Hoare Logic

KC Sivaramakrishnan
Spring 2020

[T

MADRAS %==*

Context

Previously: Lambda Calculus
+ This lecture: Prove deeper properties about programs correctness.

+ Not just absence of crashes (type soundness)

Go back to an imperative language with valuation and heap
(aliasing, pointers)

Describe the semantics of the program using operational
semantics

+ But directly proving properties on operational semantics becomes
tedious

Hoare Logic: Machinery for proving program correctness
automatically

+ Invented by C.A.R.Hoare (the same person who invented quick sort).

Syntax

Numbers n € N
Variables x € Strings
Expressions e 1= nl|zx|et+e|le—el|exe|x*|e]
Boolean expressions b = e=e|e<e
Commands ¢ := skip|x<«e|x[e]—e]cc
| if bthen celse c | {a}while b do c | assert(a)
Heap h = nat — nat
Valuation v = war — nat

Assertion a heap — valuation — Prop

AN N N /N TN
S 2 3 SRS

> <
£ £=
O O O O O

N’ e N N N

N N TN TN TN TN N N
,,,,,,,,

S S S SN SN SN SN N
— - - - /- — ——

Semantics of Expressions

Semantics of Commands

(h,v,skip) | (h,v) (h,v,xz <€) (h,v[x— [e](h,v)])

(ha v, *[61] ‘_ 62) J (h[[[el]](ha 'U) — [[62]](17’7'0)]7 ’U)

(h,v,¢1) | (h1,v1) (h1,v1,¢2) { (he,v2)
(h,’U,Cl;CQ) ‘U (h27v2)

[6] (A, v) (R,v,c1) § (R, 0) —[b](h,v) (h,v,e2) I (B,)
(h,v,if bthen c; else c2) | (R',v") (h,v,if bthen c; else c2) | (A', ")

[b](h,v) (h,v,c;{I}while bdoc) | (h',v") —=[b] (h, v)
(h,v,{I}whilebdoc) | (h',v) (h,v,while bdo c) | (h,v)
a(h,v)

(h,v,assert(a)) || (h,v)

Hoare Triple

1Pre@}
N

Pre-condition Post-condition

P, () .= heap — valuation — Prop

e Capture the effect of each command on the valuation and the
heap.

+ Pre- and post-conditions are an abstraction of the program behaviour

e Use this to build up to the effect of the entire program

Hoare Triple

{P}c1{Q} {Q}c2{R} Vs. P(s) = I(s)
{P}skip{ P} {P}ci; c2{ R} { P}assert(I){ P}

{Plx — e{\(h,v). F'. P(h,v') nv ="z~ [e](h,v)]}

{P}x|er] < ea{A(h,v). IW. P(h',v) A h = h'|[e (R, v) — [ex] (K, v)]}

{As. P(s) A [b](s)}c1{@1} {As. P(s) A —[b](s)}c2{Q2}
{P}if bthen c; else ca2{)As. Q1(s) v Q2(s)}

[Consequence] {P}c{Q} (Vs. P'(s) = P(s)) (Vs.Q(s) = Q'(s))
{P'}e{Q'}

Hoare Triple

(Vs. P(s) = I(s)) {Xs.I(s) A [b](s)}c{l}
{P}{I}while b do c{)\s. I(s) A —[b](s)}

/

loop invariant

® | oop invariant holds true at the beginning, during and at the end
of the loop

+ Closely connected to invariants in transition systems

® | oop invariants give the induction hypothesis that makes the
correctness proof go through

+ Is not syntax directed

® |nferring good loop (inductive) invariants is active research

Towards automated verification

1P} C {Q}

Towards automated verification

(P} C {Q}

If Q unifies with |
syntactic rule for C

Proceed recursively
on premises of C

Towards automated verification

{P C Q}

. Otherwise, apply
N\, [consequence] +
N\, [syntactic rule]

If Q unifies with |
syntactic rule for C

P} C{Q})

Proceed recursively N
on premises of C Q =>Q

Towards automated verification

{P C Q}

. Otherwise, apply
N\, [consequence] +
N\, [syntactic rule]

If Q unifies with
syntactic rule for C

P} C Q)

Proceed recursively N
on premises of C Q =>Q

Q’ => Q can be discharged
with SMT solver

Soundness

e Connect Hoare Triple with Operational Semantics
+ Similar to types and operational semantics

+ What is the analogy of “well-typed programs do not crash” here?

THEOREM 12.2 (Soundness of Hoare logic). If {P}c{Q}, (h,v,c) | (h',v’), and
P(h,v), then Q(h/,v").

Selection Sort

selection_sort (a,n) =
i <- 0;
1 < n
] <=1+ 1;
best <- 1;
] <n
x(a + j) < *(a + best)
best <- j
skip;
] <—-3] +1

tmp <— x(a + best);

x(a + best) <- x(a + 1);
*x(a + 1) <— tmp;

1 <-1+1

Selection Sort

selection_sort (a,n) =
1 <— 0; IIHIII’II:IIIIII

1 <n
] <=1+ 1;
best <- 1i; .
] <n 1
*(a + j) < *x(a + best)
best <- j
skip;
] <—-3] +1

tmp <— *x(a + best);

*x(a + best) <- *x(a + 1);
*x(a + 1) <— tmp;

1 <—-1+1

Selection Sort

selection_sort (a,n) =
1 <— 0;
while i < n loop
] <—- 1+ 1;
best <- 1;
while j < n loop
when x(a + j) < *x(a + best) then
best <- j
else skip;
] <—-3] +1
done
tmp <- x(a + best);
x(a + best) <- x(a + 1i);
x(a + 1) <— tmp;
1 <—-1+1
done

Selection Sort

selection_sort (a,n) =
1 <— 0;
while i < n loop
] <—- 1+ 1;
best <- 1;
while j < n loop
when x(a + j) < *x(a + best) then
best <- j
else skip;
] <—-3] +1
done
tmp <- x(a + best);
x(a + best) <- x(a + 1i);
x(a + 1) <— tmp;
1 <—-1+1
done

Hoare Logic + Small-step

e As we know, big step operational semantics can only deal with
terminating programs

e Hoare Logic naturally applies to small step semantics as well

Small-step Operational Semantics

(h,v,x < e) — (h,v[x — [e](h,v)],skip)

(h, v, ¥[e1] < e2) — (h[[e1] (h, v) = [e2] (R, v)],v,skip)

(h,v,c1) — (A, v, c})
(h'v v, Sklpa C2) — (h'a v, 62) (h’a v, C1, C2) — (h’,a vla cll; (32)

[6] (7, v) —[6] (R, v)

(h,v,if b then ¢y else c3) — (h,v,c1) (h,v,if bthen ¢ else c3) — (h,v, cs)

[6] (A, v) —[b] (A, v)

(h,v,{I}while b do ¢) — (h,v,c;{I}while bdoc) (h,v,{I}whilebdoc)— (h,v,skip)

a(h,v)
(h, v, assert(a)) — (h,v,skip)

Invariant Safety

e Small-step semantics is said to be stuck when the command is
not Skip, but no way to take a step.

+ In lambda calculus, 0 + (\x.x).What is an example of stuck expression
in our language!

a(h,v)
(h,v,assert(a)) — (h,v,skip)

THEOREM 12.6 (Invariant Safety). If {P}c{Q} and P(h,v), then unstuckness
is an invariant for the small-step transition system starting at (h,v,c).

LEMMA 12.3 (Progress). If {P}c{Q} and P(h,v), then (h,v,c) is unstuck.

LEMMA 12.5 (Preservation). If {P}c{Q}, (h,v,c) — (h',v',c), and P(h,v),
then {As. s = (h',v")}{Q}.

