05/08/2019 lec6

Pattern Matching

CS3100 Fall 2019

Review

Previously:

» Tuples, Records, Variants
e Polymorphism
 Lists, Option

This lecture:

» Pattern Matching

Pattern Matching

» Pattern matching is data deconstruction
= Match on the shape of data
= Extract part(s) of data

Syntax
match e with
| p1 -> el
| p2 -> e2
| pn -> en

+ p1 ... pn are patterns.

Pattern Matching on Lists
type 'a list = [] | :: of 'a * 'a list

« For lists, the patterns allowed follow from the constructors
= The pattern [] matches the value [].

127.0.0.1:8888/notebooks/lec6/lec6.ipynb

1/11

05/08/2019

lec6

= The patterh h::t
o matches 2::[],binding h to 2 and t to [].

o matches 2::3::[],binding h to 2 and t to 3::[].

= The pattern _ is a wildcard pattern and matches anything.

In [1]:

let list status 1 =
match 1 with
| [1 -> print endline "The list is empty"

| h::t -> Printf.printf "The list is non-empty. Head

Out[l]:

val list status : int list -> unit = <fun>

In [2]:
list status []

The list is empty

Oout[2]:
- : unit = ()
In [3]:

list status [1;2;3]

The list is non-empty. Head =1

Out[3]:
- : unit = ()
In [4]:

list status (2::[3;4])
The list is non-empty. Head = 2
Out[4]:

- : unit = ()

Why pattern matching is THE GREATEST

1. You cannot forget to match a case (Exhaustivity warning)

127.0.0.1:8888/notebooks/lec6/lec6.ipynb

3$d\n%!" h

2/11

05/08/2019 lec6

In [5]:

let list status 1 =
match 1 with
| [1 -> print _endline "The list is empty"
| hl::h2::t -> Printf.printf "The list is non-empty. 2nd element = %d\

File "[5]", line 2, characters 2-139:
Warning 8: this pattern-matching is not exhaustive.
Here is an example of a case that is not matched:

_s2]
Out[5]:

val list status : int list -> unit = <fun>

Why pattern matching is THE GREATEST

1. You cannot forget to match a case (Exhaustivity warning)
2. You cannot duplicate a case (Unused case warning)

In [6]:

let list status 1 =
match 1 with
| [1 -> print endline "The list is empty"
| h::t -> Printf.printf "The list is non-empty. Head = %d\n%!" h
| hl1::h2::t -> Printf.printf "The list is non-empty. 2nd element = %d\

File "[6]", line 5, characters 4-13:
Warning 11: this match case is unused.

Out[6]:

val list_status : int list -> unit = <fun>

Why pattern matching is THE GREATEST

1. You cannot forget to match a case (Exhaustivity warning)
2. You cannot duplicate a case (Unused case warning)

Pattern matching leads to elegant, concise, beautiful
code

127.0.0.1:8888/notebooks/lec6/lec6.ipynb 3/11

05/08/2019 lec6

Length of list

In [7]:

let rec length 1 =
match 1 with
| 11 ->0
| h::t -=> 1 + length t

Out[7]:

val length : 'a list -> int = <fun>

What is wrong with this code?

Length of list (tail recursive)

In [8]:

let rec length' 1 acc =
match 1 with
| [1 -> acc
| h::t -> length' t (l+acc)

let length 1 = length' 1 0

Out[8]:

val length' : 'a list -> int -> int = <fun>
out[8]:

val length : 'a list -> int = <fun>

In [9]:
length [1;2;3;4]
out[9]:

- : int = 4

Match ordering

The patterns are matched in the order that they are written down.

127.0.0.1:8888/notebooks/lec6/lec6.ipynb 4/11

05/08/2019

lec6

In [10]:

let is empty 1 =
match 1 with
| 11 -> true
| _ -> false

Out[10]:

val is _empty : 'a list -> bool = <fun>

Exercise

Implement the reverse of a list.

In [11]:
let rev_1list 1 = failwith "not implemented"
Oout[1ll]:

val rev_list : 'a -> 'b = <fun>

In [12]:
assert (rev list [1;2;3] = [3;2;1])

Exception: Failure "not implemented".

Raised at file "stdlib.ml", line 33, characters 22-33
Called from file "[12]", line 1, characters 8-24

Called from file "toplevel/toploop.ml", line 180, character
s 17-56

Exercise

Implement the append of two lists.

In [13]:
[1;2;3] @ [4;5;6]
out[13]:

- : int list = [1; 2; 3; 4; 5; 6]

127.0.0.1:8888/notebooks/lec6/lec6.ipynb

5/11

05/08/2019

lec6

In [14]:
let append 11 12 = failwith "not implemented”
out[1l4]:

val append : 'a -> 'b -> 'c = <fun>

In [15]:
assert (append [1;2;3] [4;5;6] = [1;2;3;4;5;61])

Exception: Failure "not implemented".

Raised at file "stdlib.ml", line 33, characters 22-33
Called from file "[15]", line 1, characters 8-30

Called from file "toplevel/toploop.ml", line 180, character
s 17-56

Nested Matching

In [16]:

type color = Red | Green | Blue
type point = {x : int; y : int}
type shape =

| circle of point * float (* center, radius *)
| Rect of point * point (* lower-left, upper-right *)
| colorpoint of point * color

Out[1l6]:

type color = Red | Green | Blue

Out[1l6]:

type point { x : int; y : int; }

Out[16]:

type shape
Circle of point * float
| Rect of point * point
| ColorPoint of point * color

Nested Matching

127.0.0.1:8888/notebooks/lec6/lec6.ipynb

6/11

05/08/2019

lec6

Is the first shape in a list of shapes a red point?

In [17]:

let is hd red circle 1 =
match 1 with
| colorPoint(_,Red):: -> true
| -> false

Out[1l7]:

val is_hd red circle : shape list -> bool =

Nested Matching

Print the coordinates if the point is green.

In [18]:

let rec print green point 1 =
match 1 with
| 11 ->0
| Colorpoint({x;y}, Green)::tl ->
Printf.printf "x = %d y = %d\n%!" x y;
print green point tl
| ::tl -> print green point tl

Out[18]:

val print green point : shape list -> unit =

In [19]:

<fun>

<fun>

print green point [Rect ({x=1;y=1},{x=2;y=2});
ColorPoint ({x=0;y=0}, Green);

Circle ({x=1;y=3}, 5.4);

ColorPoint ({x=4;y=6}, Green))]

x=0y =20
Xx =4y =26
Out[19]:

- : unit = ()

When do you use ";"

127.0.0.1:8888/notebooks/lec6/lec6.ipynb

/11

05/08/2019 lec6

When you evaluate an expression just the effect, you can sequence the expression with a semi-
colon.

let () = print endline "Hello, world!" in
e

is equivalent to:

print endline "Hello, world!";
e

Latter is considered better style.

Exceptions

e OCaml has support for exceptions.
= Similar to the ones found in C++ & Java.
» Exceptions are (mostly) just variants.

type exn
exception MyException of string

+ The type exn is an extensible variant.

= New constructors of this type can be added after its original declaration.
» Exceptions are raised with raise e where e is of type exn.
» Handling exceptions is similar to pattern matching.

Find the green point

Given a list of shapes return a point whose colour is green. Otherwise, raise NoGreenPoint
exception.

127.0.0.1:8888/notebooks/lec6/lec6.ipynb 8/11

05/08/2019 lec6

In [20]:

exception NoGreenPoint

let rec find green point 1 =
match 1 with
| [1 -> raise NoGreenPoint
| h::tl ->
match h with
| colorpoint (_, Green) -> h
| _ -> find green point tl

out[20]:
exception NoGreenPoint
Out[20]:

val find green point : shape list -> shape = <fun>

Find the green point

In [21]:
find green point []

Exception: NoGreenPoint.

Raised at file "[20]", line 5, characters 16-28

Called from file "toplevel/toploop.ml", line 180, character
s 17-56

In [22]:
find green point [Rect ({x=1;y=1},{x=2;y=2}); ColorPoint ({x=0;y=0}, Gre
Out[22]:

- : shape = ColorPoint ({x = 0; y = 0}, Green)

Handling the exception

Given a list of shapes return Some p where p is a green point. Otherwise, return None .

127.0.0.1:8888/notebooks/lec6/lec6.ipynb 9/11

05/08/2019

lec6

In [23]:

let find green point opt 1 =
try Some (find green point 1) with
| NoGreenPoint -> None

Oout[23]:

val find green point opt : shape list -> shape option = <fu
n>

In [24]:

find green point opt []

Out[24]:

- : shape option = None

In [25]:
find green point opt [Rect ({x=1;y=1},{x=2;y=2}); ColorPoint ({x=0;y=0},
Out[25]:

- : shape option = Some (ColorPoint ({x = 0; y = 0}, Gree

n))

Exceptions: Recommendations

» Avoid exceptions in your code.
= Unhandled exceptions are runtime errors; aim to avoid this.
« No exhaustiveness check for exceptions (why?).
» Whenever you might need to use exceptions, think whether you can replace that with

type 'a option = None | Some of 'a

or
type ('a,'b) result = Ok of 'a | Error of 'b

Exercise

List.hd : 'a list -> 'a and List.tl: 'a list -> 'a list are functions from

the list standard library (https://caml.inria.fr/pub/docs/manual-ocaml/libref/List.html). They raise
exception when the given list is empty. Implement safe versions of the functions whose

127.0.0.1:8888/notebooks/lec6/lec6.ipynb

10/11

05/08/2019 lec6

signatures are:

In [26]:

let safe hd (1 : 'a list) : 'a option = failwith "not implemented"
let safe t1 (1 : 'a list) : 'a list option = failwith "not implemented"

Out[26]:
val safe hd : 'a list -> 'a option = <fun>
Out[26]:

val safe tl : 'a list -> 'a list option = <fun>

Fin.

127.0.0.1:8888/notebooks/lec6/lec6.ipynb 11/11

