Evaluation Contexts

KC Sivaramakrishnan

Spring 2025

Why?

- Modularly add features to the core language
- Don't need to redo proofs
 - ✤with advanced mechanisation
 - + In our course, we still need to do a bit of work.

STLC

Types
$$\tau$$
 ::= $\mathbb{N} \mid \tau \to \tau$

Key Reductions

$$(\lambda x. e) v \rightarrow [v/x]e \qquad n+m \rightarrow n+m$$

Administrative Reductions

$$\frac{e_1 \to e'_1}{e_1 \, e_2 \to e'_1 \, e_2} \quad \frac{e_2 \to e'_2}{v \, e_2 \to v \, e'_2}$$
$$\frac{e_1 \to e'_1}{e_1 + e_2 \to e'_1 + e_2} \quad \frac{e_2 \to e'_2}{v + e_2 \to v + e'_2}$$

STLC using Evaluation Contexts

Types τ ::= $\mathbb{N} \mid \tau \to \tau$

Variables	x	e	Strings
Numbers	n	e	\mathbb{N}
Expressions	e	::=	$n \mid e + e \mid x \mid \lambda x. \; e \mid e \; e$
Values	v	::=	$n \mid \lambda x. \; e$

Evaluation contexts $C ::= \Box | C e | v C | C + e | v + C$

Key $\overline{(\lambda x. e) v \rightarrow_0 [v/x]e}$ $\overline{n+m \rightarrow_0 n+m}$ Reductions $\overline{(\lambda x. e) v \rightarrow_0 [v/x]e}$ $\overline{n+m \rightarrow_0 n+m}$

Administrative Reductions

$$\frac{e \to_0 e'}{C[e] \to C[e']}$$

Preservation Proof

Lemma **preservation0**

If
$$e_1 \rightarrow_0 e_2$$
 and $\vdash e_1 : \tau$, then $\vdash e_2 : \tau$.

Lemma preservation'

If
$$e_1 \rightarrow_0 e_2$$
 and $\vdash C[e_1] : \tau$, then $\vdash C[e_2] : \tau$.

Lemma preservation

If
$$e_1 \rightarrow e_2$$
 and $\vdash e_1 : \tau$, then $\vdash e_2 : \tau$.

Product Types

Expressions $e ::= \dots | (e, e) | \pi_1(e) | \pi_2(e)$ Values $v ::= \dots | (v, v)$ Contexts $C ::= \dots | (C, e) | (v, C) | \pi_1(C) | \pi_2(C)$ Types $\tau ::= \dots | \tau \times \tau$

Typing
Rules
$$\Gamma \vdash e_1 : \tau_1 \quad \Gamma \vdash e_2 : \tau_2$$

 $\Gamma \vdash (e_1, e_2) : \tau_1 \times \tau_2$ $\Gamma \vdash e : \tau_1 \times \tau_2$
 $\Gamma \vdash \pi_1(e) : \tau_1$ $\Gamma \vdash e : \tau_1 \times \tau_2$
 $\Gamma \vdash \pi_2(e) : \tau_2$

Key Reductions

$$\overline{\pi_1((v_1, v_2)) \to_0 v_1} \quad \overline{\pi_2((v_1, v_2)) \to_0 v_2}$$

Administrative Reductions

No new rules!

Sum Types

$$\frac{\Gamma \vdash e : \tau_1}{\Gamma \vdash \mathsf{inl}(e) : \tau_1 + \tau_2} \quad \frac{\Gamma \vdash e : \tau_2}{\Gamma \vdash \mathsf{inr}(e) : \tau_1 + \tau_2}$$

Typing Rules

$$\frac{\Gamma \vdash e: \tau_1 + \tau_2 \quad \Gamma, x_1: \tau_1 \vdash e_1: \tau \quad \Gamma, x_2: \tau_2 \vdash e_2: \tau}{\Gamma \vdash (\mathsf{match} \; e \; \mathsf{with} \; \mathsf{inl}(x_1) \Rightarrow e_1 \mid \mathsf{inr}(x_2) \Rightarrow e_2): \tau}$$

Key(match inl(v) with inl(x1) $\Rightarrow e_1 \mid inr(x_2) \Rightarrow e_2) \rightarrow_0 [v/x_1]e_1$ Reductions(match inr(v) with inl(x1) $\Rightarrow e_1 \mid inr(x_2) \Rightarrow e_2) \rightarrow_0 [v/x_2]e_2$

Administrative Reductions

No new rules!

Exceptions

Expressions
$$e$$
 $::=$ $\ldots \mid \mathsf{throw}(e) \mid (\mathsf{try} \ e \ \mathsf{catch} \ x \Rightarrow e)$ Contexts C $::=$ $\ldots \mid \mathsf{throw}(C) \mid (\mathsf{try} \ C \ \mathsf{catch} \ x \Rightarrow e)$

Typing
$$\Gamma \vdash e : \mathbb{N}$$
 $\Gamma \vdash e : \tau$ $\Gamma, x_1 : \mathbb{N} \vdash e_1 : \tau$ Rules $\Gamma \vdash \text{throw}(e) : \tau$ $\Gamma \vdash (\text{try } e \text{ catch } x_1 \Rightarrow e_1) : \tau$

Key
Reductions
$$(\operatorname{try} v \operatorname{catch} x \Rightarrow e) \rightarrow_0 v$$
 $(\operatorname{try} \operatorname{throw}(v) \operatorname{catch} x \Rightarrow e) \rightarrow_0 [v/x]e$ C-[throw(v)] \rightarrow_0 throw(v)No catch nor is a hole

Invariant I(e) = e is a value $\lor (\exists n : \mathbb{N}. e = \mathsf{throw}(n)) \lor (\exists e'. e \to e')$