵ = ⌧

t

then � = ⌧
• otherwise, ↵ = �

Definition 15 (T OP
AX operator). Let E

o

= (P, tr) be an operational
execution. T OP

AX is defined as T OP
AX (E

o

) = hP, A, !
po

, Mi parame-
terized with the intra-thread semantics �⇣ (Definition 14), where

• A is a set of non-silent, non-commit actions in tr.
• for all ↵, � 2 A, ↵ !

po

� iff T (↵) = T (�) and ↵ precedes �
in tr.

• for all pairs ((ri

t

c), (sj

t

0c, v)) in tr, M(ri

t

c) = sj

t

0c, v and
M(sj

t

0c, v) = ri

t

c.

For perspicuity, in the definition of A and !
po

above, a receive
operational action (a, b) 2 A

op

is simply treated as a 2 A
r

.

Definition 16 (Well-formed REL execution). Let E
o

= (P, tr) 2
REL(P) be an operational execution. If the axiomatic execution
E

ax

= T OP
AX (E

o

) is well-formed, then E
o

is well-formed.

Theorem 17. If E
o

= (P, tr) and WF(E
o

), then
(T OP

AX (E
o

), !
to

) 2 CML(P).

Proof Sketch. Details are provided in the supplementary material.

5. Implementation
The operational semantics defined in the previous section checks
whether an interleaving (expressed as a trace) conforms to a CML
execution. By translating the trace, which represents a history of
actions performed by the program, into an axiomatic execution that
subsumes the behavior of that trace, we can check if that execution
is well-formed, i.e., there are no cycles in the constructed happens-
before relation. However, in practice it is necessary to perform this
check on-the-fly; in other words, we need to build the relations
necessary to check the integrity of the interleaving as the program
executes. To do so, we construct a dependence graph that captures
the dependencies described by an axiomatic execution, and ensure
the graph has no cycles. If a cycle is detected, we rollback the
effects induced by the offending speculative action, and re-execute
it as a normal synchronous operation.

The context of our investigation is a distributed implementation
of CML called �CML(RELAXED CML)3 built on top of the Mul-
tiMLton SML compiler and runtime [16]. Before describing how

3 http://multimlton.cs.purdue.edu/mML/rx-cml.html

Cloud

ZeroMQ Pub/Sub

Serialization Support

C-Rex Instance
User-level 

threads
Communication

Manager
Cycle 

Detector

Figure 6: �CML application stack.

we build, maintain, and check the distributed dependence graph, we
first describe some of the challenges, several of which have overlap-
ping concerns, in transplanting CML to a distributed environment:

• Absence of coherent shared memory: In a shared-memory
environment, CML channels can be implemented as a lock-
protected queues. This enables communicating threads to atom-
ically poll the channels for availability of a matching commu-
nication, and block on the channel if none is available. In a dis-
tributed setting, it is necessary to reason about multiple repli-
cated, yet globally consistent, versions of CML channels.

• Serialization: CML channels allow typesafe communication
of polymorphic values. Since CML imposes no restriction on
these values, which may be arbitrarily complex data structures,
a serialization mechanism that can communicate these values
across different machines is necessary.

• Transport layer: CML channels allow multiple producers
and consumers to operate over the same channel. Supporting
this functionality in a distributed setting requires an intelligent
transport layer that supports efficient broadcast as a primitive
operation.

• Speculative Execution: Central to �CML’s design is the specu-
lative execution of message sends that allows a synchronous
send to be transparently executed asynchronously. Because
speculations can be wrong, the implementation must provide
a low-cost mechanism to save application state, detect errors,
and rollback to a globally consistent state without requiring a
global barrier for error detection or rollback.
The ability to construct globally consistent checkpoints can also
effectively serve as a vehicle to handle process failures.

A schematic diagram of the �CML application stack is presented in
Figure 6. A �CML application consists of multiple instances, each
of which is the same MLton program. These instances might run
on the same node, on different nodes within the same datacenter,
or on nodes found in different data centers. Each instance has a
scheduler which preemptively multiplexes execution of user-level
CML threads.

5.1 System Architecture
5.1.1 Transport Layer
Communication between instances is performed through the Ze-
roMQ messaging library [28]. ZeroMQ is not a true message bro-
ker unlike other systems such as RabbitMQ [19], etc., and transmits
messages directly between processes that use ZeroMQ library with-
out the involvement of a broker process. In addition to providing
reliable and efficient point-to-point communication, ZeroMQ also
provides the ability to construct higher-level multicast patterns. In
particular, we leverage ZeroMQ’s publish/subscribe support to im-
plement CML channel communication.

7 2013/4/2

Figure 6: �CML application stack.

we build, maintain, and check the distributed dependence graph, we
first describe some of the challenges, several of which have overlap-
ping concerns, in transplanting CML to a distributed environment:

• Absence of coherent shared memory: In a shared-memory
environment, CML channels can be implemented as a lock-
protected queues. This enables communicating threads to atom-
ically poll the channels for availability of a matching commu-
nication, and block on the channel if none is available. In a dis-
tributed setting, it is necessary to reason about multiple repli-
cated, yet globally consistent, versions of CML channels.

• Serialization: CML channels allow typesafe communication
of polymorphic values. Since CML imposes no restriction on
these values, which may be arbitrarily complex data structures,
a serialization mechanism that can communicate these values
across different machines is necessary.

• Transport layer: CML channels allow multiple producers
and consumers to operate over the same channel. Supporting
this functionality in a distributed setting requires an intelligent
transport layer that supports efficient broadcast as a primitive
operation.

• Speculative Execution: Central to �CML’s design is the specu-
lative execution of message sends that allows a synchronous
send to be transparently executed asynchronously. Because
speculations can be wrong, the implementation must provide
a low-cost mechanism to save application state, detect errors,
and rollback to a globally consistent state without requiring a
global barrier for error detection or rollback.
The ability to construct globally consistent checkpoints can also
effectively serve as a vehicle to handle process failures.

A schematic diagram of the �CML application stack is presented in
Figure 6. A �CML application consists of multiple instances, each
of which is the same MLton program. These instances might run
on the same node, on different nodes within the same datacenter,
or on nodes found in different data centers. Each instance has a
scheduler which preemptively multiplexes execution of user-level
CML threads.

5.1 System Architecture
5.1.1 Transport Layer
Communication between instances is performed through the Ze-
roMQ messaging library [28]. ZeroMQ is not a true message bro-
ker unlike other systems such as RabbitMQ [19], etc., and transmits
messages directly between processes that use ZeroMQ library with-
out the involvement of a broker process. In addition to providing
reliable and efficient point-to-point communication, ZeroMQ also
provides the ability to construct higher-level multicast patterns. In
particular, we leverage ZeroMQ’s publish/subscribe support to im-
plement CML channel communication.

7 2013/4/12

20

• Check the integrity of the speculative actions on-the-fly

Tuesday, January 21, 14



Implementation: Overview
• ℞-CML: RelaXed CML

★ MultiMLton with distribution support

★ Rx-CML application = {Instances}

★ Supports full CML

★ Built-in serialization (immutable values and function closures)

★ Transport layer is ZeroMQ

would result in a match of the send operation with a recv ac-
tion on the same thread. The prohibition of such behavior is en-
capsulated within the definition of well-formedness found in the
antecedent of the COMMIT rule that we formalize below.

We reason about sensible (well-formed) relaxed executions by
transforming them into an equivalent axiomatic one. A well-formed
REL execution is one whose corresponding axiomatic execution is
well-formed. Since an axiomatic semantics is parameterized by an
intra-thread semantics, we first provide a translation that produces
this semantics given the transitions defined by the operational se-
mantics.

Definition 14 (Intra-thread semantics). Given a program P, let

Stateintra := READY | DONE | e

where e 2 P. For each labeled transition of the form h(t, s)kT , �i ↵�!
h(t, s0)kT 0

, �0i, where ↵ 6= ✏(P,tr), we define �
�

�⇣ �0, where
�, �0 2 Stateintra such that:

• if s = READY
op

(e), then � = READY, otherwise, � = s.
• if s0 = DONE

op

, then �0 = DONE, otherwise �0 = s0

• if ↵ = ((ri

t

c), (sj

t

0c, v)) then � = (ri

t

c; v)
• if ↵ = ⌧

t

then � = ⌧
• otherwise, ↵ = �

Definition 15 (T OP
AX operator). Let E

o

= (P, tr) be an operational
execution. T OP

AX is defined as T OP
AX (E

o

) = hP, A, !
po

, Mi parame-
terized with the intra-thread semantics �⇣ (Definition 14), where

• A is a set of non-silent, non-commit actions in tr.
• for all ↵, � 2 A, ↵ !

po

� iff T (↵) = T (�) and ↵ precedes �
in tr.

• for all pairs ((ri

t

c), (sj

t

0c, v)) in tr, M(ri

t

c) = sj

t

0c, v and
M(sj

t

0c, v) = ri

t

c.

For perspicuity, in the definition of A and !
po

above, a receive
operational action (a, b) 2 A

op

is simply treated as a 2 A
r

.

Definition 16 (Well-formed REL execution). Let E
o

= (P, tr) 2
REL(P) be an operational execution. If the axiomatic execution
E

ax

= T OP
AX (E

o

) is well-formed, then E
o

is well-formed.

Theorem 17. If E
o

= (P, tr) and WF(E
o

), then
(T OP

AX (E
o

), !
to

) 2 CML(P).

Proof Sketch. Details are provided in the supplementary material.

5. Implementation
The operational semantics defined in the previous section checks
whether an interleaving (expressed as a trace) conforms to a CML
execution. By translating the trace, which represents a history of
actions performed by the program, into an axiomatic execution that
subsumes the behavior of that trace, we can check if that execution
is well-formed, i.e., there are no cycles in the constructed happens-
before relation. However, in practice it is necessary to perform this
check on-the-fly; in other words, we need to build the relations
necessary to check the integrity of the interleaving as the program
executes. To do so, we construct a dependence graph that captures
the dependencies described by an axiomatic execution, and ensure
the graph has no cycles. If a cycle is detected, we rollback the
effects induced by the offending speculative action, and re-execute
it as a normal synchronous operation.

The context of our investigation is a distributed implementation
of CML called �CML(RELAXED CML)3 built on top of the Mul-
tiMLton SML compiler and runtime [16]. Before describing how

3 http://multimlton.cs.purdue.edu/mML/rx-cml.html

Cloud

ZeroMQ Pub/Sub

Serialization Support

     Instance
User-level 

threads
Communication

Manager
Cycle 

Detector

would result in a match of the send operation with a recv ac-
tion on the same thread. The prohibition of such behavior is en-
capsulated within the definition of well-formedness found in the
antecedent of the COMMIT rule that we formalize below.

We reason about sensible (well-formed) relaxed executions by
transforming them into an equivalent axiomatic one. A well-formed
REL execution is one whose corresponding axiomatic execution is
well-formed. Since an axiomatic semantics is parameterized by an
intra-thread semantics, we first provide a translation that produces
this semantics given the transitions defined by the operational se-
mantics.

Definition 14 (Intra-thread semantics). Given a program P, let

Stateintra := READY | DONE | e

where e 2 P. For each labeled transition of the form h(t, s)kT , �i ↵�!
h(t, s0)kT 0

, �0i, where ↵ 6= ✏(P,tr), we define �
�

�⇣ �0, where
�, �0 2 Stateintra such that:

• if s = READY
op

(e), then � = READY, otherwise, � = s.
• if s0 = DONE

op

, then �0 = DONE, otherwise �0 = s0

• if ↵ = ((ri

t

c), (sj

t

0c, v)) then � = (ri

t

c; v)
• if ↵ = ⌧

t

then � = ⌧
• otherwise, ↵ = �

Definition 15 (T OP
AX operator). Let E

o

= (P, tr) be an operational
execution. T OP

AX is defined as T OP
AX (E

o

) = hP, A, !
po

, Mi parame-
terized with the intra-thread semantics �⇣ (Definition 14), where

• A is a set of non-silent, non-commit actions in tr.
• for all ↵, � 2 A, ↵ !

po

� iff T (↵) = T (�) and ↵ precedes �
in tr.

• for all pairs ((ri

t

c), (sj

t

0c, v)) in tr, M(ri

t

c) = sj

t

0c, v and
M(sj

t

0c, v) = ri

t

c.

For perspicuity, in the definition of A and !
po

above, a receive
operational action (a, b) 2 A

op

is simply treated as a 2 A
r

.

Definition 16 (Well-formed REL execution). Let E
o

= (P, tr) 2
REL(P) be an operational execution. If the axiomatic execution
E

ax

= T OP
AX (E

o

) is well-formed, then E
o

is well-formed.

Theorem 17. If E
o

= (P, tr) and WF(E
o

), then
(T OP

AX (E
o

), !
to

) 2 CML(P).

Proof Sketch. Details are provided in the supplementary material.

5. Implementation
The operational semantics defined in the previous section checks
whether an interleaving (expressed as a trace) conforms to a CML
execution. By translating the trace, which represents a history of
actions performed by the program, into an axiomatic execution that
subsumes the behavior of that trace, we can check if that execution
is well-formed, i.e., there are no cycles in the constructed happens-
before relation. However, in practice it is necessary to perform this
check on-the-fly; in other words, we need to build the relations
necessary to check the integrity of the interleaving as the program
executes. To do so, we construct a dependence graph that captures
the dependencies described by an axiomatic execution, and ensure
the graph has no cycles. If a cycle is detected, we rollback the
effects induced by the offending speculative action, and re-execute
it as a normal synchronous operation.

The context of our investigation is a distributed implementation
of CML called �CML(RELAXED CML)3 built on top of the Mul-
tiMLton SML compiler and runtime [16]. Before describing how

3 http://multimlton.cs.purdue.edu/mML/rx-cml.html

Cloud

ZeroMQ Pub/Sub

Serialization Support

C-Rex Instance
User-level 

threads
Communication

Manager
Cycle 

Detector

Figure 6: �CML application stack.

we build, maintain, and check the distributed dependence graph, we
first describe some of the challenges, several of which have overlap-
ping concerns, in transplanting CML to a distributed environment:

• Absence of coherent shared memory: In a shared-memory
environment, CML channels can be implemented as a lock-
protected queues. This enables communicating threads to atom-
ically poll the channels for availability of a matching commu-
nication, and block on the channel if none is available. In a dis-
tributed setting, it is necessary to reason about multiple repli-
cated, yet globally consistent, versions of CML channels.

• Serialization: CML channels allow typesafe communication
of polymorphic values. Since CML imposes no restriction on
these values, which may be arbitrarily complex data structures,
a serialization mechanism that can communicate these values
across different machines is necessary.

• Transport layer: CML channels allow multiple producers
and consumers to operate over the same channel. Supporting
this functionality in a distributed setting requires an intelligent
transport layer that supports efficient broadcast as a primitive
operation.

• Speculative Execution: Central to �CML’s design is the specu-
lative execution of message sends that allows a synchronous
send to be transparently executed asynchronously. Because
speculations can be wrong, the implementation must provide
a low-cost mechanism to save application state, detect errors,
and rollback to a globally consistent state without requiring a
global barrier for error detection or rollback.
The ability to construct globally consistent checkpoints can also
effectively serve as a vehicle to handle process failures.

A schematic diagram of the �CML application stack is presented in
Figure 6. A �CML application consists of multiple instances, each
of which is the same MLton program. These instances might run
on the same node, on different nodes within the same datacenter,
or on nodes found in different data centers. Each instance has a
scheduler which preemptively multiplexes execution of user-level
CML threads.

5.1 System Architecture
5.1.1 Transport Layer
Communication between instances is performed through the Ze-
roMQ messaging library [28]. ZeroMQ is not a true message bro-
ker unlike other systems such as RabbitMQ [19], etc., and transmits
messages directly between processes that use ZeroMQ library with-
out the involvement of a broker process. In addition to providing
reliable and efficient point-to-point communication, ZeroMQ also
provides the ability to construct higher-level multicast patterns. In
particular, we leverage ZeroMQ’s publish/subscribe support to im-
plement CML channel communication.

7 2013/4/2

Figure 6: �CML application stack.

we build, maintain, and check the distributed dependence graph, we
first describe some of the challenges, several of which have overlap-
ping concerns, in transplanting CML to a distributed environment:

• Absence of coherent shared memory: In a shared-memory
environment, CML channels can be implemented as a lock-
protected queues. This enables communicating threads to atom-
ically poll the channels for availability of a matching commu-
nication, and block on the channel if none is available. In a dis-
tributed setting, it is necessary to reason about multiple repli-
cated, yet globally consistent, versions of CML channels.

• Serialization: CML channels allow typesafe communication
of polymorphic values. Since CML imposes no restriction on
these values, which may be arbitrarily complex data structures,
a serialization mechanism that can communicate these values
across different machines is necessary.

• Transport layer: CML channels allow multiple producers
and consumers to operate over the same channel. Supporting
this functionality in a distributed setting requires an intelligent
transport layer that supports efficient broadcast as a primitive
operation.

• Speculative Execution: Central to �CML’s design is the specu-
lative execution of message sends that allows a synchronous
send to be transparently executed asynchronously. Because
speculations can be wrong, the implementation must provide
a low-cost mechanism to save application state, detect errors,
and rollback to a globally consistent state without requiring a
global barrier for error detection or rollback.
The ability to construct globally consistent checkpoints can also
effectively serve as a vehicle to handle process failures.

A schematic diagram of the �CML application stack is presented in
Figure 6. A �CML application consists of multiple instances, each
of which is the same MLton program. These instances might run
on the same node, on different nodes within the same datacenter,
or on nodes found in different data centers. Each instance has a
scheduler which preemptively multiplexes execution of user-level
CML threads.

5.1 System Architecture
5.1.1 Transport Layer
Communication between instances is performed through the Ze-
roMQ messaging library [28]. ZeroMQ is not a true message bro-
ker unlike other systems such as RabbitMQ [19], etc., and transmits
messages directly between processes that use ZeroMQ library with-
out the involvement of a broker process. In addition to providing
reliable and efficient point-to-point communication, ZeroMQ also
provides the ability to construct higher-level multicast patterns. In
particular, we leverage ZeroMQ’s publish/subscribe support to im-
plement CML channel communication.

7 2013/4/12

20

• Check the integrity of the speculative actions on-the-fly
★ Build a dependence graph that captures happens-before relation

Tuesday, January 21, 14



Implementation: Overview
• ℞-CML: RelaXed CML

★ MultiMLton with distribution support

★ Rx-CML application = {Instances}

★ Supports full CML

★ Built-in serialization (immutable values and function closures)

★ Transport layer is ZeroMQ

would result in a match of the send operation with a recv ac-
tion on the same thread. The prohibition of such behavior is en-
capsulated within the definition of well-formedness found in the
antecedent of the COMMIT rule that we formalize below.

We reason about sensible (well-formed) relaxed executions by
transforming them into an equivalent axiomatic one. A well-formed
REL execution is one whose corresponding axiomatic execution is
well-formed. Since an axiomatic semantics is parameterized by an
intra-thread semantics, we first provide a translation that produces
this semantics given the transitions defined by the operational se-
mantics.

Definition 14 (Intra-thread semantics). Given a program P, let

Stateintra := READY | DONE | e

where e 2 P. For each labeled transition of the form h(t, s)kT , �i ↵�!
h(t, s0)kT 0

, �0i, where ↵ 6= ✏(P,tr), we define �
�

�⇣ �0, where
�, �0 2 Stateintra such that:

• if s = READY
op

(e), then � = READY, otherwise, � = s.
• if s0 = DONE

op

, then �0 = DONE, otherwise �0 = s0

• if ↵ = ((ri

t

c), (sj

t

0c, v)) then � = (ri

t

c; v)
• if ↵ = ⌧

t

then � = ⌧
• otherwise, ↵ = �

Definition 15 (T OP
AX operator). Let E

o

= (P, tr) be an operational
execution. T OP

AX is defined as T OP
AX (E

o

) = hP, A, !
po

, Mi parame-
terized with the intra-thread semantics �⇣ (Definition 14), where

• A is a set of non-silent, non-commit actions in tr.
• for all ↵, � 2 A, ↵ !

po

� iff T (↵) = T (�) and ↵ precedes �
in tr.

• for all pairs ((ri

t

c), (sj

t

0c, v)) in tr, M(ri

t

c) = sj

t

0c, v and
M(sj

t

0c, v) = ri

t

c.

For perspicuity, in the definition of A and !
po

above, a receive
operational action (a, b) 2 A

op

is simply treated as a 2 A
r

.

Definition 16 (Well-formed REL execution). Let E
o

= (P, tr) 2
REL(P) be an operational execution. If the axiomatic execution
E

ax

= T OP
AX (E

o

) is well-formed, then E
o

is well-formed.

Theorem 17. If E
o

= (P, tr) and WF(E
o

), then
(T OP

AX (E
o

), !
to

) 2 CML(P).

Proof Sketch. Details are provided in the supplementary material.

5. Implementation
The operational semantics defined in the previous section checks
whether an interleaving (expressed as a trace) conforms to a CML
execution. By translating the trace, which represents a history of
actions performed by the program, into an axiomatic execution that
subsumes the behavior of that trace, we can check if that execution
is well-formed, i.e., there are no cycles in the constructed happens-
before relation. However, in practice it is necessary to perform this
check on-the-fly; in other words, we need to build the relations
necessary to check the integrity of the interleaving as the program
executes. To do so, we construct a dependence graph that captures
the dependencies described by an axiomatic execution, and ensure
the graph has no cycles. If a cycle is detected, we rollback the
effects induced by the offending speculative action, and re-execute
it as a normal synchronous operation.

The context of our investigation is a distributed implementation
of CML called �CML(RELAXED CML)3 built on top of the Mul-
tiMLton SML compiler and runtime [16]. Before describing how

3 http://multimlton.cs.purdue.edu/mML/rx-cml.html

Cloud

ZeroMQ Pub/Sub

Serialization Support

     Instance
User-level 

threads
Communication

Manager
Cycle 

Detector

would result in a match of the send operation with a recv ac-
tion on the same thread. The prohibition of such behavior is en-
capsulated within the definition of well-formedness found in the
antecedent of the COMMIT rule that we formalize below.

We reason about sensible (well-formed) relaxed executions by
transforming them into an equivalent axiomatic one. A well-formed
REL execution is one whose corresponding axiomatic execution is
well-formed. Since an axiomatic semantics is parameterized by an
intra-thread semantics, we first provide a translation that produces
this semantics given the transitions defined by the operational se-
mantics.

Definition 14 (Intra-thread semantics). Given a program P, let

Stateintra := READY | DONE | e

where e 2 P. For each labeled transition of the form h(t, s)kT , �i ↵�!
h(t, s0)kT 0

, �0i, where ↵ 6= ✏(P,tr), we define �
�

�⇣ �0, where
�, �0 2 Stateintra such that:

• if s = READY
op

(e), then � = READY, otherwise, � = s.
• if s0 = DONE

op

, then �0 = DONE, otherwise �0 = s0

• if ↵ = ((ri

t

c), (sj

t

0c, v)) then � = (ri

t

c; v)
• if ↵ = ⌧

t

then � = ⌧
• otherwise, ↵ = �

Definition 15 (T OP
AX operator). Let E

o

= (P, tr) be an operational
execution. T OP

AX is defined as T OP
AX (E

o

) = hP, A, !
po

, Mi parame-
terized with the intra-thread semantics �⇣ (Definition 14), where

• A is a set of non-silent, non-commit actions in tr.
• for all ↵, � 2 A, ↵ !

po

� iff T (↵) = T (�) and ↵ precedes �
in tr.

• for all pairs ((ri

t

c), (sj

t

0c, v)) in tr, M(ri

t

c) = sj

t

0c, v and
M(sj

t

0c, v) = ri

t

c.

For perspicuity, in the definition of A and !
po

above, a receive
operational action (a, b) 2 A

op

is simply treated as a 2 A
r

.

Definition 16 (Well-formed REL execution). Let E
o

= (P, tr) 2
REL(P) be an operational execution. If the axiomatic execution
E

ax

= T OP
AX (E

o

) is well-formed, then E
o

is well-formed.

Theorem 17. If E
o

= (P, tr) and WF(E
o

), then
(T OP

AX (E
o

), !
to

) 2 CML(P).

Proof Sketch. Details are provided in the supplementary material.

5. Implementation
The operational semantics defined in the previous section checks
whether an interleaving (expressed as a trace) conforms to a CML
execution. By translating the trace, which represents a history of
actions performed by the program, into an axiomatic execution that
subsumes the behavior of that trace, we can check if that execution
is well-formed, i.e., there are no cycles in the constructed happens-
before relation. However, in practice it is necessary to perform this
check on-the-fly; in other words, we need to build the relations
necessary to check the integrity of the interleaving as the program
executes. To do so, we construct a dependence graph that captures
the dependencies described by an axiomatic execution, and ensure
the graph has no cycles. If a cycle is detected, we rollback the
effects induced by the offending speculative action, and re-execute
it as a normal synchronous operation.

The context of our investigation is a distributed implementation
of CML called �CML(RELAXED CML)3 built on top of the Mul-
tiMLton SML compiler and runtime [16]. Before describing how

3 http://multimlton.cs.purdue.edu/mML/rx-cml.html

Cloud

ZeroMQ Pub/Sub

Serialization Support

C-Rex Instance
User-level 

threads
Communication

Manager
Cycle 

Detector

Figure 6: �CML application stack.

we build, maintain, and check the distributed dependence graph, we
first describe some of the challenges, several of which have overlap-
ping concerns, in transplanting CML to a distributed environment:

• Absence of coherent shared memory: In a shared-memory
environment, CML channels can be implemented as a lock-
protected queues. This enables communicating threads to atom-
ically poll the channels for availability of a matching commu-
nication, and block on the channel if none is available. In a dis-
tributed setting, it is necessary to reason about multiple repli-
cated, yet globally consistent, versions of CML channels.

• Serialization: CML channels allow typesafe communication
of polymorphic values. Since CML imposes no restriction on
these values, which may be arbitrarily complex data structures,
a serialization mechanism that can communicate these values
across different machines is necessary.

• Transport layer: CML channels allow multiple producers
and consumers to operate over the same channel. Supporting
this functionality in a distributed setting requires an intelligent
transport layer that supports efficient broadcast as a primitive
operation.

• Speculative Execution: Central to �CML’s design is the specu-
lative execution of message sends that allows a synchronous
send to be transparently executed asynchronously. Because
speculations can be wrong, the implementation must provide
a low-cost mechanism to save application state, detect errors,
and rollback to a globally consistent state without requiring a
global barrier for error detection or rollback.
The ability to construct globally consistent checkpoints can also
effectively serve as a vehicle to handle process failures.

A schematic diagram of the �CML application stack is presented in
Figure 6. A �CML application consists of multiple instances, each
of which is the same MLton program. These instances might run
on the same node, on different nodes within the same datacenter,
or on nodes found in different data centers. Each instance has a
scheduler which preemptively multiplexes execution of user-level
CML threads.

5.1 System Architecture
5.1.1 Transport Layer
Communication between instances is performed through the Ze-
roMQ messaging library [28]. ZeroMQ is not a true message bro-
ker unlike other systems such as RabbitMQ [19], etc., and transmits
messages directly between processes that use ZeroMQ library with-
out the involvement of a broker process. In addition to providing
reliable and efficient point-to-point communication, ZeroMQ also
provides the ability to construct higher-level multicast patterns. In
particular, we leverage ZeroMQ’s publish/subscribe support to im-
plement CML channel communication.

7 2013/4/2

Figure 6: �CML application stack.

we build, maintain, and check the distributed dependence graph, we
first describe some of the challenges, several of which have overlap-
ping concerns, in transplanting CML to a distributed environment:

• Absence of coherent shared memory: In a shared-memory
environment, CML channels can be implemented as a lock-
protected queues. This enables communicating threads to atom-
ically poll the channels for availability of a matching commu-
nication, and block on the channel if none is available. In a dis-
tributed setting, it is necessary to reason about multiple repli-
cated, yet globally consistent, versions of CML channels.

• Serialization: CML channels allow typesafe communication
of polymorphic values. Since CML imposes no restriction on
these values, which may be arbitrarily complex data structures,
a serialization mechanism that can communicate these values
across different machines is necessary.

• Transport layer: CML channels allow multiple producers
and consumers to operate over the same channel. Supporting
this functionality in a distributed setting requires an intelligent
transport layer that supports efficient broadcast as a primitive
operation.

• Speculative Execution: Central to �CML’s design is the specu-
lative execution of message sends that allows a synchronous
send to be transparently executed asynchronously. Because
speculations can be wrong, the implementation must provide
a low-cost mechanism to save application state, detect errors,
and rollback to a globally consistent state without requiring a
global barrier for error detection or rollback.
The ability to construct globally consistent checkpoints can also
effectively serve as a vehicle to handle process failures.

A schematic diagram of the �CML application stack is presented in
Figure 6. A �CML application consists of multiple instances, each
of which is the same MLton program. These instances might run
on the same node, on different nodes within the same datacenter,
or on nodes found in different data centers. Each instance has a
scheduler which preemptively multiplexes execution of user-level
CML threads.

5.1 System Architecture
5.1.1 Transport Layer
Communication between instances is performed through the Ze-
roMQ messaging library [28]. ZeroMQ is not a true message bro-
ker unlike other systems such as RabbitMQ [19], etc., and transmits
messages directly between processes that use ZeroMQ library with-
out the involvement of a broker process. In addition to providing
reliable and efficient point-to-point communication, ZeroMQ also
provides the ability to construct higher-level multicast patterns. In
particular, we leverage ZeroMQ’s publish/subscribe support to im-
plement CML channel communication.

7 2013/4/12

20

• Check the integrity of the speculative actions on-the-fly
★ Build a dependence graph that captures happens-before relation

✦ Same structure as an axiomatic execution

Tuesday, January 21, 14



Implementation: Overview
• ℞-CML: RelaXed CML

★ MultiMLton with distribution support

★ Rx-CML application = {Instances}

★ Supports full CML

★ Built-in serialization (immutable values and function closures)

★ Transport layer is ZeroMQ

would result in a match of the send operation with a recv ac-
tion on the same thread. The prohibition of such behavior is en-
capsulated within the definition of well-formedness found in the
antecedent of the COMMIT rule that we formalize below.

We reason about sensible (well-formed) relaxed executions by
transforming them into an equivalent axiomatic one. A well-formed
REL execution is one whose corresponding axiomatic execution is
well-formed. Since an axiomatic semantics is parameterized by an
intra-thread semantics, we first provide a translation that produces
this semantics given the transitions defined by the operational se-
mantics.

Definition 14 (Intra-thread semantics). Given a program P, let

Stateintra := READY | DONE | e

where e 2 P. For each labeled transition of the form h(t, s)kT , �i ↵�!
h(t, s0)kT 0

, �0i, where ↵ 6= ✏(P,tr), we define �
�

�⇣ �0, where
�, �0 2 Stateintra such that:

• if s = READY
op

(e), then � = READY, otherwise, � = s.
• if s0 = DONE

op

, then �0 = DONE, otherwise �0 = s0

• if ↵ = ((ri

t

c), (sj

t

0c, v)) then � = (ri

t

c; v)
• if ↵ = ⌧

t

then � = ⌧
• otherwise, ↵ = �

Definition 15 (T OP
AX operator). Let E

o

= (P, tr) be an operational
execution. T OP

AX is defined as T OP
AX (E

o

) = hP, A, !
po

, Mi parame-
terized with the intra-thread semantics �⇣ (Definition 14), where

• A is a set of non-silent, non-commit actions in tr.
• for all ↵, � 2 A, ↵ !

po

� iff T (↵) = T (�) and ↵ precedes �
in tr.

• for all pairs ((ri

t

c), (sj

t

0c, v)) in tr, M(ri

t

c) = sj

t

0c, v and
M(sj

t

0c, v) = ri

t

c.

For perspicuity, in the definition of A and !
po

above, a receive
operational action (a, b) 2 A

op

is simply treated as a 2 A
r

.

Definition 16 (Well-formed REL execution). Let E
o

= (P, tr) 2
REL(P) be an operational execution. If the axiomatic execution
E

ax

= T OP
AX (E

o

) is well-formed, then E
o

is well-formed.

Theorem 17. If E
o

= (P, tr) and WF(E
o

), then
(T OP

AX (E
o

), !
to

) 2 CML(P).

Proof Sketch. Details are provided in the supplementary material.

5. Implementation
The operational semantics defined in the previous section checks
whether an interleaving (expressed as a trace) conforms to a CML
execution. By translating the trace, which represents a history of
actions performed by the program, into an axiomatic execution that
subsumes the behavior of that trace, we can check if that execution
is well-formed, i.e., there are no cycles in the constructed happens-
before relation. However, in practice it is necessary to perform this
check on-the-fly; in other words, we need to build the relations
necessary to check the integrity of the interleaving as the program
executes. To do so, we construct a dependence graph that captures
the dependencies described by an axiomatic execution, and ensure
the graph has no cycles. If a cycle is detected, we rollback the
effects induced by the offending speculative action, and re-execute
it as a normal synchronous operation.

The context of our investigation is a distributed implementation
of CML called �CML(RELAXED CML)3 built on top of the Mul-
tiMLton SML compiler and runtime [16]. Before describing how

3 http://multimlton.cs.purdue.edu/mML/rx-cml.html

Cloud

ZeroMQ Pub/Sub

Serialization Support

     Instance
User-level 

threads
Communication

Manager
Cycle 

Detector

would result in a match of the send operation with a recv ac-
tion on the same thread. The prohibition of such behavior is en-
capsulated within the definition of well-formedness found in the
antecedent of the COMMIT rule that we formalize below.

We reason about sensible (well-formed) relaxed executions by
transforming them into an equivalent axiomatic one. A well-formed
REL execution is one whose corresponding axiomatic execution is
well-formed. Since an axiomatic semantics is parameterized by an
intra-thread semantics, we first provide a translation that produces
this semantics given the transitions defined by the operational se-
mantics.

Definition 14 (Intra-thread semantics). Given a program P, let

Stateintra := READY | DONE | e

where e 2 P. For each labeled transition of the form h(t, s)kT , �i ↵�!
h(t, s0)kT 0

, �0i, where ↵ 6= ✏(P,tr), we define �
�

�⇣ �0, where
�, �0 2 Stateintra such that:

• if s = READY
op

(e), then � = READY, otherwise, � = s.
• if s0 = DONE

op

, then �0 = DONE, otherwise �0 = s0

• if ↵ = ((ri

t

c), (sj

t

0c, v)) then � = (ri

t

c; v)
• if ↵ = ⌧

t

then � = ⌧
• otherwise, ↵ = �

Definition 15 (T OP
AX operator). Let E

o

= (P, tr) be an operational
execution. T OP

AX is defined as T OP
AX (E

o

) = hP, A, !
po

, Mi parame-
terized with the intra-thread semantics �⇣ (Definition 14), where

• A is a set of non-silent, non-commit actions in tr.
• for all ↵, � 2 A, ↵ !

po

� iff T (↵) = T (�) and ↵ precedes �
in tr.

• for all pairs ((ri

t

c), (sj

t

0c, v)) in tr, M(ri

t

c) = sj

t

0c, v and
M(sj

t

0c, v) = ri

t

c.

For perspicuity, in the definition of A and !
po

above, a receive
operational action (a, b) 2 A

op

is simply treated as a 2 A
r

.

Definition 16 (Well-formed REL execution). Let E
o

= (P, tr) 2
REL(P) be an operational execution. If the axiomatic execution
E

ax

= T OP
AX (E

o

) is well-formed, then E
o

is well-formed.

Theorem 17. If E
o

= (P, tr) and WF(E
o

), then
(T OP

AX (E
o

), !
to

) 2 CML(P).

Proof Sketch. Details are provided in the supplementary material.

5. Implementation
The operational semantics defined in the previous section checks
whether an interleaving (expressed as a trace) conforms to a CML
execution. By translating the trace, which represents a history of
actions performed by the program, into an axiomatic execution that
subsumes the behavior of that trace, we can check if that execution
is well-formed, i.e., there are no cycles in the constructed happens-
before relation. However, in practice it is necessary to perform this
check on-the-fly; in other words, we need to build the relations
necessary to check the integrity of the interleaving as the program
executes. To do so, we construct a dependence graph that captures
the dependencies described by an axiomatic execution, and ensure
the graph has no cycles. If a cycle is detected, we rollback the
effects induced by the offending speculative action, and re-execute
it as a normal synchronous operation.

The context of our investigation is a distributed implementation
of CML called �CML(RELAXED CML)3 built on top of the Mul-
tiMLton SML compiler and runtime [16]. Before describing how

3 http://multimlton.cs.purdue.edu/mML/rx-cml.html

Cloud

ZeroMQ Pub/Sub

Serialization Support

C-Rex Instance
User-level 

threads
Communication

Manager
Cycle 

Detector

Figure 6: �CML application stack.

we build, maintain, and check the distributed dependence graph, we
first describe some of the challenges, several of which have overlap-
ping concerns, in transplanting CML to a distributed environment:

• Absence of coherent shared memory: In a shared-memory
environment, CML channels can be implemented as a lock-
protected queues. This enables communicating threads to atom-
ically poll the channels for availability of a matching commu-
nication, and block on the channel if none is available. In a dis-
tributed setting, it is necessary to reason about multiple repli-
cated, yet globally consistent, versions of CML channels.

• Serialization: CML channels allow typesafe communication
of polymorphic values. Since CML imposes no restriction on
these values, which may be arbitrarily complex data structures,
a serialization mechanism that can communicate these values
across different machines is necessary.

• Transport layer: CML channels allow multiple producers
and consumers to operate over the same channel. Supporting
this functionality in a distributed setting requires an intelligent
transport layer that supports efficient broadcast as a primitive
operation.

• Speculative Execution: Central to �CML’s design is the specu-
lative execution of message sends that allows a synchronous
send to be transparently executed asynchronously. Because
speculations can be wrong, the implementation must provide
a low-cost mechanism to save application state, detect errors,
and rollback to a globally consistent state without requiring a
global barrier for error detection or rollback.
The ability to construct globally consistent checkpoints can also
effectively serve as a vehicle to handle process failures.

A schematic diagram of the �CML application stack is presented in
Figure 6. A �CML application consists of multiple instances, each
of which is the same MLton program. These instances might run
on the same node, on different nodes within the same datacenter,
or on nodes found in different data centers. Each instance has a
scheduler which preemptively multiplexes execution of user-level
CML threads.

5.1 System Architecture
5.1.1 Transport Layer
Communication between instances is performed through the Ze-
roMQ messaging library [28]. ZeroMQ is not a true message bro-
ker unlike other systems such as RabbitMQ [19], etc., and transmits
messages directly between processes that use ZeroMQ library with-
out the involvement of a broker process. In addition to providing
reliable and efficient point-to-point communication, ZeroMQ also
provides the ability to construct higher-level multicast patterns. In
particular, we leverage ZeroMQ’s publish/subscribe support to im-
plement CML channel communication.

7 2013/4/2

Figure 6: �CML application stack.

we build, maintain, and check the distributed dependence graph, we
first describe some of the challenges, several of which have overlap-
ping concerns, in transplanting CML to a distributed environment:

• Absence of coherent shared memory: In a shared-memory
environment, CML channels can be implemented as a lock-
protected queues. This enables communicating threads to atom-
ically poll the channels for availability of a matching commu-
nication, and block on the channel if none is available. In a dis-
tributed setting, it is necessary to reason about multiple repli-
cated, yet globally consistent, versions of CML channels.

• Serialization: CML channels allow typesafe communication
of polymorphic values. Since CML imposes no restriction on
these values, which may be arbitrarily complex data structures,
a serialization mechanism that can communicate these values
across different machines is necessary.

• Transport layer: CML channels allow multiple producers
and consumers to operate over the same channel. Supporting
this functionality in a distributed setting requires an intelligent
transport layer that supports efficient broadcast as a primitive
operation.

• Speculative Execution: Central to �CML’s design is the specu-
lative execution of message sends that allows a synchronous
send to be transparently executed asynchronously. Because
speculations can be wrong, the implementation must provide
a low-cost mechanism to save application state, detect errors,
and rollback to a globally consistent state without requiring a
global barrier for error detection or rollback.
The ability to construct globally consistent checkpoints can also
effectively serve as a vehicle to handle process failures.

A schematic diagram of the �CML application stack is presented in
Figure 6. A �CML application consists of multiple instances, each
of which is the same MLton program. These instances might run
on the same node, on different nodes within the same datacenter,
or on nodes found in different data centers. Each instance has a
scheduler which preemptively multiplexes execution of user-level
CML threads.

5.1 System Architecture
5.1.1 Transport Layer
Communication between instances is performed through the Ze-
roMQ messaging library [28]. ZeroMQ is not a true message bro-
ker unlike other systems such as RabbitMQ [19], etc., and transmits
messages directly between processes that use ZeroMQ library with-
out the involvement of a broker process. In addition to providing
reliable and efficient point-to-point communication, ZeroMQ also
provides the ability to construct higher-level multicast patterns. In
particular, we leverage ZeroMQ’s publish/subscribe support to im-
plement CML channel communication.

7 2013/4/12

20

• Check the integrity of the speculative actions on-the-fly
★ Build a dependence graph that captures happens-before relation

✦ Same structure as an axiomatic execution

★ Automatically check dependence graph integrity before an observable action (ref 
cell accesses, system calls, FFI, etc) 

Tuesday, January 21, 14



Implementation: Overview
• ℞-CML: RelaXed CML

★ MultiMLton with distribution support

★ Rx-CML application = {Instances}

★ Supports full CML

★ Built-in serialization (immutable values and function closures)

★ Transport layer is ZeroMQ

would result in a match of the send operation with a recv ac-
tion on the same thread. The prohibition of such behavior is en-
capsulated within the definition of well-formedness found in the
antecedent of the COMMIT rule that we formalize below.

We reason about sensible (well-formed) relaxed executions by
transforming them into an equivalent axiomatic one. A well-formed
REL execution is one whose corresponding axiomatic execution is
well-formed. Since an axiomatic semantics is parameterized by an
intra-thread semantics, we first provide a translation that produces
this semantics given the transitions defined by the operational se-
mantics.

Definition 14 (Intra-thread semantics). Given a program P, let

Stateintra := READY | DONE | e

where e 2 P. For each labeled transition of the form h(t, s)kT , �i ↵�!
h(t, s0)kT 0

, �0i, where ↵ 6= ✏(P,tr), we define �
�

�⇣ �0, where
�, �0 2 Stateintra such that:

• if s = READY
op

(e), then � = READY, otherwise, � = s.
• if s0 = DONE

op

, then �0 = DONE, otherwise �0 = s0

• if ↵ = ((ri

t

c), (sj

t

0c, v)) then � = (ri

t

c; v)
• if ↵ = ⌧

t

then � = ⌧
• otherwise, ↵ = �

Definition 15 (T OP
AX operator). Let E

o

= (P, tr) be an operational
execution. T OP

AX is defined as T OP
AX (E

o

) = hP, A, !
po

, Mi parame-
terized with the intra-thread semantics �⇣ (Definition 14), where

• A is a set of non-silent, non-commit actions in tr.
• for all ↵, � 2 A, ↵ !

po

� iff T (↵) = T (�) and ↵ precedes �
in tr.

• for all pairs ((ri

t

c), (sj

t

0c, v)) in tr, M(ri

t

c) = sj

t

0c, v and
M(sj

t

0c, v) = ri

t

c.

For perspicuity, in the definition of A and !
po

above, a receive
operational action (a, b) 2 A

op

is simply treated as a 2 A
r

.

Definition 16 (Well-formed REL execution). Let E
o

= (P, tr) 2
REL(P) be an operational execution. If the axiomatic execution
E

ax

= T OP
AX (E

o

) is well-formed, then E
o

is well-formed.

Theorem 17. If E
o

= (P, tr) and WF(E
o

), then
(T OP

AX (E
o

), !
to

) 2 CML(P).

Proof Sketch. Details are provided in the supplementary material.

5. Implementation
The operational semantics defined in the previous section checks
whether an interleaving (expressed as a trace) conforms to a CML
execution. By translating the trace, which represents a history of
actions performed by the program, into an axiomatic execution that
subsumes the behavior of that trace, we can check if that execution
is well-formed, i.e., there are no cycles in the constructed happens-
before relation. However, in practice it is necessary to perform this
check on-the-fly; in other words, we need to build the relations
necessary to check the integrity of the interleaving as the program
executes. To do so, we construct a dependence graph that captures
the dependencies described by an axiomatic execution, and ensure
the graph has no cycles. If a cycle is detected, we rollback the
effects induced by the offending speculative action, and re-execute
it as a normal synchronous operation.

The context of our investigation is a distributed implementation
of CML called �CML(RELAXED CML)3 built on top of the Mul-
tiMLton SML compiler and runtime [16]. Before describing how

3 http://multimlton.cs.purdue.edu/mML/rx-cml.html

Cloud

ZeroMQ Pub/Sub

Serialization Support

     Instance
User-level 

threads
Communication

Manager
Cycle 

Detector

would result in a match of the send operation with a recv ac-
tion on the same thread. The prohibition of such behavior is en-
capsulated within the definition of well-formedness found in the
antecedent of the COMMIT rule that we formalize below.

We reason about sensible (well-formed) relaxed executions by
transforming them into an equivalent axiomatic one. A well-formed
REL execution is one whose corresponding axiomatic execution is
well-formed. Since an axiomatic semantics is parameterized by an
intra-thread semantics, we first provide a translation that produces
this semantics given the transitions defined by the operational se-
mantics.

Definition 14 (Intra-thread semantics). Given a program P, let

Stateintra := READY | DONE | e

where e 2 P. For each labeled transition of the form h(t, s)kT , �i ↵�!
h(t, s0)kT 0

, �0i, where ↵ 6= ✏(P,tr), we define �
�

�⇣ �0, where
�, �0 2 Stateintra such that:

• if s = READY
op

(e), then � = READY, otherwise, � = s.
• if s0 = DONE

op

, then �0 = DONE, otherwise �0 = s0

• if ↵ = ((ri

t

c), (sj

t

0c, v)) then � = (ri

t

c; v)
• if ↵ = ⌧

t

then � = ⌧
• otherwise, ↵ = �

Definition 15 (T OP
AX operator). Let E

o

= (P, tr) be an operational
execution. T OP

AX is defined as T OP
AX (E

o

) = hP, A, !
po

, Mi parame-
terized with the intra-thread semantics �⇣ (Definition 14), where

• A is a set of non-silent, non-commit actions in tr.
• for all ↵, � 2 A, ↵ !

po

� iff T (↵) = T (�) and ↵ precedes �
in tr.

• for all pairs ((ri

t

c), (sj

t

0c, v)) in tr, M(ri

t

c) = sj

t

0c, v and
M(sj

t

0c, v) = ri

t

c.

For perspicuity, in the definition of A and !
po

above, a receive
operational action (a, b) 2 A

op

is simply treated as a 2 A
r

.

Definition 16 (Well-formed REL execution). Let E
o

= (P, tr) 2
REL(P) be an operational execution. If the axiomatic execution
E

ax

= T OP
AX (E

o

) is well-formed, then E
o

is well-formed.

Theorem 17. If E
o

= (P, tr) and WF(E
o

), then
(T OP

AX (E
o

), !
to

) 2 CML(P).

Proof Sketch. Details are provided in the supplementary material.

5. Implementation
The operational semantics defined in the previous section checks
whether an interleaving (expressed as a trace) conforms to a CML
execution. By translating the trace, which represents a history of
actions performed by the program, into an axiomatic execution that
subsumes the behavior of that trace, we can check if that execution
is well-formed, i.e., there are no cycles in the constructed happens-
before relation. However, in practice it is necessary to perform this
check on-the-fly; in other words, we need to build the relations
necessary to check the integrity of the interleaving as the program
executes. To do so, we construct a dependence graph that captures
the dependencies described by an axiomatic execution, and ensure
the graph has no cycles. If a cycle is detected, we rollback the
effects induced by the offending speculative action, and re-execute
it as a normal synchronous operation.

The context of our investigation is a distributed implementation
of CML called �CML(RELAXED CML)3 built on top of the Mul-
tiMLton SML compiler and runtime [16]. Before describing how

3 http://multimlton.cs.purdue.edu/mML/rx-cml.html

Cloud

ZeroMQ Pub/Sub

Serialization Support

C-Rex Instance
User-level 

threads
Communication

Manager
Cycle 

Detector

Figure 6: �CML application stack.

we build, maintain, and check the distributed dependence graph, we
first describe some of the challenges, several of which have overlap-
ping concerns, in transplanting CML to a distributed environment:

• Absence of coherent shared memory: In a shared-memory
environment, CML channels can be implemented as a lock-
protected queues. This enables communicating threads to atom-
ically poll the channels for availability of a matching commu-
nication, and block on the channel if none is available. In a dis-
tributed setting, it is necessary to reason about multiple repli-
cated, yet globally consistent, versions of CML channels.

• Serialization: CML channels allow typesafe communication
of polymorphic values. Since CML imposes no restriction on
these values, which may be arbitrarily complex data structures,
a serialization mechanism that can communicate these values
across different machines is necessary.

• Transport layer: CML channels allow multiple producers
and consumers to operate over the same channel. Supporting
this functionality in a distributed setting requires an intelligent
transport layer that supports efficient broadcast as a primitive
operation.

• Speculative Execution: Central to �CML’s design is the specu-
lative execution of message sends that allows a synchronous
send to be transparently executed asynchronously. Because
speculations can be wrong, the implementation must provide
a low-cost mechanism to save application state, detect errors,
and rollback to a globally consistent state without requiring a
global barrier for error detection or rollback.
The ability to construct globally consistent checkpoints can also
effectively serve as a vehicle to handle process failures.

A schematic diagram of the �CML application stack is presented in
Figure 6. A �CML application consists of multiple instances, each
of which is the same MLton program. These instances might run
on the same node, on different nodes within the same datacenter,
or on nodes found in different data centers. Each instance has a
scheduler which preemptively multiplexes execution of user-level
CML threads.

5.1 System Architecture
5.1.1 Transport Layer
Communication between instances is performed through the Ze-
roMQ messaging library [28]. ZeroMQ is not a true message bro-
ker unlike other systems such as RabbitMQ [19], etc., and transmits
messages directly between processes that use ZeroMQ library with-
out the involvement of a broker process. In addition to providing
reliable and efficient point-to-point communication, ZeroMQ also
provides the ability to construct higher-level multicast patterns. In
particular, we leverage ZeroMQ’s publish/subscribe support to im-
plement CML channel communication.

7 2013/4/2

Figure 6: �CML application stack.

we build, maintain, and check the distributed dependence graph, we
first describe some of the challenges, several of which have overlap-
ping concerns, in transplanting CML to a distributed environment:

• Absence of coherent shared memory: In a shared-memory
environment, CML channels can be implemented as a lock-
protected queues. This enables communicating threads to atom-
ically poll the channels for availability of a matching commu-
nication, and block on the channel if none is available. In a dis-
tributed setting, it is necessary to reason about multiple repli-
cated, yet globally consistent, versions of CML channels.

• Serialization: CML channels allow typesafe communication
of polymorphic values. Since CML imposes no restriction on
these values, which may be arbitrarily complex data structures,
a serialization mechanism that can communicate these values
across different machines is necessary.

• Transport layer: CML channels allow multiple producers
and consumers to operate over the same channel. Supporting
this functionality in a distributed setting requires an intelligent
transport layer that supports efficient broadcast as a primitive
operation.

• Speculative Execution: Central to �CML’s design is the specu-
lative execution of message sends that allows a synchronous
send to be transparently executed asynchronously. Because
speculations can be wrong, the implementation must provide
a low-cost mechanism to save application state, detect errors,
and rollback to a globally consistent state without requiring a
global barrier for error detection or rollback.
The ability to construct globally consistent checkpoints can also
effectively serve as a vehicle to handle process failures.

A schematic diagram of the �CML application stack is presented in
Figure 6. A �CML application consists of multiple instances, each
of which is the same MLton program. These instances might run
on the same node, on different nodes within the same datacenter,
or on nodes found in different data centers. Each instance has a
scheduler which preemptively multiplexes execution of user-level
CML threads.

5.1 System Architecture
5.1.1 Transport Layer
Communication between instances is performed through the Ze-
roMQ messaging library [28]. ZeroMQ is not a true message bro-
ker unlike other systems such as RabbitMQ [19], etc., and transmits
messages directly between processes that use ZeroMQ library with-
out the involvement of a broker process. In addition to providing
reliable and efficient point-to-point communication, ZeroMQ also
provides the ability to construct higher-level multicast patterns. In
particular, we leverage ZeroMQ’s publish/subscribe support to im-
plement CML channel communication.

7 2013/4/12

20

• Check the integrity of the speculative actions on-the-fly
★ Build a dependence graph that captures happens-before relation

✦ Same structure as an axiomatic execution

★ Automatically check dependence graph integrity before an observable action (ref 
cell accesses, system calls, FFI, etc) 

★ Roll-back ill-formed executions, re-execute non-speculatively

Tuesday, January 21, 14



Channel Consistency (1)

21

Tuesday, January 21, 14



Channel Consistency (1)

21

• Single consistent channel image across all instances without coherence?

Tuesday, January 21, 14



Channel Consistency (1)

21

• Single consistent channel image across all instances without coherence?
★ Communication manager thread @ every instance

Tuesday, January 21, 14



Channel Consistency (1)

21

• Single consistent channel image across all instances without coherence?
★ Communication manager thread @ every instance

★ Maintains a replica of CML channel

Tuesday, January 21, 14



Channel Consistency (1)

21

• Single consistent channel image across all instances without coherence?
★ Communication manager thread @ every instance

★ Maintains a replica of CML channel

★ Utilize speculative execution to recover from inconsistent state

Tuesday, January 21, 14



Channel Consistency (1)

21

send(c1,0); recv(c1);

{c1:[],c2:[]}

Instance 1 Instance 2 Instance 3

• Single consistent channel image across all instances without coherence?
★ Communication manager thread @ every instance

★ Maintains a replica of CML channel

★ Utilize speculative execution to recover from inconsistent state

Tuesday, January 21, 14



Channel Consistency (1)

21

send(c1,0); recv(c1);

s(c1,0){c1:[],c2:[]}
{c1:[s(0)],c2:[]} {c1:[s(0)],c2:[]}

{c1:[s(0)],c2:[]}
s(c1,0)

Instance 1 Instance 2 Instance 3

• Single consistent channel image across all instances without coherence?
★ Communication manager thread @ every instance

★ Maintains a replica of CML channel

★ Utilize speculative execution to recover from inconsistent state

Tuesday, January 21, 14



Channel Consistency (1)

21

send(c1,0); recv(c1);

s(c1,0){c1:[],c2:[]}
{c1:[s(0)],c2:[]} {c1:[s(0)],c2:[]}

{c1:[s(0)],c2:[]}

{c1:[],c2:[]}

s(c1,0)

request_to_match(c1)

{c1:[],c2:[]}

Instance 1 Instance 2 Instance 3

• Single consistent channel image across all instances without coherence?
★ Communication manager thread @ every instance

★ Maintains a replica of CML channel

★ Utilize speculative execution to recover from inconsistent state

Tuesday, January 21, 14



Channel Consistency (1)

21

send(c1,0); recv(c1);

s(c1,0){c1:[],c2:[]}
{c1:[s(0)],c2:[]} {c1:[s(0)],c2:[]}

{c1:[s(0)],c2:[]}

{c1:[],c2:[]}

s(c1,0)

request_to_match(c1)

{c1:[],c2:[]}

{c1:[],c2:[]}
match (s(c1,0) + r(c1))

{c1:[],c2:[]}

Instance 1 Instance 2 Instance 3

• Single consistent channel image across all instances without coherence?
★ Communication manager thread @ every instance

★ Maintains a replica of CML channel

★ Utilize speculative execution to recover from inconsistent state

Tuesday, January 21, 14



Channel Consistency (1)

21

send(c1,0); recv(c1);

s(c1,0){c1:[],c2:[]}
{c1:[s(0)],c2:[]} {c1:[s(0)],c2:[]}

{c1:[s(0)],c2:[]}

{c1:[],c2:[]}

s(c1,0)

request_to_match(c1)

{c1:[],c2:[]}

{c1:[],c2:[]}
match (s(c1,0) + r(c1)) Success

{c1:[],c2:[]}

Instance 1 Instance 2 Instance 3

• Single consistent channel image across all instances without coherence?
★ Communication manager thread @ every instance

★ Maintains a replica of CML channel

★ Utilize speculative execution to recover from inconsistent state

Tuesday, January 21, 14



Channel Consistency (1)

21

send(c1,0); recv(c1);

s(c1,0){c1:[],c2:[]}
{c1:[s(0)],c2:[]} {c1:[s(0)],c2:[]}

{c1:[s(0)],c2:[]}

{c1:[],c2:[]}

s(c1,0)

request_to_match(c1)

{c1:[],c2:[]}

{c1:[],c2:[]}
match (s(c1,0) + r(c1)) Success

{c1:[],c2:[]}

Flush unconsumed
send!

Instance 1 Instance 2 Instance 3

• Single consistent channel image across all instances without coherence?
★ Communication manager thread @ every instance

★ Maintains a replica of CML channel

★ Utilize speculative execution to recover from inconsistent state

Tuesday, January 21, 14



Channel Consistency (2)

22

send(c2,1); recv(c2); recv(c2);

Instance 1 Instance 2 Instance 3

Tuesday, January 21, 14



Channel Consistency (2)

22

send(c2,1); recv(c2); recv(c2);

{c1:[],c2:[s(1)]} s(c2,1) {c1:[],c2:[s(1)]}

{c1:[],c2:[s(1)]}
s(c2,1)

Instance 1 Instance 2 Instance 3

Tuesday, January 21, 14



Channel Consistency (2)

22

send(c2,1); recv(c2); recv(c2);

{c1:[],c2:[s(1)]} s(c2,1) {c1:[],c2:[s(1)]}

{c1:[],c2:[s(1)]}
s(c2,1)

Concurrent
execution!

Instance 1 Instance 2 Instance 3

Tuesday, January 21, 14



Channel Consistency (2)

22

send(c2,1); recv(c2); recv(c2);

{c1:[],c2:[s(1)]} s(c2,1) {c1:[],c2:[s(1)]}

{c1:[],c2:[s(1)]}
s(c2,1)

{c1:[],c2:[r2]}

{c1:[],c2:[r2,r3]}

{c1:[],c2:[]}
{c1:[],c2:[]}

request_to_match(c2)

request_to_match(c2)

Concurrent
execution!

Instance 1 Instance 2 Instance 3

Tuesday, January 21, 14



Channel Consistency (2)

22

send(c2,1); recv(c2); recv(c2);

{c1:[],c2:[s(1)]} s(c2,1) {c1:[],c2:[s(1)]}

{c1:[],c2:[s(1)]}
s(c2,1)

{c1:[],c2:[r2]}

{c1:[],c2:[r2,r3]}

{c1:[],c2:[]}
{c1:[],c2:[]}

request_to_match(c2)

request_to_match(c2)

Concurrent
execution!

Lost exactly once 
semantics

Instance 1 Instance 2 Instance 3

Tuesday, January 21, 14



Channel Consistency (2)

22

send(c2,1); recv(c2); recv(c2);

{c1:[],c2:[s(1)]} s(c2,1) {c1:[],c2:[s(1)]}

{c1:[],c2:[s(1)]}
s(c2,1)

{c1:[],c2:[r2]}

{c1:[],c2:[r2,r3]}

{c1:[],c2:[]}
{c1:[],c2:[]}

request_to_match(c2)

request_to_match(c2)

Concurrent
execution!

Lost exactly once 
semanticsFirst-come first-

match

Instance 1 Instance 2 Instance 3

Tuesday, January 21, 14



Channel Consistency (2)

22

send(c2,1); recv(c2); recv(c2);

{c1:[],c2:[s(1)]} s(c2,1) {c1:[],c2:[s(1)]}

{c1:[],c2:[s(1)]}
s(c2,1)

{c1:[],c2:[r2]}

{c1:[],c2:[r2,r3]}

{c1:[],c2:[]}
{c1:[],c2:[]}

request_to_match(c2)

request_to_match(c2)

Concurrent
execution!

match (s(c2,1) + r2(c2)) Success Mis-speculation!First-come first-
match

Instance 1 Instance 2 Instance 3

Tuesday, January 21, 14



Speculative Execution

23

Tuesday, January 21, 14



Speculative Execution
• Consistent, replicated dependence graph @ each instance

★ Snoop on match messages from communication manager
★ Broadcast thread spawn and thread join messages

23

Tuesday, January 21, 14



Speculative Execution
• Consistent, replicated dependence graph @ each instance

★ Snoop on match messages from communication manager
★ Broadcast thread spawn and thread join messages

• Well-formedness check is local to the instance!
★ GC dependence graph on successful well-formedness check

23

Tuesday, January 21, 14



Speculative Execution
• Consistent, replicated dependence graph @ each instance

★ Snoop on match messages from communication manager
★ Broadcast thread spawn and thread join messages

• Well-formedness check is local to the instance!
★ GC dependence graph on successful well-formedness check

• Automatic checkpointing
★ 1 continuation per thread
★ Uncoordinated! - thread local - does not require barriers

23

Tuesday, January 21, 14



Speculative Execution
• Consistent, replicated dependence graph @ each instance

★ Snoop on match messages from communication manager
★ Broadcast thread spawn and thread join messages

• Well-formedness check is local to the instance!
★ GC dependence graph on successful well-formedness check

• Automatic checkpointing
★ 1 continuation per thread
★ Uncoordinated! - thread local - does not require barriers

• Remediation
★ Uncoordinated! - Transitively inform each mis-speculated thread to rollback
★ Check-point (Continuation) + Log-based (Dependence graph) recovery
★ Rollback to last checkpoint, replay correct speculative actions
★ Continues non-speculatively until next observable action = Progress

23

Tuesday, January 21, 14



Results

24

Tuesday, January 21, 14



Results
• Optimistic OLTP

★ Distributed version of STAMP Vacation benchmark
★ Database split into 64 shards, with concurrent transaction requests from geo-distributed 

clients
★ Uses explicit lock servers -> Rx-CML executes transactions optimistically

24

Tuesday, January 21, 14



Results
• Optimistic OLTP

★ Distributed version of STAMP Vacation benchmark
★ Database split into 64 shards, with concurrent transaction requests from geo-distributed 

clients
★ Uses explicit lock servers -> Rx-CML executes transactions optimistically

• P2P Collaborative editing
★ Simulates concurrent document editing (operational transformation)
★ Total order broadcast - built out of synchronous events + choice combinator.

24

Tuesday, January 21, 14



Results
• Optimistic OLTP

★ Distributed version of STAMP Vacation benchmark
★ Database split into 64 shards, with concurrent transaction requests from geo-distributed 

clients
★ Uses explicit lock servers -> Rx-CML executes transactions optimistically

• P2P Collaborative editing
★ Simulates concurrent document editing (operational transformation)
★ Total order broadcast - built out of synchronous events + choice combinator.

24

In the absence of contention, the involvement of the lock server adds unnecessary
overhead. By communicating with lockChan asynchronously, we can allow the client
(the thread performing the transaction), to concurrently proceed with obtaining other
locks or executing the transaction. However, the transactional guarantees are lost in
this case. Under �CML such serializability violation shows up as a cycle in the happens-
before dependence graph. �CML rejects such executions, causing the transaction to abort,
and re-execute non-speculatively.

For our evaluation, we implemented a distributed version of this program ( vacation )
taken from the STAMP benchmark suite [4]. To adapt the benchmark for a distributed
environment, we partitioned resources into 16 shards, each protected by a lock server.
The workload was setup for moderate contention, and each transaction involves 10 op-
erations. The shards were spread across 16 EC2 M1 large instances within the same
EC2 availability zone. The clients were instantiated from all of the different regions
on M1 small instances to simulate the latencies involved in a real web-application. A
benchmark run involved 10K transactions, spread equally across all of the available
clients. Each benchmark run was repeated 5 times.

0 10 20 30 40 50
# Clients

24

25

26

27

28

29

210

T
im

e
 (

S
e
cs

)

Rx

Sync

Fig. 4: Performance comparison
on distributed vacation (OLTP)
benchmark. Lower is better.

The performance results are presented in the
Figure 4. The number of clients concurrently is-
suing transaction requests was increased from 1
to 48. �CML is the speculative version, while Sync
is the synchronous, non-speculative variant. The
1-client Sync version took 1220 seconds to com-
plete. For comparison, we extended the original
C version with a similar shared distribution struc-
ture. This run was 1.3X faster than the CML base-
line. The benchmark execution under �CML scales
much better than the Sync version due to opti-
mistic transactions. With 48 clients, �CML version
was 5.8X faster than then Sync version. Under
�CML, the number of transaction conflicts does increase with the number of clients. With
48 clients, 9% of the transactions executed under �CML were tagged as conflicting and
re-executed non-speculatively. This does not, however, adversely affect scalability.

4.2 Collaborative Editing

Our next case study is a real-time, decentralized collaborative editing tool. Typically,
such commercial offerings such as Google Docs, Apache Wave, EtherPad, etc,utilize a
centralized server to coordinate between the authors. Not only does the server eventu-
ally become a bottleneck, but service providers also need to store a copy of the docu-
ment, along with other personal information, which is undesirable. We consider a fully
decentralized solution, in which authors works on a local copy of the shared document
for responsiveness, with updates from other authors added incrementally to the working
copy. Although replicas are allowed to diverge, they are expected to converge eventu-
ally. This convergence is achieved through operational transformation [22]. Dealing
with operational transformation in the absence of a centralized server is tricky [16], and
commercial collaborative editing services like Google Wave impose additional restric-

tions with respect to the frequency of remote updates [24] in order to build a tractable
implementation.

We simplify the design by performing causal atomic broadcast when sending up-
dates to the replicas. Causal atomic broadcast ensures that the updates are applied on
all replicas in the same global order, providing a semblance of a single centralized
server. Implemented naı̈vely, i.e., performing the broadcast synchronously, however, is
an expensive operation, requiring coordination among all replicas for every broadcast
operation compromising responsiveness. Our relaxed execution model overcomes this
inefficiency. The key advantage of our system is that the causal atomic broadcast is
performed speculatively, allowing client threads to remain responsive.

We use a collaborative editing benchmark generator described in [14] to generate
a random trace of operations, based on parameters such as trace length, percentage of
insertions, deletions, number of replicas, local operation delay, etc. Our benchmarking
trace contains 30K operations, 85%(15%) of which are insertions(deletions), and 20%
of which are concurrent operations. We insert a 25 ms delay between two consecutive
local operations to simulate user-interaction. Updates from each replica is causal atomi-
cally broadcasted every 250 ms. Each replica is represented by a �CML instance placed in
widely distributed Amazon EC2 availability zones chosen to capture the geo-distributed
nature of collaborative editing. The average inter-instance latency was 173 ms, with a
standard deviation of 71.5. Results are reported as the average of five runs.

2 3 4 5 6
# Authors

0

1

2

3

4

5

6

7

T
im

e
 (

X
 1

0
0

0
 S

e
cs

) Rx

Sync

Fig. 5: Performance comparison on
collaborative editing benchmark.
Lower is better.

We consider the time taken by a collaborative
editing session to be the time between the first
operation generation and the completion of the
last broadcast operation, at which point the doc-
uments at every replica would have converged.
Figure 5 shows results with respect to total run-
ning time. Sync represents an ordinary CML exe-
cution, while �CML represents our new implemen-
tation. With 2-authors, �CML version took 485 sec-
onds to complete, and was 37% faster than the
synchronous version. As we increase the number
of concurrent authors, the number of communi-
cation actions per broadcast operation increases.
Hence, we expect the benchmark run to take longer to complete. The non-speculative
version scales poorly due to the increasing number of synchronizations involved in the
broadcast operations. Indeed, Sync is 7.6X slower than �CML when there are six concur-
rent authors. Not surprisingly, �CML also takes longer to complete a run as we increase
the number of concurrent authors. This is because of increasing communication actions
per broadcast as well as increase in mis-speculations. However, with six authors, it only
takes 1.67X longer to complete the session when compared to having just two authors,
and illustrates the utility of speculative communication.

5 Related Work
Causal-ordering of messages is considered an important building block [2] for dis-
tributed applications. Similar to our formulation, Charron-Bost et al. [5] develop an
axiomatic formulation for causal-ordered communication primitives, although their fo-

OLTP Collaborative Editing
•   Rx-CML was 5.8X to 7.6X faster than the synchronous version

★    9-17% of communications were mis-speculated.

Tuesday, January 21, 14



Conclusion

25

Tuesday, January 21, 14



Conclusion
• Composable synchronous events vs. High latency compute cloud

25

Tuesday, January 21, 14



Conclusion
• Composable synchronous events vs. High latency compute cloud

• Rx-CML  (Relaxed CML)

★  optimistic concurrency control for CML

★  reason synchronously, but implement asynchronously

★  retain simplicity and composability, but gain performance

25

Tuesday, January 21, 14



Conclusion
• Composable synchronous events vs. High latency compute cloud

• Rx-CML  (Relaxed CML)

★  optimistic concurrency control for CML

★  reason synchronously, but implement asynchronously

★  retain simplicity and composability, but gain performance

• Distributed implementation of MultiMLton 

★ Case studies demonstrate effectiveness of the approach

25

Tuesday, January 21, 14



Conclusion
• Composable synchronous events vs. High latency compute cloud

• Rx-CML  (Relaxed CML)

★  optimistic concurrency control for CML

★  reason synchronously, but implement asynchronously

★  retain simplicity and composability, but gain performance

• Distributed implementation of MultiMLton 

★ Case studies demonstrate effectiveness of the approach

• Future Work - Fault tolerance

★ Make checkpoints and dependence graph resilient

★ Treat failures as mis-speculations -> rollback to last saved checkpoint

25

Tuesday, January 21, 14



Questions?

26

http://multimlton.cs.purdue.edu

Tuesday, January 21, 14

http://multimlton.cs.purdue.edu
http://multimlton.cs.purdue.edu

