
Runtime Management



The Compiler... so far

We have covered all the front-end phases
Lexical analysis
Parsing
Semantic Analysis
IR Generation

We now begin the back-end phases
Runtime management
Register Allocation and Code Generation
Optimizations

Runtime Management 2 / 29



Management of run-time resources

Where are the variables stored?
Compiler generates code for managing the layout and allocation
of storage for variables.

The code is generated at compile-time, but executes at run-time to
perform the actual management.
Must take into account HLL concepts such as scopes, bindings,
data types, procedure abstractions, etc.

When a program is invoked:
The OS allocates space for the program
The code is loaded into part of the space
The OS jumps to the entry point (i.e. “main”)

From this point onwards, the responsibility of managing the space
falls to the program.

Runtime Management 3 / 29



Run-time storage organization

Typical memory layout

The classical scheme
allows both stack and heap maximal freedom
code and static data may be separate or intermingled

Runtime Management 4 / 29



Run-time storage organization

Code space
fixed size
statically allocated

Static space
fixed-sized data may be statically allocated, e.g. global variables.
Advantage is that addresses of such variables can be directly
compiled into the machine code.
variable-sized data must be dynamically allocated.

Heap and Stack
Heap stores dynamically allocated objects
Stack stores data structures called ‘activation records’ for
maintaining procedure abstraction

Runtime Management 5 / 29



The procedure abstraction

Separate compilation:
allows us to build large programs
keeps compile times reasonable
requires independent procedures

The linkage convention:
a social contract
machine dependent
division of responsibility

The linkage convention ensures that procedures inherit a valid
run-time environment and that they restore one for their parents.

Linkages execute at run time

Code to make the linkage is generated at compile time

Runtime Management 6 / 29



The procedure abstraction

The essentials:
on entry, establish p’s environment
at a call, preserve p’s environment
on exit, tear down p’s environment
in between, addressability and proper lifetimes

pre−call

call

post−call

procedure Q

prologue

epilogue

prologue

epilogue

procedure P

Each system has a standard linkage
Runtime Management 7 / 29



Activations

An invocation of procedure p is an activation of p.
The lifetime of an activation of p consists of all the steps required
to execute the activation.

Including all the steps in any procedure that p calls.
Lifetimes of procedure activations are propertly nested.

Activation lifetimes can be depicted as a tree; called the activation
tree.

Runtime Management 8 / 29



Activation Tree: Example

class main{
public int g() { ... }
public int f() {
g();}
public int main() {
g(); f();
}

𝑚𝑎𝑖𝑛

𝑔 𝑓

𝑔

Each node corresponds to an activation.
Children of a node p correspond to activations of procedures
called by the activation of p, in the order from left to right.

Runtime Management 9 / 29



Activation Tree: Properties

Activation tree is a dynamic structure; it depends on run-time
behaviour.

The same program may have different activation trees in different
executions.

Several useful relationships exist between activation trees and
runtime behaviour:

Sequence of procedure calls corresponds to pre-order traversal of
the activation tree.
Sequence of returns corresponds to post-order traversal of the
activation tree.
If the execution is currently in a particular activation p, then all
activations that are currently live correspond to p and all its
ancestors.

We can use a stack to track live activations.

Runtime Management 10 / 29



Activation Records

The information needed to manage one procedure activation is
called an activation record or frame.
If a function f calls g, then g’s activation record contains a mix of
information about f and g.

f ’s execution is ‘suspended’ until g completes, after which, f must
resume. Hence, g’s AR contains information needed to resume
execution of f .
g’s AR will also contain space for return value, parameters and local
variables of g.

Runtime Management 11 / 29



A typical Activation Record

Note that this is one of many possible AR designs.
The compiler must fix the layout of the AR and generate code that
correctly accesses locations in the AR.

Runtime Management 12 / 29



Procedure linkages

The linkage divides responsibility between caller and callee

Caller Callee
Call pre-call prologue

1 allocate basic frame
2 evaluate & store

params.
3 store return address
4 jump to child

1 save registers, state
2 store FP (dynamic link)
3 set new FP

4 Allocate space for
local data

Return post-call epilogue

1 copy return value
2 deallocate basic frame
3 restore parameters

(if copy out)

1 store return value
2 restore state
3 restore parent’s FP

4 jump to return address

At compile time, generate the code to do this.
At run time, that code manipulates the frame & data areas.

Runtime Management 13 / 29



Activation records on the control stack

Argument n
…
…

Argument 2
Argument 1In

co
m

in
g 

Ar
gu

m
en

ts

Return Address

Callee-saved 
Registers

Saved Frame-
pointer

Local Data

Temporaries

Argument n
…
…

Argument 2
Argument 1

Return Address

O
ut

go
in

g 
Ar

gu
m

en
ts

Higher Address

Lower Address

Frame 
pointer

Stack 
pointer

f()

g()

h()

g's 
activation 

record 

Arguments are placed at the start of
the AR; easy for caller to set them up.
Temporaries are allocated at the end
of the AR; current function can use as
much space as necessary.
The frame-pointer (FP) contains the
base address of current frame

Arguments at constant positive
offsets, local variables at constant
negative offsets, relative to FP.

Runtime Management 14 / 29



Discussion

The set of steps performed while calling a procedure is called
calling sequence.

Set of steps performed while returning is called return sequence.

Note that there is noting magic about the division of responsibility
between caller and callee.

One can choose a different division, as long as all the steps in
calling and return sequence are carried out.
Choose an organization which optimizes some (or all parameters):
Execution time, code length, ease of code generation, etc.

To optimize code length, it is better to delegate as much
responsibility to the callee as possible.

If a procedure is called n times, then the portion assigned to the
caller would be generated n times.

Runtime Management 15 / 29



Run-time storage organization

Where do local variables go?
When can we allocate them on a stack?
Key issue is lifetime of local names

Downward exposure:

called procedures may reference my variables

dynamic scoping

lexical scoping

Upward exposure:

can I return a reference to my variables?

functions that return functions

continuation-passing style

With only downward exposure, the compiler can allocate the frames on the
run-time call stack

Runtime Management 16 / 29



Storage classes

Each variable must be assigned a storage class

Static variables:
addresses compiled into code
(usually) allocated at compile-time
limited to fixed size objects

Global variables:
almost identical to static variables
layout may be important
naming scheme ensures universal access

Runtime Management 17 / 29



Storage classes (cont.)

Procedure local variables
Put them on the stack

if sizes are fixed
if lifetimes are limited
if values are not preserved

Dynamically allocated variables
Must be treated differently

call-by-reference, pointers, lead to non-local lifetimes
(usually) an explicit allocation on the heap
explicit or implicit deallocation

Runtime Management 18 / 29



Access to non-local data

How does the code find non-local data at run-time?

Real globals
visible everywhere
naming convention gives an address
initialization requires cooperation

Lexical nesting
Allows nested procedure declarations
A procedure can access variables of other procedures whose
declaration surround its own declaration
view variables as (nesting-depth,offset) pairs (compile-time)
chain of non-local access links
more expensive to find (at run-time)

Runtime Management 19 / 29



Lexical Nesting: Example

Runtime Management 20 / 29



Access to non-local data

Two important problems arise
How do we map a name into a (nesting-depth,offset) pair?
Use a block-structured symbol table

look up a name, want its most recent declaration
declaration may be at current level or any lower level

Given a (nesting-depth,offset) pair, what’s the address?
Two classic approaches

access links (or static links)
displays

Runtime Management 21 / 29



Access to non-local data

To find the value specified by (l,o)

need current procedure nesting-depth, k

k = l ⇒ local value
k > l ⇒ find l’s activation record
k < l cannot occur

Maintaining access links: (static links )
calling nesting-depth k+1 procedure

1 pass current procedure’s FP as access link
2 current procedure’s backward chain will work for lower

nesting-depths
calling procedure at nesting-depth l ≤ k

1 find link to nesting-depth l−1 and pass it to the callee
2 its access link will work for lower nesting-depths

Runtime Management 22 / 29



Using Access Links: Example

Runtime Management 23 / 29



The display

To improve run-time access costs, use a display:
table of access links for all nesting-dephts
For each nesting-depth, the access link to the most recent AR at
the depth is stored.
Each AR also stores the link to the previous highest AR.
Where to store the display? Can be stored separately or as part of
the activation record.

Access with the display
assume a value described by (l,o)

find slot as display[l]
add offset to pointer from slot (display[l][o])

“Setting up the basic frame” now includes display manipulation

Runtime Management 24 / 29



Display: Example

Runtime Management 25 / 29



Display: Example

Runtime Management 26 / 29



Parameter passing

What about parameters?

Call-by-value
store values, not addresses
never restore on return
arrays, structures, strings are a problem

Call-by-reference
pass address
access to formal is indirect reference to actual

Runtime Management 27 / 29



Parameter passing

What about variable length argument lists?
1 if caller knows that callee expects a variable number

1 caller can pass number as 0th parameter
2 callee can find the number directly

2 if caller doesn’t know anything about it
1 callee must be able to determine number
2 first parameter must be closest to FP

Consider printf :
number of parameters determined by the format string
it assumes the numbers match

Runtime Management 28 / 29



Heap Management

Data that outlives the procedure that creates it cannot be kept in
the Activation record.

E.g. Objects created using new in Java, malloc in C/C++.

Dynamically allocated data is stored on the heap.
Heap Management techniques typically deal with allocation and
deallocation problems.

Finding a contiguous segment of required size, avoiding
fragmentation, etc.
Automatic/manual reclamation of space; Garbage Collection

Runtime Management 29 / 29


