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Idea: Prove each step of the translation and optimisation correct through Simulation
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Language

Numbers n € N
Variables = €  Strings
Expressions e 1= n|z|e+e|le—e|exe
Commands c¢ ::= skip|x <« e|c;c]|if ethen celse c | while e do ¢ | out(e)

e An optimising compiler should preserve the behaviour of the
program in terms of the output traces generated.

e Equivalence of traces is fundamental correctness property

+ Invariants — safety

+ Trace equivalence — liveness (not only for terminating programs)



Labelled transition semantics

[e]

(v, out(e)) = (v, skip)

(v, < e) _6’0 (’U[CL‘ — [[e]]v]aSkip) (v, skip; ¢2) _6’0 (v,c2)

le]v # 0 [eJv =10
(v,if e then c; else c3) =0 (v,c1) (v, if e then ¢y else c) —5¢ (v, c2)
le]v # 0 le]v =0

(v, while e do ¢1) —¢ (v, c1;while edo ¢;) (v, while e do ¢;) —5¢ (v, skip)

(v, ¢) —l;o (v, c)

(v,Cle]) > (v, C[¢])
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Traces

¢ Finite sequences of outputs and termination events

s—>c8 teTr(s) s—5cs teTr(s)
- € Tr(s) terminate € Tr((v, skip)) teTr(s) out(n) x t € Tr(s)

e A trace is allowed to end even if the program hasn’t terminated

DEFINITION 9.1 (Trace inclusion). For commands c¢; and co, let ¢; < co iff
TI’(Cl) - TF(CQ).

DEFINITION 9.2 (Trace equivalence). For commands ¢; and cs, let ¢; >~ co iff
Tr(cy) = Tr(co).
c1 >~ c2
Tr(cy) = Tr(cs)
Tr(c1) C Tr(ecz) A Tr(ca) € Tr(cq)
c1t S c2Nca =

Ny



Constant-folding

e Optimisation is
+ Find all maximal program subexpressions that don’t contain variables
+ Replace each subexpression with its known constant value

e The optimisation only changes variable free-expressions

+ The original and the optimised program match at each step



Basic Simulation Relation

DEFINITION 9.3 (Simulation relation). We say that binary relation R over
states of our object language is a simulation relation iff:

(1) Whenever (v, skip) R (ve, c2), it follows that cy = skip.
/ ¢

(2) Whenever s; R so and s; —. s}, there exists s5, such that sy — s, and
s1 R s5.
R \
S1 7 S9
lvic la—ﬁc
/ /
$1 =1 S2

THEOREM 9.4. If there exists a simulation R such that s; R so, then s1 ~ ss.



Simulation for Constant Folding

THEOREM 9.5. For any v and ¢, (v,c) ~ (v, cfold;(c)).

PROOF. By a simulation argument using this relation:

(v1,¢1) R (v2,c2) = w1 = v A cg = cfoldy(cq)



Basic Simulation Relation

THEOREM 9.4. If there exists a stimulation R such that s; R so, then s1 ~ ss.

81i>82

lvic J{a—?c

/ /
S1 ER_l S9

¢ We prove two trace inclusion directions separately

o [eft-to-right Tr(sl) € Tr(s2) proved by induction on traces on
the left

e Right-to-left Tr(s2) C Tr(sl) proved similarly

+ Depends on operational semantics being total and deterministic



Simulation with skipping

e Consider extension of constant folding to conditionals

cfoldArith(e;) =1
cfold(if e; then ey else e3

cfold(es)

cfoldArith(e;) = 0
cfold(if e; then ey else e3) = cfold(es)

® We can no longer use our basic simulation

+ Steps are intentionally skipped in the optimised program



Simulation with Skipping: Faulty

DEFINITION 9.6 (Simulation relation with skipping (faulty version!)). We say
that binary relation R over states of our object language is a simulation relation
with skipping iff:

(1) Whenever (v, skip) R (v, c2), it follows that co = skip.
(2) Whenever s; R s and s —l;c s’ , then either:

(a) there exists s5 such that s; . s, and s} R sb,
(b) or £ = € and s} R ss.

R R
S| >s? s >s?)
vll l 3 | € l
R
R
sl’ »s? sl’

(a) (b)



Faulty Optimisation: Advertising
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while 1 do Out(0)
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Faulty Optimisation: Advertising

withAds(while 1 do Skip)
withAds(c)

while 1 do Out(0)
C

e We can use the candidate simulation relation

(v1,¢1) R (vg,c9) = c¢1 € {while 1 do skip, (skip; while 1 do skip)}

R
while | do Skip > while | do Out(0)

Skip; while | do Skip




Simulation with skipping

DEFINITION 9.7 (Simulation relation with skipping). We say that an N-indexed
family of binary relations R, over states of our object language is a simulation
relation with skipping iff:

(1) Whenever (v1, skip) R, (v2,c2), it follows that co = skip.
(2) Whenever s; R, s3 and s; L s’ , then either:

(a) there exist n’ and s, such that s e s and s] R, s5,
(b) orn >0, ¢ =¢€, and s| R,_1 so.

Rn Rn
s >s? S| >s?
vll l 3 | € l
R, Rn-i
sl’ »s? sl’




Trace Equivalence for
Simulation with Skipping

THEOREM 9.8. If there exists a simulation with skipping R such that s;1 R, s2,
then s1 ~ 8.

THEOREM 9.9. For any v and ¢, (v,c) ~ (v, cfolds(c)).

PROOF. By a simulation argument (with skipping) using this relation:

(’01,61) R, (’UQ,CQ) = V1 =V A Cy = CfOldg(Cl) A COUﬂt'fS(Cl) <n



