Compiler Correctness

KC Sivaramakrishnan
Spring 202 |

[T

MADRAS %==*

Why prove compilers correct!?

Source Translation Optimisation Translation Target
Language Phase Intermediate Phase Intermediate Phase Language
Representation Representation

Why prove compilers correct!?

Source Translation

Optimisation
Language Phase Intermediate Phase Intermediate Phase Language

Translation Target

Representation Representation

| have some semantics
for the source language

Why prove compilers correct!?

Source Translation Optimisation Translation Target

Language Phase Intermediate Phase Intermediate Phase Language
Representation Representation

Does the target
language have equivalent
semantics?

| have some semantics
for the source language

Why prove compilers correct!?

Source Translation Optimisation Translation Target

Language Phase Intermediate Phase Intermediate Phase Language
Representation Representation

Does the target
language have equivalent
semantics?

| have some semantics
for the source language

Idea: Prove each step of the translation and optimisation correct through Simulation

Compcert Verified C Compiler

Parser,
typechecker,
simplifier (CIL)

(OXT I (- — — —
T -~ //// //
Program | /

prover y J/
_____ - /

/" Model

Initial
translation

Static A
\._ analyzer .’

Dataflow analyses

https://compcert.org/

>
A\
Coq P -
“ >~
- <~ -
N / Other
)
N \

e . « Jlanguages? .- Tye Graph

C mini-ML > J - - reconstruction coloring
4
N -
s /
\ /
\ /
N\ /
A

Stack pre- CFG construction; | - | I - | Linearization
allocation instruction recognition Validation || Validation of the CFG

| Constant o Common »| Register allocationby | |

propagation "| subexpressions graph coloring

Layout of the
activation
record

Generation of
Power PC
instructions

Data -
structures Machine
(Maps, Sets) arithmetic

Printing to asm

syntax

Programmed
in Caml

Memory
model

PowerPC
assembly

Programmed and
proved in Coq

Language

Numbers n € N
Variables = € Strings
Expressions e 1= n|z|e+e|le—e|exe
Commands ¢ ::= skip|x <« e|c;c|if ethen celse c|while e do c | out(e)

Language

Numbers n € N
Variables = € Strings
Expressions e 1= n|z|e+e|le—e|exe
Commands ¢ ::= skip|x <« e|c;c|if ethen celse c|while e do c | out(e)

e An optimising compiler should preserve the behaviour of the
program in terms of the output traces generated.

Language

Numbers n € N
Variables = € Strings
Expressions e 1= n|z|e+e|le—e|exe
Commands c¢ ::= skip|x <« e|c;c]|if ethen celse c | while e do ¢ | out(e)

e An optimising compiler should preserve the behaviour of the
program in terms of the output traces generated.

e Equivalence of traces is fundamental correctness property

+ Invariants — safety

+ Trace equivalence — liveness (not only for terminating programs)

Labelled transition semantics

[e]

(v, out(e)) = (v, skip)

(v, < e) _6’0 (’U[CL‘ — [[e]]v]aSkip) (v, skip; ¢2) _6’0 (v,c2)

le]v # 0 [eJv =10
(v,if e then c; else c3) =0 (v,c1) (v, if e then ¢y else c) —5¢ (v, c2)
le]v # 0 le]v =0

(v, while e do ¢1) —¢ (v, c1;while edo ¢;) (v, while e do ¢;) —5¢ (v, skip)

(v, ¢) —l;o (v, c)

(v,Cle]) > (v, C[¢])

Traces

¢ Finite sequences of outputs and termination events

s—>c8 teTr(s) s—5cs teTr(s)

- € Tr(s) terminate € Tr((v, skip)) t € Tr(s) out(n) x t € Tr(s)

e A trace is allowed to end even if the program hasn’t terminated

Traces

¢ Finite sequences of outputs and termination events

s—>c8 teTr(s) s—5cs teTr(s)
- € Tr(s) terminate € Tr((v, skip)) teTr(s) out(n) x t € Tr(s)

e A trace is allowed to end even if the program hasn’t terminated

DEFINITION 9.1 (Trace inclusion). For commands c¢; and co, let ¢; < co iff

TI’(Cl) - TF(CQ).

DEFINITION 9.2 (Trace equivalence). For commands c¢; and co, let ¢; =~ co iff
Tr(cy) = Tr(co).

Traces

¢ Finite sequences of outputs and termination events

s—>c8 teTr(s) s—5cs teTr(s)
- € Tr(s) terminate € Tr((v, skip)) teTr(s) out(n) x t € Tr(s)

e A trace is allowed to end even if the program hasn’t terminated

DEFINITION 9.1 (Trace inclusion). For commands c¢; and co, let ¢; < co iff
TI’(Cl) - TF(CQ).

DEFINITION 9.2 (Trace equivalence). For commands ¢; and cs, let ¢; >~ co iff
Tr(cy) = Tr(co).
c1 >~ c2
Tr(cy) = Tr(cs)
Tr(c1) C Tr(ecz) A Tr(ca) € Tr(cq)
c1t S c2Nca =

Ny

Constant-folding

e Optimisation is
+ Find all maximal program subexpressions that don’t contain variables
+ Replace each subexpression with its known constant value

e The optimisation only changes variable free-expressions

+ The original and the optimised program match at each step

Basic Simulation Relation

DEFINITION 9.3 (Simulation relation). We say that binary relation R over
states of our object language is a simulation relation iff:

(1) Whenever (v, skip) R (ve, c2), it follows that cy = skip.
/ ¢

(2) Whenever s; R so and s; —. s}, there exists s5, such that sy — s, and
s1 R s5.
R \
S1 7 S9
lvic la—ﬁc
/ /
$1 =1 S2

THEOREM 9.4. If there exists a simulation R such that s; R so, then s1 ~ ss.

Simulation for Constant Folding

THEOREM 9.5. For any v and ¢, (v,c) ~ (v, cfold;(c)).

PROOF. By a simulation argument using this relation:

(v1,¢1) R (v2,c2) = w1 = v A cg = cfoldy(cq)

Basic Simulation Relation

THEOREM 9.4. If there exists a stimulation R such that s; R so, then s1 ~ ss.

81i>82

lvic J{a—?c

/ /
S1 ER_l S9

¢ We prove two trace inclusion directions separately

o [eft-to-right Tr(sl) € Tr(s2) proved by induction on traces on
the left

e Right-to-left Tr(s2) C Tr(sl) proved similarly

+ Depends on operational semantics being total and deterministic

Simulation with skipping

e Consider extension of constant folding to conditionals

cfoldArith(e;) =1
cfold(if e; then ey else e3

cfold(es)

cfoldArith(e;) = 0
cfold(if e; then ey else e3) = cfold(es)

® We can no longer use our basic simulation

+ Steps are intentionally skipped in the optimised program

Simulation with Skipping: Faulty

DEFINITION 9.6 (Simulation relation with skipping (faulty version!)). We say
that binary relation R over states of our object language is a simulation relation
with skipping iff:

(1) Whenever (v, skip) R (v, c2), it follows that co = skip.
(2) Whenever s; R s and s —l;c s’ , then either:

(a) there exists s5 such that s; . s, and s} R sb,
(b) or £ = € and s} R ss.

R R
S| >s? s >s?)
vll l 3 | € l
R
R
sl’ »s? sl’

(a) (b)

Faulty Optimisation: Advertising

withAds(while 1 do Skip)
withAds(c)

while 1 do Out(0)
C

Faulty Optimisation: Advertising

withAds(while 1 do Skip)
withAds(c)

while 1 do Out(0)
C

e We can use the candidate simulation relation

Faulty Optimisation: Advertising

withAds(while 1 do Skip)
withAds(c)

while 1 do Out(0)
C

e We can use the candidate simulation relation

(v1,¢1) R (vg,c9) = c¢1 € {while 1 do skip, (skip; while 1 do skip)}

Faulty Optimisation: Advertising

withAds(while 1 do Skip)
withAds(c)

while 1 do Out(0)
C

e We can use the candidate simulation relation

(v1,¢1) R (vg,c9) = c¢1 € {while 1 do skip, (skip; while 1 do skip)}

R
while | do Skip > while | do Out(0)

Skip; while | do Skip

Simulation with skipping

DEFINITION 9.7 (Simulation relation with skipping). We say that an N-indexed
family of binary relations R, over states of our object language is a simulation
relation with skipping iff:

(1) Whenever (v1, skip) R, (v2,c2), it follows that co = skip.
(2) Whenever s; R, s3 and s; L s’ , then either:

(a) there exist n’ and s, such that s e s and s] R, s5,
(b) orn >0, ¢ =¢€, and s| R,_1 so.

Rn Rn
s >s? S| >s?
vll l 3 | € l
R, Rn-i
sl’ »s? sl’

Trace Equivalence for
Simulation with Skipping

THEOREM 9.8. If there exists a simulation with skipping R such that s;1 R, s2,
then s1 ~ 8.

THEOREM 9.9. For any v and ¢, (v,c) ~ (v, cfolds(c)).

PROOF. By a simulation argument (with skipping) using this relation:

(’01,61) R, (’UQ,CQ) = V1 =V A Cy = CfOldg(Cl) A COUﬂt'fS(Cl) <n

