
CS3300 - Compiler Design
Introduction

KC Sivaramakrishnan

IIT Madras

Administrivia

Lecture Timings
Slot B: Monday 9 AM, Tuesday 8 AM, Wednesday 1 PM, Friday 11
AM

Lab Timings
Slot Q: Tuesday 2 PM to 4:45 PM

Course Webpage: https://kcsrk.info/cs3300_m22/
Lecture slides will be uploaded here.

Course Moodle page: TBD
Slack for communication: TBD
Instructor e-mail address: kcsrk@cse.iitm.ac.in

Instructor Office Hours: None.
Feel free to ping me on Slack if you want to meet. TA Office hours
will be announced soon.

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 2 / 37

https://kcsrk.info/cs3300_m22/

Grading Policy

Theory: 60%, Lab: 40%
Theory

Quiz 1: 15%, Quiz 2: 15%, Endsem: 30%
Extra: Class Participation: upto 5%.

Class Participation will be monitored throughout the semester. You
can participate by asking/answering questions during the lectures
and/or in the Slack.

Lab: 6 Assignments. More details will be announced by the end of
the week.

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 3 / 37

Course outline

Overview of Compilers
Lexical Analysis and Parsing
Type checking
Intermediate Code Generation
Register Allocation
Code Generation
Overview of advanced topics.

Goal of the course: At the end of the course,
Students will have a fair understanding of some standard passes
in a general purpose compiler.
Students will have hands on experience on implementing a
compiler for a subset of Java.

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 4 / 37

Course Textbooks

Compilers: Principles, Techniques, and Tools, Alfred Aho, Monica
Lam, Ravi Sethi, Jeffrey D. Ullman. Addison-Wesley, 2007 [The
Dragon Book].

2020 ACM Turing Award! – . . . Who Shaped the Foundations of
Programming Language Compilers and Algorithms
“Columbia’s Aho and Stanford’s Ullman Developed Tools and
Fundamental Textbooks Used by Millions of Software Programmers
around the World”

Modern compiler implementation in Java, Second Edition, Andrew
W. Appel, Jens Palsberg. Cambridge University Press, 2002.

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 5 / 37

Your friends: Languages and Tools

Start exploring
C and Java - familiarity a must - Use of a IDE like Eclipse is
recommended.
Flex, Bison, JavaCC, JTB – tools you will learn to use.
Make / Ant / Scripts – recommended toolkit.

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 6 / 37

Mutual expectations

For the class to be a mutually learning experience:
What will be required from the students?

An open mind to learn.
Curiosity to know the basics.
Explore their own thought process.
Help each other to learn and appreciate the concepts.
Honesty and hard work.
Leave the fear of marks/grades.

What are the students expectations?

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 7 / 37

Acknowledgement

These slides are heavily adapted from the slides prepared by V
Krishna Nandivada and Kartik Nagar @ IIT Madras. Liberal portions of
text are also taken verbatim from Antony L. Hosking @ Purdue, Jens
Palsberg @ UCLA, Alex Aiken @ MIT and the Dragon book.

Copyright ©2022 by Antony L. Hosking. Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and full citation on the first page. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, requires prior specific permission and/or fee. Request permission to publish from hosking@cs.purdue.edu.

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 8 / 37

What, When and Why of Compilers

What, When and Why of Compilers 9 / 37

Compilers: What?

What is a compiler?
a program that translates an executable program in one language
into an executable program in another language.
Usually from a high-level language to machine language

What is an interpreter?
a program that reads an executable program and produces the
results of running that program
usually, this involves executing the source program in some fashion

This course deals mainly with compilers. Many of the same issues
also arise in interpreters.
A common statement – XYZ is an interpreted (or compiled)
language.

KC Sivaramakrishnan (IIT Madras) What, When and Why of Compilers 10 / 37

Examples

“Low level” languages are typically compiled.
C, C++, Go, Rust

“High level” languages are typically interpreted.
Python, Ruby

Some languages are both compiled and interpreted
Java, Javascript - Interpreter + Just in Time (JIT) Compiler

KC Sivaramakrishnan (IIT Madras) What, When and Why of Compilers 11 / 37

Compilers: When?

In 1954, IBM developed the 704, “the first mass-produced
computer with floating-point arithmetic hardware” [Wikipedia].

Unfortunately, software costs would exceed hardware costs, since
all programming was done in assembly.

John Backus developed the FORTRAN I language (1957) for
writing high-level code, and also a compiler for translating it to
assembly.

Development time halved, with performance being close to the
hand-written assembly!
Modern compilers preserve the outline of the FORTRAN I compiler

Independently, in the 1950s, Grace Hopper developed the
COBOL language and a compiler for it.

KC Sivaramakrishnan (IIT Madras) What, When and Why of Compilers 12 / 37

Images of the day

Turing Award Winners, Grace Hopper and John Backus

KC Sivaramakrishnan (IIT Madras) What, When and Why of Compilers 13 / 37

Compilers: Why?

Isn’t it a solved problem? “Optimization for scalar machines was solved
years ago”

Machines have changed drastically in the last 20 years
Changes in architecture ⇒ changes in compilers

Major unsolved problems: Design of a programming language and its
compiler for

AI/ML
many- and multi-core architectures
intermittent computing
FPGAs
probabilisitic programming languages

KC Sivaramakrishnan (IIT Madras) What, When and Why of Compilers 14 / 37

AI/ML Hardware Innovation requires . . .

Google’s Tensor Processing Unit
(TPU) Apple’s M1 Max Die Shot

KC Sivaramakrishnan (IIT Madras) What, When and Why of Compilers 15 / 37

Compiler Innovation

MLIR, or Multi-Level Intermediate Representation, sits between the
model representation and low-level compilers/executors that generate
hardware-specific code.

KC Sivaramakrishnan (IIT Madras) What, When and Why of Compilers 16 / 37

Intermittent computing

KC Sivaramakrishnan (IIT Madras) What, When and Why of Compilers 17 / 37

Interest

Compiler construction is a microcosm of computer science
Algo graph algorithms, union-find, dynamic programming, . . .
theory DFAs for scanning, parser generators, lattice theory, . . .
systems allocation, locality, layout, synchronization, . . .
architecture pipeline management, hierarchy management,
instruction set use, . . .
optimizations Operational research, load balancing, scheduling,
. . .

Inside a compiler, all these and many more come together. Has
probably the healthiest mix of theory and practise.

KC Sivaramakrishnan (IIT Madras) What, When and Why of Compilers 18 / 37

Intrinsic Merit

Compiler Design is challenging and fun
interesting problems
primary responsibility (read:blame) for performance
new architectures ⇒ new challenges
real results
extremely complex interactions

Compilers have a major impact on how computers are used

KC Sivaramakrishnan (IIT Madras) What, When and Why of Compilers 19 / 37

Overview of Compilers

Overview of Compilers 20 / 37

Requirements

What qualities are important in a compiler?
1 Correct code
2 Output runs fast
3 Compiler runs fast
4 Compile time proportional to program size
5 Good diagnostics for syntax errors
6 Works well with the debugger
7 Consistent, predictable optimization

KC Sivaramakrishnan (IIT Madras) Overview of Compilers 21 / 37

Abstract view

errors

compilercode code
source machine

Implications:
recognize legal (and illegal) programs
generate correct code
manage storage of all variables and code
agreement on format for object (or assembly) code

KC Sivaramakrishnan (IIT Madras) Overview of Compilers 22 / 37

Traditional two pass compiler

code
source

code
machinefront

end
back
end

IR

errors

Implications:
intermediate representation (IR).
front end maps legal code into IR
back end maps IR onto target machine
simplify retargeting
allows multiple front ends
multiple passes ⇒ better code

KC Sivaramakrishnan (IIT Madras) Overview of Compilers 23 / 37

Traditional two pass compiler

code
source

code
machinefront

end
back
end

IR

errors

A rough statement: Most of the problems in the Front-end are simpler
(polynomial time solution exists).

Most of the problems in the Back-end are harder (many problems are
NP-complete in nature).

Our focus: Mainly front end and little bit of back end.

KC Sivaramakrishnan (IIT Madras) Overview of Compilers 24 / 37

Phases inside the compiler

Lexical Analyzer

Syntax Analyzer

Semantic Analyzer

Intermediate Code Generator

Machine-Independent Opt

Code Generation

Machine-dependent Opt

character-stream

token-stream

syntax-tree

syntax-tree

intermediate-representation

intermediate-representation

target-machine-code (IR)

target-machine-code

Front end responsibilities:
Recognize syntactically legal
code; report errors.
Recognize semantically legal
code; report errors.
Produce IR.

Back end responsibilities:
Optimizations, code
generation.

Our target
five out of seven phases.
glance over optimizations

KC Sivaramakrishnan (IIT Madras) Overview of Compilers 25 / 37

Major Phases in a Compiler

Lexical Analysis
Parsing
Semantic Analysis
Optimization
Code Generation

KC Sivaramakrishnan (IIT Madras) Overview of Compilers 26 / 37

Lexical Analysis

To understand the different phases of a compiler, we will use as
an analogy, how humans comprehend the English language.
First step: recognize words in a sentence

Smallest unit above letters.
All words in a sentence must be valid. Examples:

This is a sentence
Thsi si otn

KC Sivaramakrishnan (IIT Madras) Overview of Compilers 27 / 37

Lexical Analysis for Programs

Lexical Analyzer divides program text into ‘words’ or ‘tokens’ (in
compiler terminology)
For example, consider the program statement:
if x==y then z=1; else z=2;

Tokens
Keywords: if, then, else
Identifiers: x, y, z
Operators: ==, =, ;
Constants: 1, 2
Whitespace

Lexical Analyzer also rejects a program if it has any invalid word.

KC Sivaramakrishnan (IIT Madras) Overview of Compilers 28 / 37

Parsing

Once words are understood, the next step is to understand the
structure of the sentence.
Parsing = Diagramming Sentences

The diagram will be a tree.

This is a sentence

KC Sivaramakrishnan (IIT Madras) Overview of Compilers 29 / 37

Parsing Programs

Parsing program statements is the same.

if x==y then z=1; else z=2;

KC Sivaramakrishnan (IIT Madras) Overview of Compilers 30 / 37

Semantic Analysis

Once sentence structure is understood, we can try to understand
its “meaning”.

Understanding the entire meaning of a program is too hard for
compilers–in fact, undecidable.

Compilers perform limited semantic analysis to catch
inconsistencies.

KC Sivaramakrishnan (IIT Madras) Overview of Compilers 31 / 37

Semantic Analysis in English

Example: Ram said Shyam left his assignment at home.
What does “his” refer to? Ram or Shyam?

Even worse: Ram said Ram left his assignment at home
How many Ram’s are there? Which one left his assignment?

KC Sivaramakrishnan (IIT Madras) Overview of Compilers 32 / 37

Semantic Analysis in Programming

Programming languages
define strict rules to avoid
such ambiguities.
The C code prints “4”; the
inner definition is used

{
int X = 3;
{

int X = 4;
printf("\%d", X);

}
}

KC Sivaramakrishnan (IIT Madras) Overview of Compilers 33 / 37

More Semantic Analysis

Compilers perform many semantic checks besides variable
bindings.
Example: Shyam left her homework at home
Possible type mismatch between her and Shyam

KC Sivaramakrishnan (IIT Madras) Overview of Compilers 34 / 37

Optimization

No strong counterpart in terms of our analogy, but we can think of
it as editing to make sentences simpler.
Automatically modify programs so that they

Run faster
Use less memory
In general, use of conserve some resource

Example: X = Y*0 is the same as X=0, but does not involve an
additional multiplication, and is thus faster.
In this course, we won’t study optimization in detail. But there are
advanced courses such as Modern Compilers: Theory and
Practice for that purpose.

KC Sivaramakrishnan (IIT Madras) Overview of Compilers 35 / 37

Code Generation

Typically produces Assembly code.
In terms of our analogy, translating the sentence in English into
another language.

KC Sivaramakrishnan (IIT Madras) Overview of Compilers 36 / 37

Intermediate Representations

Compilers typically perform translations between successive
intermediate languages.

All but the first and last are intermediate representations (IR)
internal to the compiler.

IRs are ordered in descending level of abstraction
Highest is source.
Lowest is assembly.
Other IRs that we will during the course: Token Stream, Syntax
Tree, Three-Address Code.

IRs are useful because lower levels expose features hidden by
higher levels

Registers, Memory layout, raw pointers, etc.
But lower levels obscure high-level meaning

Classes, Higher-order functions, Even loops...

KC Sivaramakrishnan (IIT Madras) Overview of Compilers 37 / 37

	Introduction and Motivation

