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implementing concurrency abstractions
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implementing concurrency abstractions
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Two often competing goals when designing and
implementing concurrency abstractions

Simplicity Performance
Safety Functionality

Always desirable to marry the two whenever possible
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e Functional language + Synchronous message passing

* Communication = Data transfer + Synchronization
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* Communication = Data transfer + Synchronization

e However, in the cloud,

Synchrony latency
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e Functional language + Synchronous message passing

* Communication = Data transfer + Synchronization
Cre
\../

Synchrony latency

e However, in the cloud,

*x Explicit asynchrony complicates reasoning

Can we discharge synchronous communications asynchronously
while ensuring observable equivalence?
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1. Formalize the conditions under which the following equivalence

holds:
[send (c,v)]k = [asend(c,v)[k
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1. Formalize the conditions under which the following equivalence

holds:
[send (c,v)]k = [asend(c,v)[k

2. A cloud infrastructure + speculative execution framework
a. discharges synchronous sends asynchronously
b. detects when the equivalence fails, and

c. repairs failed executions
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o A distributed extension of MultiMLton - MLton for scalable
architectures
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o A distributed extension of MultiMLton - MLton for scalable
architectures

e Parallel extension of Concurrent ML
* Dynamic lightweight threads
* Synchronous message passing

x First-class events

+ Composable synchronous protocols
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o A distributed extension of MultiMLton - MLton for scalable
architectures

e Parallel extension of Concurrent ML

* Dynamic lightweight threads

* Synchronous message passing

x First-class events

+ Composable synchronous protocols

val channel : unit -> ‘a chan val never : ‘a event

val spawn : (unit -> unit) -> thread id val alwaysEvt : ‘a -> ‘a event

val send : chan * ‘a -> unit val wrap : ‘a event -> (fa -> ‘b) ->

val recv : chan -> ‘a ‘b event

val sendEvt : chan * “a -> unit event val guard : (unit -> ‘a event) -> ‘a event
val recvEvt : chan -> ‘a event val choose : ‘a event list -> ‘a event

val sync : event -> ‘a
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send(cl,vl) recv(c2) || send(c2,v3)

fO |®) h(©
send(c2,v2) recv(cl) recv(c?2)

Tl T2 T3
send(cl,vl)  recv(c2) send(c2,v3)

Synchronous l l l
Execution f() g() h()
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send(c2,v2) recv(cl)

PURDUE ) MultiMLton

UNIVERSITY

Tuesday, January 21, 14
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Execution
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Execution
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Asynchronous
Execution
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e Synchronous evaluation never results in cyclic dependence

* Cyclic dependence => divergent behavior w.r.t synchronous evaluation
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e No central server + Preserve causal dependence
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e No central server + Preserve causal dependence

* Causal broadcast primitive: If message A is generated as a response to message B, then A is
delivered after B at every site
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* Causal broadcast primitive: If message A is generated as a response to message B, then A is
delivered after B at every site

* Asynchronous messaging => explicitly manage vector clocks and buffering on receiver side
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Synchronous messaging => directly using point-to-point messaging
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e No central server + Preserve causal dependence

* Causal broadcast primitive: If message A is generated as a response to message B, then A is
delivered after B at every site

Asynchronous messaging => explicitly manage vector clocks and buffering on receiver side

Synchronous messaging => directly using point-to-point messaging

fun bsend (BCHAN (vclList, aclList), v: ’a, id: int) : unit =
let
val _ = map (fn vc => if (vc = nth (vclList, id)) then () else send (vc, Vv))
vclList (* phase 1 -- Value distribution x*)
val _ ap (fn ac => if (ac = nth (aclist, id)) then () else recv ac)
acList (* phase 2 -- Acknowledgments %)
in QO
end
prevent receivers from proceeding until

h / d val ;
Syncnronousty sena vatues all members have received the value
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e No central server + Preserve causal dependence

* Causal broadcast primitive: If message A is generated as a response to message B, then A is
delivered after B at every site

Asynchronous messaging => explicitly manage vector clocks and buffering on receiver side

Synchronous messaging => directly using point-to-point messaging

fun bsend (BCHAN (vclList, aclList), v: ’a, id: int) : unit =
let
val _ = map (fn vc => if (vc = nth (vclList, id)) then () else send (vc, Vv))
vclList (* phase 1 -- Value distribution x*)
val _ ap (fn ac => if (ac = nth (aclist, id)) then () else recv ac)
acList (* phase 2 -- Acknowledgments %)
in QO
end
prevent receivers from proceeding until

all members have received the value

e Simple but likely to be ineflicient - phase 2 is a global barrier!

synchronously send values
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e No central server + Preserve causal dependence

* Causal broadcast primitive: If message A is generated as a response to message B, then A is
delivered after B at every site

Asynchronous messaging => explicitly manage vector clocks and buffering on receiver side

Synchronous messaging => directly using point-to-point messaging

fun bsend (BCHAN (vclList, aclList), v: ’a, id: int) : unit =
let
val _ = map (fn vc => if (vc = nth (vclList, id)) then () else send (vc, Vv))
vclList (* phase 1 -- Value distribution x*)
val _ ap (fn ac => if (ac = nth (aclist, id)) then () else recv ac)
acList (* phase 2 -- Acknowledgments %)
in QO
end
prevent receivers from proceeding until

all members have received the value

e Simple but likely to be ineflicient - phase 2 is a global barrier!

synchronously send values

* Discharging asynchronously breaks causal ordering
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e No central server + Preserve causal dependence

* Causal broadcast primitive: If message A is generated as a response to message B, then A is
delivered after B at every site

Asynchronous messaging => explicitly manage vector clocks and buffering on receiver side

Synchronous messaging => directly using point-to-point messaging

fun bsend (BCHAN (vclList, aclList), v: ’a, id: int) : unit =
let
val _ = map (fn vc => if (vc = nth (vclList, id)) then () else send (vc, Vv))
vclList (* phase 1 -- Value distribution x*)
val _ ap (fn ac => if (ac = nth (aclist, id)) then () else recv ac)
acList (* phase 2 -- Acknowledgments %)
in QO
end
prevent receivers from proceeding until

all members have received the value

e Simple but likely to be ineflicient - phase 2 is a global barrier!

synchronously send values

* Discharging asynchronously breaks causal ordering

*  Our idea: program synchronously, discharge asynchronously, detect and remediate causal
ordering violations
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e A distributed group chat program = {Node}
¢ Node = MultiMLton process = {CML threads}

Daemon thread Display thread

IP thread

Receive broadcast
message message
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Display IP

/,,show (X)

X A:,"" l
bcast (X)
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bcast (X)
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Display IP Daemon

_»show (X) /,yshow (Y) Precv (X)

XA:,"" l
bcast (X) <
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Display IP Daemon [ Daemon

_»show (X) brecv (Y)--.

bcast (X) < s beast (Y) S

/,show (Y) Precv (X)
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Display IP Daemon Display Daemon

_»show (X) brecv (Y)~.. /,show (Y) brecv (X)

l

bcast (X) <
»show (X)
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Display IP Daemon [ Daemon

_,Show (X) brecv (Y)~..
X A:"""' l \..\.

e Observations

* Xand Y independently generated => No causal dependence between bcast (X)
and bcast (Y)

e No Cycles => Correct execution!
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Daemon
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Display IP Daemon Daemon Daemon

_4show (X)

|

bcast (X)
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Daemon i Daemon Daemon

»brecv (X)

{
» show (X)
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Daemon i Daemon Daemon

»brecv (X)

Presume causal
dependence X =Y
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Daemon i Daemon Daemon

»brecv (X)

{
» show (X)

bcast (Y)
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Daemon i Daemon

. brecv (Y)

T
_.»show (Y)

bcast (Y) “
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Daemon i Daemon i Daemon

»brecv (X) . brecv (Y)

| |
» show (X) = show (Y)
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Daemon i Daemon i Daemon

»brecv (X) . brecv (Y)

| |
» show (X) = show (Y)
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Daemon i Daemon i Daemon

»brecv (X) . brecv (Y)

| |
» show (X) = show (Y)
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Display
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_4show (X)

|
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¥
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¢ Simulation on 3 geo-distributed Amazon EC2 instances

¢ Measure time between message initiation and receipt by all parties over
1000 1terations

Execution Avg.time (ms) | Errors
Sync 1540 0
Unsafe Async 520 7
Safe Async (R*ML) 533 0
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e Reason axiomatically about executions (relaxed or otherwise)

* Similar to formalizations used in relaxed memory models

x Declarative characterization of (relaxed) CML behavior
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e Reason axiomatically about executions (relaxed or otherwise)

* Similar to formalizations used in relaxed memory models

* Declarative characterization of (relaxed) CML behavior
o Actions + happens-before relation

* Captures visibility and dependence properties
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e Reason axiomatically about executions (relaxed or otherwise)

* Similar to formalizations used in relaxed memory models

* Declarative characterization of (relaxed) CML behavior
o Actions + happens-before relation

* Captures visibility and dependence properties

e Happens-before is intentionally relaxed: may define more
behaviors than possible in CML

* Strengthen the relation with well-formedness conditions
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e Actions:

(thread t starts)

(thread t ends)

(thread t detects thread t’ has terminated)
(thread t creates a new thread t’)

(thread t sends value v on channel c
(thread t receives a value on channel ¢)
(thread t outputs an observable value v)

ceC ttteT veV mmnéeN

e Execution:

(P, A, =10, —>co)

relates matching communication actions
a set of program order:

actions sequential actions of a thread
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¢ Synchronous communication » communication order is
symmetric:

a—>.0 b — b—.,a

e Thread dependence order:

O —7¢d 6 if:
(1) a = f/"t" and B = by or
(2) a = ey and B = 5"t
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e Establishes both intra- and inter-thread dependences:

(—>p0 U —¢q U
{(a,B) | @ —co & N’ —po B} U
{(B,a) | B—=po @ N —co a})T
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e Establishes both intra- and inter-thread dependences:

(—>p0 U —¢qg U
{(a, B) | @ = o o Ao —po B} U
{(B;a) | B—=po @ N —coa})T

e Two actions not related by happens-before relation are said to be
concurrent

* A send action and its matching receive action are concurrent!
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e Establishes both intra- and inter-thread dependences:

(—>p0 U —¢qg U
{(a, B) | @ = o o Ao —po B} U
{(B;a) | B—=po @ N —coa})T

e Two actions not related by happens-before relation are said to be
concurrent

* A send action and its matching receive action are concurrent!

m Cco !
5t 6V e——> 1) ¢

L4
’
’
L4
*
’
’
’
L4
L4
’
’
L4
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e Establishes both intra- and inter-thread dependences:

(—>p0 U —¢qg U
{(a, B) | @ = o o Ao —po B} U
{(B;a) | B—=po @ N —coa})T

e Two actions not related by happens-before relation are said to be
concurrent

* A send action and its matching receive action are concurrent!

m Cco !
5t 6V e——> 1) ¢
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’
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T1 T2 T3

send(cl,vl) recv(c2) || send(c2,v3)

fO *]@) h() . : .
send(c2,v2) || recv(cl) || recv(c) o Letf, g, h = print 1, print 2, print 3

e Assume T1 spawns T2 and T3
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T1 T2 T3

e Assume T1 spawns T2 and T3

send(cl,vl) recv(c2) || send(c2,v3)

fO *]@) h() . : .
send(c2,v2) || recv(cl) || recv(c) o Letf, g, h = print 1, print 2, print 3
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T1 T2 T3

e Assume T1 spawns T2 and T3

send(cl,vl) recv(c2) || send(c2,v3)

fO *]@) h() . : .
send(c2,v2) || recv(cl) || recv(c) o Letf, g, h = print 1, print 2, print 3

(> MultiMLton
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Obs (Well-formed Execution of P) € {Obs (CML Execution of P)}

all executions

well-formed
executions

CML
executions
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Obs (Well-formed Execution of P) € {Obs (CML Execution of P)}

all executions

well-formed
executions

1. Sensible intra-thread semantics

2. Acyclic happens-before relation CML

3. No outstanding communication action executions

preceding an observable action
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Track executions to see if they become
ill-formed (rollback) or turn into CML executions (commit)
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Track executions to see if they become
ill-formed (rollback) or turn into CML executions (commit)

A CML execution
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Track executions to see if they become
ill-formed (rollback) or turn into CML executions (commit)
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Track executions to see if they become
ill-formed (rollback) or turn into CML executions (commit)

A well-formed execution that
can lead to a CML execution
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Track executions to see if they become
ill-formed (rollback) or turn into CML executions (commit)
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Track executions to see if they become
ill-formed (rollback) or turn into CML executions (commit)

Not a well-formed
execution
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¢ R-CML: RelaXed CML
* MultiMLton with distribution support

Rx-CML application = {Instances}
Supports full CML

Transport layer is ZeroMQ
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RME Instance

User-level
threads

Communication
Manager

Cycle
Detector

Serialization Support

ZeroMQ Pub/Sub

Built-in serialization (immutable values and function closures)
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e RK-CML: RelaXed CML
* MultiMLton with distribution support
* Rx-CML application = {Instances}
* Supports full CML

* Transport layer is ZeroMQ

RME Instance

User-level
threads

Communication
Manager

Cycle
Detector

Serialization Support

ZeroMQ Pub/Sub

* Built-in serialization (immutable values and function closures)

e Check the integrity of the speculative actions on-the-fly
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RME Instance

® R-CML: Relaxed CML User-level | |Communication Cycle

threads Manager Detector
"

* MultiMLton with distribution support Serialization Suppor
Rx-CML application = {Instances} ZeroMQ Pub/Sub

Supports full CML

Built-in serialization (immutable values and function closures)

*
*
*
* Transport layer is ZeroMQ

e Check the integrity of the speculative actions on-the-fly

* Build a dependence graph that captures happens-before relation
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RME Instance

® R-CML: Relaxed CML User-level | |Communication Cycle

threads Manager Detector

* MultiMLton with distribution support Serialization Suppor

ZeroMQ Pub/Sub

* Rx-CML application = {Instances}

* Supports full CML

* Built-in serialization (immutable values and function closures)

* Transport layer is ZeroMQ
e Check the integrity of the speculative actions on-the-fly

* Build a dependence graph that captures happens-before relation

+ Same structure as an axiomatic execution
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e RK-CML: RelaXed CML
* MultiMLton with distribution support
* Rx-CML application = {Instances}
* Supports full CML

* Transport layer is ZeroMQ

RME Instance

User-level
threads

Communication
Manager

Cycle
Detector

Serialization Support

ZeroMQ Pub/Sub

* Built-in serialization (immutable values and function closures)

e Check the integrity of the speculative actions on-the-fly

* Build a dependence graph that captures happens-before relation

+ Same structure as an axiomatic execution

* Automatically check dependence graph integrity before an observable action (ref
cell accesses, system calls, FFI, etc)
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RME Instance

® R-CML: Relaxed CML User-level | |Communication Cycle

threads Manager Detector

* MultiMLton with distribution support Serialization Suppor

*x Rx-CML application = {Instances} ZeroMQ Pub/Sub

* Supports full CML

* Built-in serialization (immutable values and function closures)
* Transport layer is ZeroMQ
e Check the integrity of the speculative actions on-the-fly
* Build a dependence graph that captures happens-before relation
+ Same structure as an axiomatic execution

* Automatically check dependence graph integrity before an observable action (ref
cell accesses, system calls, FFI, etc)

* Roll-back ill-formed executions, re-execute non-speculatively
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e Single consistent channel image across all instances without coherence?
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e Single consistent channel image across all instances without coherence?

* Communication manager thread @ every instance
* Maintains a replica of CML channel

*x Ultilize speculative execution to recover from inconsistent state

Instance 1 Instance 2 Instance 3

tcl:[],c2:[1}

PURDUE ) MultiMLton

UNIVERSITY

Tuesday, January 21, 14



e Single consistent channel image across all instances without coherence?

* Communication manager thread @ every instance
* Maintains a replica of CML channel

*x Ultilize speculative execution to recover from inconsistent state

Instance 1 Instance 2 Instance 3

{c1:[s(@)],c2:[1}

{c1:[s(@>],c2:[1}
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* Communication manager thread @ every instance
* Maintains a replica of CML channel

*x Ultilize speculative execution to recover from inconsistent state
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e Single consistent channel image across all instances without coherence?

* Communication manager thread @ every instance
* Maintains a replica of CML channel

*x Ultilize speculative execution to recover from inconsistent state

Instance 1 Instance 2 Instance 3

{c1:[s(@)],c2:[1}

{c1:[],c2:[1}

match (s(cl,0) + r(cl))
{C1:[1,c2:[1}  @-vamatnznznzsesmemememcmsmmamamamnns >&

___________________________________________________________ o) {c1:[1,c2:[1}
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e Single consistent channel image across all instances without coherence?

* Communication manager thread @ every instance
* Maintains a replica of CML channel

*x Ultilize speculative execution to recover from inconsistent state

Instance 1 Instance 2 Instance 3

{c1:[s(@)],c2:[1}

Y
{cl:[1,c2:[1}
match (s(cl,0) + r(cl)) -
{C1:[1,c2:[1}  @-vamatnznznzsesmemememcmsmmamamamnns >&

................................... >‘ {cl:[1,c2:[1}
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e Single consistent channel image across all instances without coherence?

* Communication manager thread @ every instance
* Maintains a replica of CML channel

*x Ultilize speculative execution to recover from inconsistent state

Instance 1 Instance 2 Instance 3

{c1:[s(@)],c2:[1}

{c1:[1,c2:[1} 3 [FIUSh uncc:jr:sumeﬂ
send:!
match (s(cl,0) + r(cl)) -
{C1:[1,c2:[1}  @-vamatnznznzsesmemememcmsmmamamamnns >& /4

................................... >‘ {cl:[1,c2:[1}
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Instance 3

{c1:[1,c2:[s(1D]1}

{cl:[1,c2:[1}

-

(*) MultiMLton




Instance 1
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Instance 2

Instance 3

{c1:[1,c2:[s(1D]1}

{cl:[1,c2:[1}

-
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Instance 1

{c1:[1,c2:[r2,r3]} “

First-come first-
match
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request_to_match(c2)

Instance 2

Instance 3

{c1:[1,c2:[s(1D]1}

{cl:[1,c2:[1}

-
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Instance 1 Instance 2 Instance 3

{c1:[d,c2:[s(1)]1}

e eeemmmememmmmmmmeem > @ {c1:[],c2:[s(1)]}
QO {cl:[1,c2:[13

© {cl:[1,c2:[1}
{c1:[1,c2:[r2,r3]} “

Cirst-come é " match (s(c2,1) + r2(c2))
match -
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e Consistent, replicated dependence graph @ each instance
*  Snoop on match messages from communication manager

* Broadcast thread spawn and thread join messages
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e Consistent, replicated dependence graph @ each instance
*  Snoop on match messages from communication manager

* Broadcast thread spawn and thread join messages

e Well-formedness check is local to the instance!

* GC dependence graph on successful well-formedness check

e Automatic checkpointing
* 1 continuation per thread

*  Uncoordinated! - thread local - does not require barriers
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Consistent, replicated dependence graph @ each instance

*  Snoop on match messages from communication manager

* Broadcast thread spawn and thread join messages

Well-formedness check is local to the instance!

*

GC dependence graph on successful well-formedness check

Automatic checkpointing

*

*

1 continuation per thread

Uncoordinated! - thread local - does not require barriers

Remediation

*

*
*
*

Uncoordinated! - Transitively inform each mis-speculated thread to rollback
Check-point (Continuation) + Log-based (Dependence graph) recovery
Rollback to last checkpoint, replay correct speculative actions

Continues non-speculatively until next observable action = Progress

PURDUE

UNIVERSITY

Tuesday, January 21, 14

MultiMLton




PURDUE ) MultiMLton

UNIVERSITY

Tuesday, January 21, 14



e Optimistic OLTP
Distributed version of STAMP Vacation benchmark
Database split into 64 shards, with concurrent transaction requests from geo-distributed
clients
Uses explicit lock servers -> Rx-CML executes transactions optimistically
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e Optimistic OLTP
*x Distributed version of STAMP Vacation benchmark
* Database split into 64 shards, with concurrent transaction requests from geo-distributed
clients
*  Uses explicit lock servers -> Rx-CML executes transactions optimistically
e P2P Collaborative editing

* Simulates concurrent document editing (operational transformation)
*x Total order broadcast - built out of synchronous events + choice combinator.
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e Optimistic OLTP
*x Distributed version of STAMP Vacation benchmark
* Database split into 64 shards, with concurrent transaction requests from geo-distributed

clients
* Uses explicit lock servers -> Rx-CML executes transactions optimistically

e P2P Collaborative editing
* Simulates concurrent document editing (operational transformation)

*x Total order broadcast - built out of synchronous events + choice combinator.
. . 7 ; . .

w0

W

Time (X 1000 Secs)
N

# Clients # Authors

OLTP Collaborative Editing

e Rx-CML was 5.8X to 7.6X faster than the synchronous version
*  9-17% of communications were mis-speculated.
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e Composable synchronous events vs. High latency compute cloud
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e Composable synchronous events vs. High latency compute cloud

e Rx-CML (Relaxed CML)

*  optimistic concurrency control for CML
* reason synchronously, but implement asynchronously

*x  retain simplicity and composability, but gain performance
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e Rx-CML (Relaxed CML)
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* reason synchronously, but implement asynchronously

*x  retain simplicity and composability, but gain performance
e Distributed implementation of MultiMLton

*x Case studies demonstrate effectiveness of the approach
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Composable synchronous events vs. High latency compute cloud

Rx-CML (Relaxed CML)

* optimistic concurrency control for CML

* reason synchronously, but implement asynchronously

*x  retain simplicity and composability, but gain performance
Distributed implementation of MultiMLton

*x Case studies demonstrate effectiveness of the approach
Future Work - Fault tolerance

* Make checkpoints and dependence graph resilient

* Treat failures as mis-speculations -> rollback to last saved checkpoint
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