
Programs and Proofs

KC Sivaramakrishnan
Spring 2025

Building Reliable Software
• Suppose you run a software company

• Support you’ve sunk 30+ person-years into developing the
“next big thing”:

★ Boeing Dreamliner2 flight controller

★ Autonomous vehicle control software for Tesla

★ Gene therapy DNA tailoring algorithms

★ Super-efficient green-energy power grid controller

• How do you avoid disasters?

★ Turns out software endangers lives

2

Boeing 737 Max Crashes
• Involved in two crashes

✦ Lion Air Flight 610 on October 29, 2018 — 189 dead

✦ Ethiopian Airlines Flight 302 on March 10, 2019 — 157 dead

• The crash is attributed to design errors including flight control
software

✦ The position of larger engines on 737 Max generated addition lift

Boeing 737 Max Crashes
• Manoeuvring Characteristics Augmentation System (MCAS)

✦ Software to sense angle of attack (AoA) from a sensor and automatically
compensate

• Crashes due to faulty AoA sensor data but also due to MCAS software

• Every time MCAS was switched on and off again, it acted like first time
pitching nose lower

✦ incorrect spec not including history

• Max 0.8 degrees pitch during testing, which was changed to 2.4 after

✦ Executing conditions not reflective of testing

• MCAS completely ignored that pilots were desperately pulling back on
the yoke

✦ Incorrect spec not considering environment

Not an isolated incident
• NASA’s Mars Climate Orbiter

✦ A sub contractor on the engineering team failed to make a simple conversion from
English units to metric

✦ $125 million loss

• Ariane 5 Flight 501

✦ The software had tried to cram a 64-bit number into a 16-bit space.

✦ Crashed both the primary and the backup computer

✦ $500 million payload lost + $XXX to fix the flaw.

• Hawaii Sends Out a State-Wide False Alarm About a Missile Strike

✦ there were “troubling” design flaws in the Hawaii Emergency Management Agency’s alert
origination software.

• The Equifax social security hack

✦ 143 million of their consumer records (names, SSN, credit card numbers) were stolen
by attackers.

2024 Hall Of Fame: CrowdStrike
• CrowdStrike Falcon Sensor

✦ Detects and prevents threats

✦ Operated at OS kernel level

• A faulty update led to BSOD loop

• Impact

✦ Devices affected: 8.5 million globally.

✦ Downtime: Up to 72 hours for major
organizations.

✦ Financial losses: Estimated at $10 billion.

✦ Sectors impacted: Banking (30%), healthcare
(25%), transportation (20%).

CrowdStrike: Cause
• Software

✦ The channel files were validated using Regex patterns with wildcards and
loaded into an array instead of using a parser for this purpose.

✦ In C, the array length was not checked before access.

✤ An array with 21 fields was expected, but the channel file was in an older data format
with only 20 fields.

✦ In the unit tests, only the happy path was tested.

✤ Regression tests for compatibility with the older data format were not conducted.

✤ In manual tests, only valid data was tested.

✦ The channel files did not contain a version number field that was checked.

• Process

✦ There were no staggered rollouts, but the update was distributed to all
customers simultaneously

✦ Falcon run as driver at ring 0 in the OS!

Approaches to Validation
• Social

✦ Code reviews

✦ Extreme/pair programming

• Methodological

✦ Design patterns

✦ Test-driven development

✦ Version control

✦ Bug Tracking

• Technological

✦ Static analysis

✦ Fuzzers

• Mathematical

✦ Sound Type Systems

✦ Formal verification

Verification
• Scaled to 10s of lines of code in 1970s

• Now, research projects scale to real software:

✦ CompCert: A verified C compiler (done in Coq)

✦ seL4: verified microkernel OS

✦ Ynot: verified DBMS, web services

✦ Verified Crypto using F* in Microsoft Windows, Mozilla Firefox, etc.

• In another 40 5 years?

✦ LLMs!

✦ Verification to avoid hallucination

Proof Assistants
• You give assistant a theorem

• You and assistant cooperate to find the proof

✦ Human guides the construction

✦ Machine does the low-level details

• Examples: Coq, NuPRL, Isabelle HOL, Lean

Coq
• 1984: Coquand and Huet implement Coq based on calculus of

inductive constructions

• 1992: Coq ported to Caml

• Now implemented in OCaml

Gérard HuetThierry Coquand

Automated Theorem Proving
• You give the prover a theorem

• The prover either:

✦ Finds a proof

✦ Finds a counter example

✦ Times out

• Eg,

✦ Z3: Microsoft has started shipping with device driver developer kit
since Windows 7

✦ ACL2: used to verify AMD chip compliance with IEEE floating point
specification, as well as parts of the Java virtual machine

F*
• A solver-aided (Z3) general purpose programming language

• Write programs and write theorems about the programs

✦ F* will discharge the proof obligations to the Z3 solver, but proofs can
also be interactive

• Programs can be extracted to OCaml, F#, C, WASM and ASM.

• Main use case is Project Everest at Microsoft — a drop in
replacement for HTTPS stack

✦ Verified implementations of TLS 1.2 and 1.3, and underlying
cryptographic primitives.

This course
• Providing a mathematical foundation for rigorous analysis of realistic

software systems

✦ Increasingly on demand as almost everything humans
interact with is increasingly mediated by software

• We will look at

✦ Formal logical reasoning about program correctness through

✦ Coq proof assistant, a tool for machine checked mathematical
theorem proving and

✦ F*, a general-purpose programming language aimed at program
verification

Why Proof Assts / Solver-aided PLs?
• Reasoning about program correctness presupposes the ability

to read and write mathematical proofs

✦ Humans are bad at writing proofs with pen-and-paper — terribly
buggy!

• Proof assistants allow humans to carefully construct machine
checked proofs

✦ “obvious to see that it holds” is no longer possible

• Proof assistants = 1 TA per student!

• Homework

✦ Watch “Lambda: the Ultimate TA” by Benjamin Pierce

✤ https://vimeo.com/6615365

https://vimeo.com/6615365

Course Contents
• Basics of mathematical logic

✦ Logic::CS = Calculus::EE,Civil,Mech

• Functional Programming

✦ Programs as data, polymorphism, recursion

✦ Specification and verification

• PL theory

✦ transition systems, operational semantics, lambda calculus, Hoare
logic, separation logic, weakest precondition, dependent types,
monadic effects, etc.

Course Details
• Lectures will be mostly developing programs and proofs interactively

✦ In Coq and F-star

✦ Students are encouraged to bring their laptops and follow along.

• CS3100 OCaml portions are a pre-requisite

✦ If you aren't comfortable with functional programming, please review the lecture
materials (available on my website).

• Weekly assignments

✦ Expect them to consume 8-10 hours (but may take significantly longer/shorter).

• Collaboration encouraged but not plagiarism.

✦ For example, OK to discuss intermediate lemma, but no copying of proof is
allowed.

✦ Will follow the institute policy on plagiarism

Course Details
• Grading: 60% assignments, 20% mid term, 20% final exam

• Exams will take home

✦ Programming and proving

• See the course website http://kcsrk.info/cs6225_s21_iitm for
topics and announcements

• Would like to get continual and honest feedback

✦ This is not an easy course, but hopefully should be quite fun!

http://kcsrk.info/cs6225_s21_iitm

Textbooks
• For Coq, we will be following

✦ Adam Chlipala, Formal Reasoning about Programs

✦ Freely available here: http://adam.chlipala.net/frap/

• For F*, there is a in-progress book

✦ Nik Swamy et al., Proof-oriented Programming in F*

✦ Freely available here: http://fstar-lang.org/tutorial/proof-oriented-
programming-in-fstar.pdf

http://adam.chlipala.net/frap/
http://fstar-lang.org/tutorial/proof-oriented-programming-in-fstar.pdf
http://fstar-lang.org/tutorial/proof-oriented-programming-in-fstar.pdf
http://fstar-lang.org/tutorial/proof-oriented-programming-in-fstar.pdf

Fin!

