
*UDGXDWH�6FKRRO�)RUP���
�8SGDWHG�������������

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

7KLV�LV�WR�FHUWLI\�WKDW�WKH�WKHVLV�GLVVHUWDWLRQ�SUHSDUHG�

%\�

(QWLWOHG��
�

)RU�WKH�GHJUHH�RI���

,V�DSSURYHG�E\�WKH�ILQDO�H[DPLQLQJ�FRPPLWWHH��

� �

�

$SSURYHG�E\�0DMRU�3URIHVVRU�V���BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB�

��������BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB�

�$SSURYHG�E\�

+HDG�RI�WKH�'HSDUWPHQW�*UDGXDWH�3URJUDP� ���'DWH

Sivaramakrishnan Krishnamoorthy Chandrasekaran

To the best of my knowledge and as understood by the student in the Thesis/Dissertation Agreement,
Publication Delay, and Certification/Disclaimer (Graduate School Form 32), this thesis/dissertation
adheres to the provisions of Purdue University’s “Policy on Integrity in Research” and the use of
copyrighted material.

Functional Programming Abstractions for Weakly Consistent Systems

Doctor of Philosophy

Suresh Jagannathan

Patrick Eugster

Jan Vitek

Suresh Jagannathan

Dongyan Xu

Sunil Prabhakar 12/04/2014

FUNCTIONAL PROGRAMMING ABSTRACTIONS FOR WEAKLY

CONSISTENT SYSTEMS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Sivaramakrishnan Krishnamoorthy Chandrasekaran

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

December 2014

Purdue University

West Lafayette, Indiana

ii

To Siva, who always believed it is better to go down trying.

iii

ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor Suresh Jagannathan, who

graciously took a naive yet enthusiastic graduate student into his research group,

and taught him how to do research. I am immensely thankful for his always open

o�ce door, uncanny ability to foresee potential issues, high standards and patience.

Without his guidance and support, this dissertation would not have been possible.

I have been fortunate to have Patrick Eugster, Jan Vitek, and Dongyan Xu on my

PhD committee. Their critiques and insightful comments helped focus and refine the

dissertation.

I would like to thank my colleague, mentor and good friend Lukasz Ziarek, with

whom I worked closely in my early years. He showed by example the mechanics of

going from an idea to a finished paper. The early collaborations with him set the

tone for the rest of the research in this dissertation. I had the good fortune to study

distributed systems over two graduate courses under Patrick Eugster. His enthusiasm

and industry inspired me to push for publishing the final class project. I learnt from

him the tact of fleshing out abstract ideas and producing a polished product.

I have had the privilege of working with immensely talented people over my intern-

ships. The summer spent at Samsung Research was a turning point for me in no small

part due to the encouragement and enthusiasm of Daniel Waddington. Samsung not

only funded the internship, but also supported some of my time at graduate school

through a generous gift, for which I am very grateful. The internship at Microsoft Re-

search, Cambridge broadened my research perspectives. Tim Harris, Simon Marlow

and Simon Peyton Jones taught me how to remain focused and grounded.

I am indebted to the friendship and insight of my numerous friends at Purdue Uni-

versity including Siddharth Narayanaswamy, Karthik Swaminathan Nagaraj, Gowtham

iv

Kaki, K.R. Jayaram, Naresh Rapolu, Pawan Prakash, Gustavo Petri, He Zhu, Sid-

dharth Tiwary, Karthik Kambatla, Raghavendra Prasad, Armand Navabi, and many

others. I will miss you all.

I would like to thank my parents for their constant source of encouragement and

o↵ering me complete freedom to pursue my interests. Never did they doubt my

completing this journey even when I doubted myself. Last but not least, my greatest

debt is to my wife, Siva, whose undying support during di�cult times gave me the

strength to keep on fighting. No amount of gratitude can repay my debt to you.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . x

ABBREVIATIONS . xiii

ABSTRACT . xiv

1 INTRODUCTION . 1

1.1 The Problem . 1

1.1.1 Strong Consistency . 1

1.1.2 Implications of the Programming Model 2

1.1.3 Realizing Strong Consistency 3

1.1.4 Cost of Strong Consistency 3

1.1.5 Challenges under Weak Consistency 5

1.2 My Thesis . 6

1.3 Contributions . 7

1.3.1 E�ciently Masking the Absence of Cache Coherence 7

1.3.2 A Prescription for Safely Relaxing Synchrony 9

1.3.3 Declarative Programming over Replicated Data Stores . . . 10

1.4 Road Map . 12

2 MULTIMLTON . 14

2.1 Programming Model . 14

2.1.1 Concurrent ML . 14

2.1.2 Asynchronous Concurrent ML 16

2.2 Compiler . 19

2.3 Runtime System . 20

2.3.1 Threading System . 20

2.3.2 Garbage Collector . 23

3 ANERIS: A COHERENT AND MANAGED RUNTIME FOR ML ON THE
SCC . 25

vi

Page

3.1 The Intel Single-chip Cloud Computer 26

3.1.1 Software System . 27

3.2 Local Collector (LC) . 29

3.2.1 Heap Architecture . 29

3.2.2 Heap Invariants . 30

3.2.3 Allocation and Collection 31

3.2.4 Remembered Stacks . 32

3.2.5 Read Barrier and Overheads 33

3.3 Procrastinating Collector (PRC) . 37

3.3.1 Cleanliness Analysis . 38

3.3.2 Write Barrier . 44

3.4 Integrating Software-Managed Cache Coherence (SMC) 49

3.4.1 Heap Design . 49

3.4.2 Memory Consistency . 51

3.4.3 Mapping Channel Communication over Message-Passing Bu↵ers 52

3.5 Evaluation . 55

3.5.1 Performance . 57

3.5.2 Evaluating Procrastinating Collector 59

3.5.3 MPB Mapped Channels . 64

3.6 Related Work . 65

3.7 Concluding Remarks . 67

4 RX-CML: A PRESCRIPTION FOR SAFELY RELAXING SYNCHRONY 69

4.1 Motivation . 73

4.2 Axiomatic Semantics . 77

4.3 Operational Semantics . 85

4.4 Implementation . 93

4.4.1 System Architecture . 94

4.4.2 Communication Manager . 95

4.4.3 Speculative Execution . 96

4.4.4 Handling Full CML . 99

4.4.5 Extensions . 99

4.5 Case Studies . 100

4.5.1 Online Transaction Processing 100

4.5.2 Collaborative Editing . 103

4.6 Related Work . 107

vii

Page

4.7 Concluding Remarks . 108

5 QUELEA: DECLARATIVE PROGRAMMINGOVER EVENTUALLY CON-
SISTENT DATA STORES . 110

5.1 System Model . 112

5.2 Motivation . 114

5.2.1 RDT Specification . 115

5.2.2 Anomalies under Eventual Consistency 116

5.2.3 Contracts . 118

5.2.4 From Contracts to Implementation 120

5.3 Contract Language . 121

5.3.1 Syntax . 121

5.3.2 Semantics . 122

5.3.3 Capturing Store Semantics 123

5.3.4 Contract Comparison and Classification 124

5.3.5 Soundness of Contract Classification 126

5.4 Operational Semantics . 128

5.4.1 Soundness of Operational Semantics 133

5.5 Transaction Contracts . 146

5.5.1 Syntax and Semantics Extension 146

5.5.2 Transactional Bank Account 147

5.5.3 Coordination-free Transactions 149

5.5.4 Classification . 150

5.6 Implementation . 151

5.6.1 Shim Layer . 152

5.6.2 Operation Consistency . 152

5.6.3 Transactions . 153

5.6.4 Summarization . 154

5.7 Evaluation . 156

5.8 Related Work . 163

5.9 Concluding Remarks . 165

6 CONCLUDING REMARKS AND FUTURE WORK 166

6.1 Aneris . 166

6.2 �CML . 167

6.3 Quelea . 168

viii

REFERENCES . 170

VITA . 180

ix

LIST OF TABLES

Table Page

3.1 E↵ectiveness of read barrier checks: RB invocations represents the average
number of read barrier invocations and forwarded represents the average
number of instances when the read barrier encountered a forwarded ob-
ject. 36

3.2 Benchmark characteristics. %Sh represents the average fraction of bytes
allocated in the shared heap. 57

3.3 Average number of preemptions on write barrier. 60

3.4 Average percentage of forced GCs out of the total number of local major
GCs. 61

3.5 Impact of heap session: % LM clean represents the fraction of instances
when a clean object closure has at least one object with LOCAL MANY ref-
erences. 63

4.1 Performance comparison of causal messaging passing 77

5.1 The distribution of classified contracts. #T refers to the number of tables
in the application. The columns 4-6 (7-9) represent operations (transac-
tions) assigned to this consistency (isolation) level. 158

x

LIST OF FIGURES

Figure Page

2.1 Blocking and unblocking of parasitic threads. 22

3.1 The architecture of the Intel SCC processor 26

3.2 Local collector heap organization for the SCC 29

3.3 Read barrier. 33

3.4 Read barrier overhead as a percentage of mutator time. 35

3.5 State transition diagram detailing the behavior of the reference counting
mechanism with respect to object x involved in an assignment, r := x,
where Pr = isInCurrentSession(r). 40

3.6 Cleanliness check. 41

3.7 Utilizing object closure cleanliness information for globalizing writes to
avoid references to forwarded objects. 42

3.8 Write barrier implementation. 45

3.9 Lifting an object closure to the shared heap. 47

3.10 Spawning a thread. 48

3.11 Heap design utilizing SCC’s software-managed cache coherence capability. 50

3.12 Read barrier with software-managed cache coherence capability. 51

3.13 Write barrier with software-managed cache coherence capability. 52

3.14 Steps involved in sending an mutable object a by thread T1 on a shared
heap channel C , which is eventually received by thread T2 54

3.15 Steps involved in sending an immutable object a by thread T1 on a shared
heap channel C , which is eventually received by thread T2 55

xi

Figure Page

3.16 Performance comparison of local collector with read barriers (LC), pro-
crastinating collector without read barriers (PRC), and collector utilizing
software-managed cache coherence (SMC) : Geometric mean for 8 bench-
marks. 58

3.17 Impact of utilizing object mutability information and cleanliness analysis
on the performance of PRC. 61

3.18 Performance comparison of first-class channel communication over the
MPB (MBP+) vs solely over the shared memory (MPB-) : Geometric mean
over 8 benchmarks. 64

4.1 Performing the first send in T1 asynchronously is not meaning preserving
with respect to synchronous evaluation. 70

4.2 Dependence graph induced by the execution of the program presented in
Figure 4.1. 71

4.3 Synchronous broadcast channel . 74

4.4 Incorrect execution due to unsafe relaxation of sends during broadcast.
Dotted arrow represents in-flight message. 76

4.5 A CML Program with potential for mis-speculation. 80

4.6 Potential axiomatic executions of the CML program presented in Fig-
ure 4.5. 81

4.7 Syntax and states for the relaxed execution semantics of a subset of CML. 86

4.8 A relaxed execution operational semantics for a subset of CML. 87

4.9 �CML application stack. 94

4.10 Communication manager behavior during a send and its matching receive. 96

4.11 A possible serializability violation that arises because of asynchronous
(speculative) communication with the lock server. 101

4.12 Performance comparison on distributed vacation (OLTP) benchmark.
Lower is better. 102

4.13 Server Daemon for Collaborative Editing. 104

4.14 Performance comparison on collaborative editing benchmark. Lower is
better. 106

xii

Figure Page

5.1 Quelea system model. 113

5.2 Definition of a bank account expressed in Quelea. 116

5.3 Anomalies possible under eventual consistency for the get balance opera-
tion. 117

5.4 Contract language. 121

5.5 Axiomatic execution. 122

5.6 Contract classification. 124

5.7 Syntax and states of operational semantics. 129

5.8 Operational semantics of a replicated data store. 130

5.9 Semantics of transaction contracts. x and y are distinct objects. The
dotted line represents the visibility requested by the contracts. 149

5.10 Implementation model. 151

5.11 Implementing atomicity semantics. Dotted circle represents e↵ects not yet
inserted into the backing store. 153

5.12 Summarization in the backing store. Dotted circle represents e↵ects not
yet inserted into the backing store. 156

5.13 Bank account performance. 159

5.14 LWW register transaction performance. 161

5.15 Rubis bidding mix performance. 162

5.16 Impact of summarization. 163

xiii

ABBREVIATIONS

ACML Asynchronous Concurrent ML

CC Causally Consistent

CML Concurrent ML

CSH Cached Shared Heap

DMA Direct Memory Access

EC Eventually Consistent

ECDS Eventually Consistent Data Store

GC Garbage-Collector

MAV Monotonic Atomic View

MPB Message-Passing Bu↵ers

RC Read Committed

RDT Replicated Data Type

RR Repeatable Read

SC Strongly Consistent

SCC Single-chip Cloud Computer

SMC Software-Managed Cache-coherence

USH Uncached Shared Heap

xiv

ABSTRACT

Krishnamoorthy Chandrasekaran, Sivaramakrishnan. Ph.D., Purdue University, De-
cember 2014. Functional Programming Abstractions for Weakly Consistent Systems.
Major Professor: Suresh Jagannathan.

In recent years, there has been a wide-spread adoption of both multicore and cloud

computing. Traditionally, concurrent programmers have relied on the underlying

system providing strong memory consistency, where there is a semblance of concurrent

tasks operating over a shared global address space. However, providing scalable strong

consistency guarantees as the scale of the system grows is an increasingly di�cult

endeavor. In a multicore setting, the increasing complexity and the lack of scalability

of hardware mechanisms such as cache coherence deters scalable strong consistency.

In geo-distributed compute clouds, the availability concerns in the presence of partial

failures prohibit strong consistency. Hence, modern multicore and cloud computing

platforms eschew strong consistency in favor of weakly consistent memory, where each

task’s memory view is incomparable with the other tasks. As a result, programmers

on these platforms must tackle the full complexity of concurrent programming for an

asynchronous distributed system.

This dissertation argues that functional programming language abstractions can

simplify scalable concurrent programming for weakly consistent systems. Functional

programming espouses mutation-free programming, and rare mutations when present

are explicit in their types. By controlling and explicitly reasoning about shared state

mutations, functional abstractions simplify concurrent programming. Building upon

this intuition, this dissertation presents three major contributions, each focused on

addressing a particular challenge associated with weakly consistent loosely coupled

systems. First, it describes Aneris, a concurrent functional programming language

xv

and runtime for the Intel Single-chip Cloud Computer, and shows how to provide an

e�cient cache coherent virtual address space on top of a non cache coherent multicore

architecture. Next, it describes �CML, a distributed extension of MultiMLton and

shows that, with the help of speculative execution, synchronous communication can

be utilized as an e�cient abstraction for programming asynchronous distributed sys-

tems. Finally, it presents Quelea, a programming system for eventually consistent

distributed stores, and shows that the choice of correct consistency level for replicated

data type operations and transactions can be automated with the help of high-level

declarative contracts.

1

1 INTRODUCTION

In recent years, there has been a widespread adoption of both multicore and cloud

computing. Multicore processors have become the norm in mobile, desktop and en-

terprise computing, with an increasing number of cores being fitted on a chip with

every successive generation. Cloud computing has paved the way for companies to

rent farms of such multicore processors on a pay-per-use basis, with the ability to

dynamically scale on demand. Indeed, many real-world services for communication,

governance, commerce, education, entertainment, etc., are routinely exposed as a web-

service that runs in third-party cloud compute platforms such as Windows Azure [1]

and Amazon’s EC2 [2]. These services tend to be concurrently accessed by millions

of users, increasingly through multicore-capable mobile and desktop devices.

1.1 The Problem

1.1.1 Strong Consistency

The holy grail of programming such massively parallel systems is to achieve good

scalability without falling prey to the usual pitfalls of concurrency such as data races,

deadlocks and atomicity violations [3]. Traditionally, programmers have relied on

the underlying hardware or storage infrastructure providing a semblance of a single

memory image, shared between all of the concurrent tasks. Operations from each task

appear to be applied to the shared memory in the order in which they appear locally

in each task, and operations from di↵erent tasks are interleaved in some total order.

Such a system is said to provide strong memory consistency. Strong consistency is a

natural extension of uniprocessor memory model to a multiprocessor setting. While

2

this strong consistency does not completely eliminate the possibility of concurrency

bugs, it certainly simplifies reasoning about the behavior of concurrent programs.

1.1.2 Implications of the Programming Model

Our definition of strong consistency applies equally to the two popular paradigms

of concurrent program design, shared memory and message-passing, di↵erentiated by

the way in which the concurrent threads interact with each other. In the shared mem-

ory paradigm, threads interact by updating and inspecting shared memory locations,

whereas under the message-passing paradigm, threads interact by exchanging mes-

sages. For this discussion, let us assume that the shared memory paradigm is realized

through read and write primitive to named memory locations, and message-passing

paradigm is captured by asynchronous send and blocking receive primitives on named

point-to-point channels. Other message-passing paradigms such as synchronous com-

munication, Erlang-style mailboxes, thread-addressed messages can be implemented

on top of point-to-point asynchronous message passing model.

Under strongly consistent shared memory, a thread performing a read will witness

the latest write to the same memory location by any thread. Under strongly consis-

tent message-passing, when a thread performs a sends a value v on an empty channel

c, the sent value v is available to be consumed by every thread that subsequently

performs a receive. Subsequently, when a receive operation consumes the sent value

v, the act of consumption is witnessed by every thread, and no subsequent thread

can consume the same value v. Indeed, semantically shared-memory and message-

passing paradigms are simply two sides of the same coin [4, 5]. This is illustrated by

the fact that one model can easily be implemented using the other. For example,

languages like Haskell [6], ConcurrentML [7] and Manticore [8] implement message-

passing paradigms over shared memory, and popular geo-distributed stores such as

Dynamo [9], Cassandra [10] and Riak [11] implement shared-memory paradigm over

message passing. Hence, strong memory consistency equally benefits programmers

3

working under either paradigms. Conversely, and more importantly, any weaker mem-

ory consistency semantics a↵ects both paradigms.

1.1.3 Realizing Strong Consistency

Depending upon the target platform, a variety of mechanisms have been proposed to

achieve strong consistency. Shared memory multicore processors designed for main-

stream computing markets tend to have hierarchical memory organization, with pri-

vate and shared multi-level caches, and utilize a hardware protocol for keeping the

caches coherent [12]. Coherence can be viewed as a mechanism that transmits a write

to a memory location to all the cached copies of the same location. Typically, each

cache line has meta-data attached to it which indicate whether the local cacheline

is invalid, shared or modified. When a memory location corresponding to a shared

cache line is updated, coherence mechanism invalidates all other remote cache lines

that also refer to the same memory location. A core accessing an invalid cacheline

has to fetch the latest version, which is termed as cache miss.

In a distributed setting, techniques such as atomic broadcast [13], consensus [14],

distributed transactions [15], and distributed locking services [16] are widely used in

practice to provide strong consistency. These mechanisms abstract the underlying

complexity of concurrent programming, and expose a simpler programming model

to the developers. For example, models such as sequential consistency [17], lineariz-

ability [18] and serializability [19] are widely used in the construction of concurrent

programs.

1.1.4 Cost of Strong Consistency

Despite the simplicity of strong consistency, with increasing scale, providing strong

consistency guarantees is an increasingly di�cult endeavor. Already, for performance

reasons, modern optimizing compilers and multicore processors reorder code in ways

4

that are not observable by sequential code, but are very much observable under con-

current execution [20–23]. Hence, the semblance of strong consistency is broken.

However, the hardware memory models do provide coherence, and to the benefit

of the programmers, the language memory models ensure sequential consistency for

programs that do not involve data races.

On the other hand, the complexity and power requirements for hardware support

for cache coherence increases with increasing number of cores [24]. The scalability

of hardware cache coherence mechanisms is mainly hindered by the scalability of

coherence hardware, the storage requirements for cache meta data, and the e↵ort to

implement and verify complex coherence protocols. While there are indeed attempts

to reduce the cost of cache coherence hardware on manycore systems [12], hardware

vendors increasingly opt for non cache coherent architectures. Graphics processing

units (GPUs) [25], the Intel Single-chip Cloud Computer (SCC) [26], the Cell BE

processor [27], and the Runnemede prototype [28] are representative examples of non

cache coherent architectures.

Applications that rely upon strong consistency in a distributed setting have to pay

the cost of reduced availability in the presence of network partitions and high latency.

In particular, Brewer’s well-known CAP theorem [29–31] states that a distributed

system cannot simultaneously provide strong consistency, be available to updates,

and tolerate network partitions. Since network partitions are unavoidable, and web-

services running on geo-distributed systems focus on providing always-on experience,

application developers unfortunately have to give up the advantages o↵ered by strong

consistency. Moreover, techniques for achieving strong consistency [13–16], require co-

ordination between the nodes in the distributed system. In a geo-distributed setting,

where inter-node latencies are in the order of hundreds of milliseconds, the latency hit

associated with strong consistency is unacceptable. Moreover, coordination between

nodes in a geo-distributed setting while processing client requests defeats the whole

purpose of geo-distribution, which is to minimize latency by serving clients from the

closest data center.

5

1.1.5 Challenges under Weak Consistency

In response to these concerns, scalable compute platforms eschew strong consistency,

and instead rely only on weaker consistency guarantees. Without strong consistency,

the programmer gets to see that there is no longer a coherent shared memory abstrac-

tion, but instead a collection of coherence domains between which updates are lazily

exchanged. The onus now falls on the programmer to ensure that the application

meets is correctness requirements.

On non cache coherent multicore architectures, the programmer must explicitly

perform communication actions between local address spaces through message pass-

ing or direct memory access (DMA). On architectures such as Intel SCC [26] and

Runnemede [28], which provide explicit instructions to invalidate and flush caches,

the programmer must ensure that the cache control instructions are correctly issued

at appropriate junctures in order to maintain a coherent view of the shared memory.

Any missed cache invalidations will lead to stale data being read, where as any missed

cache flushes prevents a write from being exposed to other coherence domains. How-

ever, frequent invalidations and flushes lead to poor cache behavior. Understandably,

this process is notoriously di�cult to get right.

A geo-distributed store, where an object is replicated at multiple sites, is in essence

similar to a non cache coherent architecture. Under weak consistency, programs

operating over geo-distributed stores typically assume that the replicas of an object

will eventually converge to the same state. This behavior is commonly termed as

eventual consistency [32, 33]. Unlike multicore architectures, the high latency in a

geo-distributed setting warrants that the application accept concurrent conflicting

updates in order to remain responsive. The updates are asynchronously propagated

between the sites, and a deterministic conflict resolution procedure ensures that the

replicas eventually converge to the same state. The conflict resolution can either be

automatic (such as last-writer-wins) or, in cases where the automatic resolution is

non-trivial or non-existent, may involve manual intervention.

6

It is important to point out that eventual consistency only guarantees that the repli-

cas will ”eventually” converge to a same state, but does not provide any additional

guarantees with respect to recency or causality of the operations. Hence, with two

successive reads to the same object, there is no guarantee that the second read will

see a ”newer” version of the object. Worse still, a session might not see its own writes!

These anomalies are reminiscent of the re-orderings that can occur under language

and hardware memory models [20,21], except that the anomalies in this case are due

to the fact that requests from same session can be serviced by di↵erent replicas.

To address these concerns, several systems [34–38] have proposed that provide a

lattice of stronger guarantees on demand. While defining new consistency guaran-

tees and implementing them in a geo-distributed storage infrastructure is certainly

a commendable endeavor, how does one match the consistency requirements at the

application level with the consistency guarantees o↵ered by the store? How does one

ensure that the composition of consistency guarantees of di↵erent operations result in

a sensible behavior? In short, developing correct concurrent applications under weak

consistency requires large programmer e↵ort in order to intricately reasoning about

non-trivial memory interactions on top an already non-deterministic programming

model.

1.2 My Thesis

In this dissertation, we argue that functional programming language abstractions

can mitigate the complexity of programming weakly consistent systems. The key

idea is that, since consistency issues arise out of shared state mutation, by controlling

and minimizing mutation one can simplify the problem of programming under weak

memory consistency.

The dissertation presents three major contributions, each focused on addressing

a particular challenge associated with weakly consistent loosely coupled systems:

(1) providing an e�cient virtual shared memory abstraction over non cache coher-

7

ent architectures by exploiting mutability information, (2) utilizing composable syn-

chronous message-passing communication as an e�cient abstraction for programming

asynchronous distributed systems with the help of speculative execution, and (3) a

mutation-free programming model for eventual consistency that automates the choice

of mapping application-level consistency requirements to consistency levels o↵ered by

the geo-distributed data store.

1.3 Contributions

In this section, we provide a brief overview of the contributions made by this dis-

sertation.

1.3.1 E�ciently Masking the Absence of Cache Coherence

The first contribution of this thesis is a series of techniques to e�ciently hide the

absence of cache coherence on a non cache coherent architecture, and provide the sem-

blance of a shared coherent global address space with strong (sequential) consistency.

We demonstrate this by designing and implementing Aneris, an extension of Mul-

tiMLton [39] compiler and runtime system targeted at the 48-core memory-coupled,

non cache coherent Intel SCC processor.

Providing virtual shared memory on top of distributed memory architectures is

certainly not a novel endeavor. Typically, non cache coherent architectures are or-

ganized such that each core or a collection of cores share a cache coherent address

space (termed as a ”coherence domain”), and utilize explicit communication or DMA

transfers for tra�c across coherence domains. Such virtual memory systems addition-

ally implement all the necessary inter-core communication operations for scheduling

and synchronization. This model has been used on the Cell BE processor for imple-

menting shared-memory programming models such as OpenMP [40], COMIC [41],

Sequoia [42] and CellSs [43], and on the Intel SCC for X10 [44] and Shared virtual

8

memory model [45]. These works typically expose the distribution in the program-

ming model, provide specialized hooks into the architectural features, or are simply

agnostic of the application level consistency requirements.

Di↵ering from these works, Aneris utilizes the key property of mostly-functional

languages (in our case, Standard ML enriched with concurrent threads and syn-

chronous message passing), that is mutation is rare, to e�ciently realize a virtual

memory abstraction using just the language runtime mechanisms. We also identify

that non cache coherent architectures provide several di↵erent alternatives for inter-

core communication such as on-chip high-speed message passing interconnect, scalable

NoC interconnect for transferring data directly between memory banks without in-

volving the processors, and explicit cache control instructions. We aim to allow the

same programs written for cache coherent architectures to e�ciently run on non cache

coherent architectures, while transparently mapping the source language structures

and mechanisms on to the architecture’s capabilities.

Our initial system design utilizes a split-heap memory manager design [46–48], op-

timized for the SCC’s memory hierarchy, to obtain a MultiMLton system on the

SCC. This design however incorporates both read and write barriers, and we identify

that the cost of read barriers under MultiMLton programming model is signifi-

cant. To alleviate this, we design a novel thread local collector that utilizes ample

concurrency in the programming model as a resource along with a dynamic shape

analysis to eliminate the read barriers. Our final runtime design transparently uti-

lizes SCC’s support for software managed cache coherence and on-die message-passing

interconnect to achieve an e�cient implementation under which 99% of the memory

accesses can potentially be cached. These results were published in ISMM 2012 [49]

and MARC 2012 [50].

9

1.3.2 A Prescription for Safely Relaxing Synchrony

The second contribution of the thesis is �CML, an optimistic variant of Concurrent

ML [7]. �CML utilizes synchronous communication over first-class channels as an ab-

straction for programming asynchronous distributed systems. A mostly functional

programming language combined with synchronous message passing over first-class

channels o↵ers an attractive and generic model for expressing fine-grained concur-

rency. In particular, an expressive language like ConcurrentML [7] composable syn-

chronous events, the synchronous communication simplifies program reasoning by

combining data transfer and synchronization into a single atomic unit. However, in a

distributed setting, such a programming model becomes unviable due to two reasons:

• In a geo-distributed setting, synchronization requires coordination between nodes,

which is at odds with the high inter-node latency.

• As discussed previously, the point-to-point first-class channel abstraction re-

quires strong consistency. In particular, the channel abstraction ensures that

values are consumed exactly-once, which requires coordination between nodes

that might potentially consume a particular value on the channel.

While switching to an explicit asynchronous process-oriented communication model

avoids these issues, it complicates inter-node synchronization and introduces naming

issues. No longer can a programmer abstractly reason about a collection of nodes that

might send or receive values on a named channel, but has to identify, communicate and

coordinate with individual nodes. Additionally, the onus falls on the programmers

to handle partial failures and network partitions. Thus, the loss of synchronous

communication abstraction significantly burdens the programmer.

The key contribution of this work is to utilize synchronous communication as an

abstraction to express programs for high-latency distributed systems, but specula-

tively discharge the communications asynchronously, and ensure that the observable

behavior mirrors that of the original synchronous program. The key discovery is that

10

the necessary and su�cient condition for divergent behavior (mis-speculation) is the

presence of happens-before cycle in the dependence relation between communication

actions. We prove this theorem over an axiomatic formulation that precisely captures

the semantics of speculative execution. Utilizing this idea, we build an optimistic con-

currency control mechanism for concurrent ML programs, on top of MultiMLton, ca-

pable of running in compute clouds. The implementation uses a novel un-coordinated

checkpoint-recovery mechanism to detect and remediate mis-speculations. Our ex-

periments on Amazon EC2 validate our thesis that this technique is quite useful in

practice. These results were published in PADL 2014 [51].

1.3.3 Declarative Programming over Replicated Data Stores

The final contribution of this thesis addresses two related challenges when program-

ming under eventual consistency on top of geo-distributed stores:

• How do you describe practical and scalable eventually consistent data types?

• How do you map the application level consistency properties automatically to

the most e�cient of the consistency levels provided by the store?

Let us expand on the challenges associated with each of these goals.

Typically, commercial geo-distributed stores such as DynamoDB [52], Cassandra [10],

Riak [11] provide a data model that is reminiscent distributed maps. The key-value

pair is usually treated as registers, with a default last-write-wins (LWW) conflict

resolution policy. Since a LWW register is not suitable for every use case, a small

collection of convergent data types such as counters and sets [53] are also provided.

Often the programmer has to coerce the problem at hand, which might naturally

be expressed as operations over a particular abstract datatype into the ones that

are supported by the store. Unlike a concurrent program written for shared mem-

ory multicore processor, the operation on low-level convergent replicated data types

cannot be composed together well; with no practical consistency control mechanisms

11

such as fences and locks, the programmer has but to reason about the intricate weak

consistency behaviors between composed operation. Often, without the necessary ab-

stractions, it is impossible to achieve the desired semantics, and hence, the application

ends up exposing the weak consistency behavior to the user.

In addition, although the store might provide stronger consistency guarantees, the

lack of precise description of these guarantees, and the inherent di�culty in mapping

application-level consistency requirements to store-level guarantees leads to subtle

weak consistency bugs. Although there has been progress on the theoretical front

to address the concern of reason about concurrent programs on eventually consistent

stores [54], realization of these techniques on full-fledged commercial store imple-

mentations has not yet come by. Thus, the lack of a suitable programming model for

practical replicated data types hinders software development for eventually consistent

systems.

To address these issues, we present Quelea programming system for declaratively

programming eventually consistent systems. Inspired by operation-based convergent

replicated data types, data types in Quelea are defined in terms of its interfaces, and

the e↵ects that an operation has on a data type. Importantly, the state of an object

is simply the set of all e↵ects performed on this object. Every operation performs a

fold over this set, and might optionally produce a new e↵ect. The e↵ects performed

at a particular replica is asynchronously transmitted to other replicas. Since each

operation witnesses all the e↵ects, concurrent or otherwise, performed on the object

so far, semantically conflicting operations can be resolved deterministically. As we

will see, this particular abstraction is powerful enough to describe complex real-world

scenarios including twitter-like micro-blogging service and an ebay-like auction site.

Implementing and maintaining a robust, scalable geo-distributed store is a signifi-

cant undertaking. Indeed, concerns such as liveness, replication, durability and failure

handling must be handled by any realistic distributed store implementation, but are

orthogonal to the consistency related safety properties that we aim to address in

this work. Instead or replicating the massive engineering e↵ort and in the process

12

introducing subtle concurrency and scalability issues, we realize Quelea as a shim

layer on top of the industrial strength data store, Cassandra [10]. This separation of

concerns allows the Quelea programming model to be ported to other distributed

stores as well.

In addition to the datatype description language, Quelea supports a contract lan-

guage for describing the application-level consistency properties. The contract lan-

guage is used to express valid concurrent executions utilizing a particular replicated

data type, over a small corpus of primitive relations, capturing properties such as vis-

ibility and session order. The executions described are similar to the the axiomatic

description of relaxed memory models [20,54], declaratively capturing the well-formed

behaviors in the program. Given a set of store-level consistency guarantees, also ex-

pressed in the same contract language, we statically map each datatype operation to

one of the store-level consistency properties.

Finally, our implementation of the Quelea programming model not only supports

primitive operations, but also a series of coordination-free transactions. Similar to

basic operations, we utilize the same contract language to map the user-defined trans-

actions to one of the store-specific transaction isolation levels. The thesis illustrates

that a mutation-free programming model for eventually consistent stores not only

enables expressive declarative reasoning, but is also practically achievable on top of

industrial-strength geo-distributed stores.

1.4 Road Map

The rest of the dissertation is organized as follows. Chapter 2 describes the Mul-

tiMLton programming model and runtime system, which serves as the exploration

vehicle for Aneris and �CML. Chapter 3 presents Aneris, the port of MultiMLton

to the Intel SCC platform that provides a cache coherent shared memory abstraction

for a concurrent extension of Standard ML. Chapter 4 presents �CML, an optimistic

variant of Concurrent ML [7] for distributed systems. Chapter 5 presents Quelea, a

13

programming system for eventually consistent geo-distributed stores. Related work is

presented at the end of each chapter. Additional related work that is relevant to the

future direction of this research is given in chapter 6, along with concluding remarks.

14

2 MULTIMLTON

MultiMLton is an extension of the MLton [55] compiler and runtime system that

targets scalable, multicore architectures. MLton is a whole-program optimizing com-

piler for Standard ML programming language, which a member of the ML family of

programming languages that includes Objective Caml and F#. Apart from Mul-

tiMLton, another notable example in the multicore ML space is Manticore [8], and

focuses on implicit parallelism under an ML-inspired language. In this chapter, we will

present the programming model and the runtime system details of MultiMLton,

which provides the technical background that informs the rest of the dissertation.

2.1 Programming Model

While MLton does not target multicore processors, it does include excellent support

for Concurrent ML (CML) [7], a concurrent extension of Standard ML that utilizes

synchronous message passing to enable to construction of synchronous communication

protocols. The programming model supported by MultiMLton is heavily influenced

by CML. We begin by briefly describing the CML programming model, before its

extension used in MultiMLton.

2.1.1 Concurrent ML

Concurrent ML [7] is a concurrent extension of Standard ML with support for user-

level thread creation, where the threads primarily interact by performing synchronous

send and recv operations on typed channels; these operations block until a matching

actions on the same channel is performed by a di↵erent thread.

15

CML also provides first-class synchronous events that abstract synchronous message-

passing operations. An event value of type ’a Event when synchronized on yields

a value of type ’a . An event value represents a potential computation, with latent

e↵ect until a thread synchronizes upon it by calling sync . The following equiva-

lences thus therefore hold: send(c, v) ⌘ sync(sendEvt(c,v)) and recv(c) ⌘

sync(recvEvt(c)) . Notably, thread creation is not encoded as an event – the thread

spawn primitive simply takes a thunk to evaluate as a separate thread, and returns

a thread identifier that allows access to the newly created thread’s state.

Besides sendEvt and recvEvt , there are other base events provided by CML. The

never event, as its name suggests, is never available for synchronization; in con-

trast, alwaysEvt is always available for synchronization. These events are typically

generated based on the satisfiability of conditions or invariants that can be subse-

quently used to influence the behavior of more complex events built from the event

combinators described below. Much of CML’s expressive power derives from event

combinators that construct complex event values from other events. We list some of

these combinators below:

spawn : (unit -> ’a) -> threadID

sendEvt : ’a chan * ’a -> unit Event

recvEvt : ’a chan -> ’a Event

alwaysEvt : ’a -> ’a Event

never : ’a Event

sync : ’a Event -> ’a

wrap : ’a Event * (’a -> ’b) -> ’b Event

guard : (unit -> ’a Event) -> ’a Event

choose : ’a Event list -> ’a Event

The expression wrap (ev, f) creates an event that, when synchronized, applies the

result of synchronizing on event ev to function f . Conversely, guard(f) creates an

event that, when synchronized, evaluates f() to yield event ev and then synchronizes

16

on ev . The choose event combinator takes a list of events and constructs an event

value that represents the non-deterministic choice of the events in the list; for example:

sync(choose[recvEvt(a),sendEvt(b,v)])

will either receive a unit value from channel a , or send value v on channel b .

Selective communication provided by choose motivates the need for first-class events.

We cannot, for example, simply build complex event combinators using function

abstraction and composition because function closures do not allow inspection of the

encapsulated computations, a necessary requirement for implementing combinators

like choose .

2.1.2 Asynchronous Concurrent ML

While simple to reason about, synchronous events impose non-trivial performance

penalties, requiring that both parties in a communication action be available before

allowing either to proceed. To relax this condition, MultiMLton allows the ex-

pression of asynchronous composable events, through an asynchronous extension of

concurrent ML (ACML).

An asynchronous operation initiates two temporally distinct sets of actions. The

first defines post-creation actions – these are actions that must be executed after

an asynchronous operation has been initiated, without taking into account whether

the e↵ects of the operation have been witnessed by its recipients. For example, a

post-creation action of an asynchronous send on a channel might initiate another op-

eration on that same channel; the second action should take place with the guarantee

that the first has already deposited its data on the channel. The second are post-

consumption actions – these define actions that must be executed only after the e↵ect

of an asynchronous operation has been witnessed. For example, a post-consumption

action might be a callback that is triggered when the client retrieves data from a

17

channel sent asynchronously. These post-consumption actions take place within an

implicit thread of control responsible for completing the asynchronous operation.

ACML introduces first-class asynchronous events with the following properties: (i)

they are extensible both with respect to pre- and post-creation as well as pre- and post-

consumption actions; (ii) they can operate over the same channels that synchronous

events operate over, allowing both kinds of events to seamlessly co-exist; and, (iii)

their visibility, ordering, and semantics is independent of the underlying runtime and

scheduling infrastructure.

In order to provide primitives that adhere to the desired properties outlined above,

ACML extends CML with a new asynchronous event type (’a,’b) AEvent and the

following two base events: aSendEvt and aRecvEvt , to create an asynchronous send

event and an asynchronous receive event, respectively. The di↵erences in their type

signature from their synchronous counterparts reflect the split in the creation and

consumption of the communication action they define:

sendEvt : ’a chan * ’a -> unit Event

recvEvt : ’a chan -> ’a Event

aSendEvt : ’a chan * ’a -> (unit , unit) AEvent

aRecvEvt : ’a chan -> (unit , ’a) AEvent

The type of AEvent is polymorphic over the type of the return values of the event’s

post-creation and post-consumption actions. In the case of aSendEvt , both actions

yield unit : when synchronized on, the event immediately returns a unit value and

places its ’a argument value on the supplied channel. The post-consumption action

also yields unit . When synchronized on, an aRecvEvt returns unit ; the type of

its post-consumption action is ’a reflecting the type of value read from the channel

when it is paired with a send. The semantics of both asynchronous send and receive

guarantees that successive communication operations performed by the same thread

get witnessed in the order in which they were issued.

18

Beyond these base events, ACML also provides a number of combinators that serve

as asynchronous versions of their CML counterparts. These combinators enable the

extension of post-creation and post-consumption action of asynchronous events to

create more complex events, and allow transformation between the synchronous and

asynchronous events.

wrap : ’a Event * (’a -> ’b) -> ’b Event

sWrap : (’a, ’b) AEvent * (’a -> ’c) -> (’c, ’b) AEvent

aWrap : (’a, ’b) AEvent * (’b -> ’c) -> (’a, ’c) AEvent

guard : (unit -> ’a Event) -> ’a Event

aGuard : (unit -> (’a, ’b) AEvent) -> (’a, ’b) AEvent

choose : ’a Event list -> ’a Event

aChoose : (’a, ’b) AEvent list -> (’a, ’b) AEvent

sChoose : (’a, ’b) AEvent list -> (’a, ’b) AEvent

aTrans : (’a, ’b) AEvent -> ’a Event

sTrans : ’a Event -> (unit , ’a) AEvent

Similar to CML wrap combinator, sWrap and aWrap extend the post-consumption

and post-creation actions of an asynchronous event, respectively. aGuard allows

creation of a guarded asynchronous event. sChoose is a blocking choice operator

which blocks until one of the asynchronous base events has been consumed. aChoose

is a non-blocking variant, which has the e↵ect of non-deterministically choosing one

of the base asynchronous events if none are available for immediate consumption.

Finally, aTrans and sTrans allow transformation between the synchronous and

asynchronous variants.

sync : ’a Event -> ’a

aSync : (’a, ’b) AEvent -> ’a

19

We also introduce a new synchronization primitive: aSync , to synchronize asyn-

chronous events. The aSync operation fires the computation encapsulated by the

asynchronous event of type (’a, ’b) AEvent , returns a value of type ’a , corre-

sponding to the return type of the event’s post-creation action. Unlike their syn-

chronous variants, asynchronous events do not block if no matching communication

is present. For example, executing an asynchronous send event on an empty channel

places the value being sent on the channel and then returns control to the executing

thread. In order to allow this non-blocking behavior, an implicit thread of control

is created for the asynchronous event when the event is paired, or consumed. If a

receiver is present on the channel, the asynchronous send event behaves similarly to a

synchronous event; it passes the value to the receiver. However, a new implicit thread

of control is still created to execute any post-consumption actions.

Similarly, the synchronization of an asynchronous receive event does not yield the

value received; instead, it simply enqueues the receiving action on the channel. There-

fore, the thread that synchronizes on an asynchronous receive always gets the value

unit, even if a matching send exists. The actual value consumed by the asynchronous

receive can be passed back to the thread which synchronized on the event through

the use of combinators that process post-consumption actions. This is particularly

well suited to encode reactive programming idioms: the post-consumption actions

encapsulate a reactive computation.

Further details about the MultiMLton programming model and ACML can be

found in [56].

2.2 Compiler

Since the concurrent programming model of MultiMLton is exposed as a library

on top of MLton, MultiMLton retains MLton’s compiler infrastructure, and only

adds a few additional compiler primitives for concurrency support. MultiMLton

is a whole-program optimizing compiler for the full SML 97 language [57], including

20

modules and functors. During compilation, MultiMLton first transforms the source

program with modules and functors into an equivalent one without by defunctoriza-

tion [58]. Defunctorization duplicates each functor at every application and eliminates

structures by renaming variables. Next, the program is monomorphized [59] by instan-

tiating the polymorphic datatypes and functions at every application. The program

is then defunctionalized, replacing the higher-order functions with data structures to

represent them and first-order functions to apply them. The resultant intermediate

language is in Static Single Assignment (SSA) form [60]. Much of the aggressive opti-

mizations are performed in SSA passes. The SSA code is then transformed to RSSA

intermediate representation. RSSA is similar SSA, but exposes data representations

decisions that leads to further optimizations. The compiler can produce native code

for multiple backends as well as portable C output.

2.3 Runtime System

2.3.1 Threading System

MultiMLton’s runtime system is specifically optimized for e�ciently handling the

large number of concurrent threads, both implicit and explicit, created by the ACML

programming model. MultiMLton uses anm over n threading system that leverages

potentially many lightweight (language level) threads multiplexed over a collection

of kernel threads. The user-level thread scheduler is in turn implemented using the

MLton.Thread [55] library, which provides one-shot continuations. MLton.Thread

uses a variation of Bruggeman et al.’s [61] strategy for implementing one-shot contin-

uations. A MLton.Thread is a lightweight data structure that represents a paused

computation, and encapsulates the metadata associated with the thread as well as a

stack. The stack associated with the lightweight thread is allocated on the heap, and

is garbage collected when the corresponding thread object is no longer reachable.

21

As such, MLton.Thread does not include a default scheduling mechanism. Instead,

MultiMLton builds a preemptive, priority supported, run-queue based, multicore-

capable scheduler using MLton.Thread . Building multicore schedulers over contin-

uations in this way is not new, first described by Wand et al. [62], and successfully

emulated by a number of modern language implementations [47,63]. Each core has a

private scheduler queue, and new threads are by default spawned on the same core.

The programmer can explicitly request for a thread to be spawned on a di↵erent core.

However, once spawned, the threads remain pinned to their cores.

Implementing MultiMLton’s threading system over one-shot continuation as op-

posed to full-fledged (multi-shot) continuations greatly reduces the cost of the thread

and scheduler implementation. In particular, if full-fledged continuations were used

to implement the scheduler, then during every thread switch, a copy of the current

thread would have to be made to reify the continuation. This is, in our context,

unnecessary since the current stack of the running thread (as opposed to the saved

stack in the continuation), will never be accessed again. One-shot continuations avoid

copying the stack altogether; during a thread switch, a reference to the currently run-

ning thread is returned to the programmer. The result is a very e�cient baseline

scheduler.

Lightweight threads are garbage collected when no longer reachable. MultiML-

ton’s threading system multiplexes many lightweight thread on top of a few operat-

ing system threads. Each kernel thread represents a virtual processor and one kernel

thread is pinned to each processor. The number of kernel threads is determined

statically and is specified by the user; they are not created during program execution.

While lightweight threads provide a conceptually simple language mechanism for

asynchrony, they are unsuitable for expressing the implicit asynchronous threads

created by the ACML programming model. This is due to the synchronization,

scheduling, and garbage collection costs associated with lightweight threads, which

outweigh the benefit of running the computation concurrently. With the aim of

carrying out ACML’s implicit asynchronous actions, MultiMLton supports a new

22

P1

S1E

1

S2 T1S3

P1

S1 E S2 T1S3

P2

R1

2

R2 T2

P2

S1 E

T2S1 R1 R2E

Figure 2.1. Blocking and unblocking of parasitic threads.

threading mechanism called parasitic threads. Thus, our runtime supports two kinds

of threads: hosts and parasites. Host threads map directly to lightweight threads

in the runtime. Parasitic threads can encapsulate arbitrary computation, just like

host threads. However, unlike a regular thread, a parasitic thread executes using the

execution context of the host that creates the parasite; it is intended primarily to

serve as the execution vehicle for asynchronous actions.

Parasitic threads are implemented as raw frames living within the stack space of a

given host thread. A host thread can hold an arbitrary number of parasitic threads.

In this sense, a parasitic thread views its host in much the same way as a user-level

thread might view a kernel-level thread that it executes on. A parasite is suspended

when it performs a blocking action (e.g., a synchronous communication operation,

or I/O). Such a suspended parasite is said to have been reified. Reified parasites are

represented as stack objects on the heap. Reified parasites can resume execution once

the conditions that had caused it to block no longer hold. Thus, parasitic threads are

not scheduled using the language runtime; instead they self-schedule in a demand-

driven style based on flow properties dictated by the actions they perform.

Figure 2.1 shows the steps involved in a parasitic communication, or blocking event,

and we illustrate the interaction between the parasitic threads and their hosts. The

23

host threads are depicted as rounded rectangles, parasitic threads are represented as

blocks within their hosts, and each processor as a queue of host threads. The parasite

that is currently executing on a given host and its stack is represented as a block

with solid edges; other parasites are represented as blocks with dotted edges. Reified

parasites are represented as shaded blocks. Host threads can be viewed as a collection

of parasitic threads all executing within the same stack space. When a host thread

is initially created it contains one such computation, namely the expression it was

given to evaluate when it was spawned.

Initially, the parasite S1 performs a blocking action on a channel or event, abstractly

depicted as a circle. Hence, S1 blocks and is reified. The thread T1 that hosted S1

continues execution by switching to the next parasite S2 . S1 becomes runnable when

it is unblocked. Part 2 of the figure shows the parasite R1 on the thread T2 invoking

an unblocking action. This unblocks S1 and schedules it on top of R1 . Thus, the

parasitic threads implicitly migrate to the point of synchronization.

Further details about parasitic threads including its operational semantics and map-

ping of ACML primitives to parasitic threads can be found in [39].

2.3.2 Garbage Collector

MultiMLton garbage collector (GC) is optimized for throughput. It uses a single,

contiguous heap, shared among all the cores, with support for local allocation and

stop-the-world collection. In order to allow local allocation, each core requests a

page-sized chunk from the heap. While a single lock protects the chunk allocation,

objects are allocated within chunks by bumping a core-local heap frontier.

In order to perform garbage collection, all the cores synchronize on a barrier, with

one core responsible for collecting the entire heap. The garbage collection algorithm

is inspired from Sansom’s [64] collector, which combines Cheney’s two-space copying

collector and Jonker’s single-space sliding compaction collector. Cheney’s copying

collector walks the live objects in the heap just once per collection, while Jonker’s

24

mark-compact collector performs two walks. But Cheney’s collector can only utilize

half of memory allocated for the heap. Sansom’s collector combines the best of both

worlds. Copying collection is performed when heap requirements are less than half

of the available memory. The runtime system dynamically switches to mark-compact

collection if the heap utilization increases beyond half of the available space.

Since ML programs tend to have a high rate of allocation, and most objects are short-

lived temporaries, it is beneficial to perform generational collection. The garbage

collector supports Appel-style generational collection [65] for collecting temporaries.

The generational collector has two generations, and all objects that survive a genera-

tional collection are copied to the older generation. Generational collection can work

with both copying and mark-compact major collection schemes.

MultiMLton enables its generational collector only when it is profitable, which is

determined by the following heuristic. At the end of a major collection, the runtime

system calculates the ratio of live bytes to the total heap size. If this ratio falls below

a certain (tunable) threshold, then generational collection is enabled for subsequent

collections. By default, this ratio is 0.25.

25

3 ANERIS: A COHERENT AND MANAGED RUNTIME FOR ML ON THE

SCC

In this chapter, we describe Aneris, an extension of MultiMLton that provides a

coherent address space on the SCC, optimizing for the SCC’s memory hierarchy. We

begin with a local collector 1 (LC) design [46–48,66–68] that partitions the heap into

local heaps on each core and a shared heap for cross-core communication. However,

we observe that the cost of memory barriers utilized in preserving the heap invariants

have significant costs. To eliminate theses costs, we propose a new GC design (PRC)

that utilizes the ample concurrency o↵ered by our programming model combined with

a dynamic shape analysis to eliminate some of the GC overheads. This naturally

leads to a GC design that focuses on procrastination [49], delaying writes that would

necessitate establishing forwarding pointers until a GC, where there is no longer a

need for such pointers. The GC leverages the mostly functional nature of ACML

programs and a new object property called cleanliness, which enables a broad class of

objects to be moved from a local to a shared heap without requiring a full traversal of

the local heap to fix existing references; cleanliness enables an important optimization

that achieves the e↵ect of procrastination without actually having to initiate a thread

stall. Our final design (SMC) integrates SCC’s support for software-managed cache

coherence (SMC) [69] into the extant memory barriers to improve the design further.

We begin by discussing in detail the architecture and programming model of the

SCC, which serves as our prototype non cache coherent architecture. However, the

use of SCC by no means restricts the applicability of our ideas to other scalable

manycore architectures [49]. Then, we present the three GC designs. Finally, we

present a comprehensive evaluation of the three designs.

1Other terms have been used in the literature to indicate similar heap designs, notably private
nursery, local heap collector, thread-local or thread-specific heap, and on-the-fly collection.

26
A. Papagiannis, D.S. Nikolopoulos / The Journal of Systems and Software 97 (2014) 47–64 49

Tile

Tile Tile

Tile

Tile Tile

Tile

Tile Tile

Tile Tile

R R

R

R R

R R

System Interface

Tile Tile

Tile Tile

Tile Tile

Tile

Tile

Tile

Tile Tile

Tile Tile

R

R

R

R

R R

RR

R R R R

R R R

R

R

VRC

D
D

R
M

C

D
D

R
M

C
D

D
R

M
C

D
D

R
M

C

P54C
(16KB
each L1)

P54C
(16KB
each L1)

CC

CC

256KB

 L2

256KB

 L2

MIU

Message
 Passing
 Buffer

Traffic
Gen

Tile

P54C FSB To
Router

Fig. 1. SCC processor diagram.

each group of six tiles. Each core has a private L1 instruction cache
of 16 KB, a private L1 data cache of 16 KB and a private unified L2
cache of 256 KB. Each dual-core tile has a 16 KB message passing
buffer (MPB). The MPB is the only component of the SCC on-chip
memory hierarchy that is shared between cores. The SCC does not
implement cache coherence between MPB and caches. The MPB
provides space for direct core-to-core communication. Data used
in on-chip communication is read from the MPB, bypassing the L2
cache. For writes, a no-allocate policy is used, in conjunction with
a write combining buffer in the L1 cache. Software needs to main-
tain coherence between the MPB and the L1 caches by using an
L1 cache invalidation instruction (CL1INVMB), when data is stored
in the MPB. According to the processor specifications (The SCC
Programmers Guide), the latency to read a cache line from MPB
buffers and off-chip DRAM are:

LocalMPB = 45Cc + 8Cm (1)

RemoteMPB = 45Cc + 4 · n · 2Cm (2)

DRAM = 40Cc + 4 · n · 2Cm + 46Cr (3)

where Cc, Cm and Cr denote the clock cycles of the core, the mesh
network and the DRAM respectively and n denotes the number of
mesh network hops required to reach the destination (0 < n ≤ 8).

Although the difference to access MPB and DRAM is 46 DRAM
cycles, accesses to the MPB bypass the L2 cache, which can not
be flushed or invalidated from hardware. The obvious drawback of
using the MPB is its small size (8 KB per core).

2.1.1. SCC address spaces
The SCC uses 32-bit Pentium cores. A programmable, software-

managed translation table (called Look-Up Table or LUT) enables
the system to extend the width of physical addresses to 34 bits,
allowing system configurations with to up to 64 GB of off-chip
memory (specifically, up to 16 GB for each of four groups of six
tiles). The LUT has 256 entries, each mapping 16 MB of DRAM. Soft-
ware control of LUT mappings provides a means for implementing
hybrid private and shared address spaces in the system.

Fig. 2 shows the default configuration of LUT entries. The SCC
reserves 41 (0–40) entries at the bottom of the LUT to map up to
656 MB of private physical memory for each core. The operating
system running on the core uses part of this memory, while the
user can use the rest. Intel provides a custom Linux kernel that
during the boot process, allocates 5 (34–38) contiguous entries
from each core’s private address space, called POPSHM. Four entries
(128–131) in the LUT are shared among all cores. Some parts of this

Figure 3.1. The architecture of the Intel SCC processor

3.1 The Intel Single-chip Cloud Computer

Intel SCC [26] (Figure 3.1) is a many-core processor with 48 P54C cores on a

single chip, grouped as 24 tiles, organized in a 4 ⇥ 6 mesh network with a bisection

bandwidth of 256 Gb/s. The most interesting aspect of the SCC architecture is the

complete lack of cache coherence between the cores, and the presence of fast on-

27

die message-passing network interface. The 24 tiles on the chip are divided into 4

quadrants, and each quadrant is connected to a DDR3 memory controller. Each core

has 16KB of private L1 instruction and data caches, and 256 KB of L2 cache shared

with the other core on the same tile.

In addition, each tile has a 16KB message-passing bu↵er (MPB) used for message-

passing between the cores. The message passing bu↵ers are the only caches that are

accessible across all of the cores. The data used in on-chip communication is read

from MPB, cached in L1 cache, but bypasses the L2 cache. The cache uses no-allocate

policy on writes, and L1 cache incorporates a write-combine bu↵er. According to the

processor specifications [26], the read latencies in this architecture are:

LocalMPB = 45 k
core

+ 8 k
mesh

RemoteMPB = 45 k
core

+ 4 ⇤ n ⇤ 2 k
mesh

DRAM = 40 k
core

+ 4 ⇤ n ⇤ 2 k
mesh

+ 46 k
ram

where k
core

, k
mesh

and k
ram

are the cycles of core, mesh network and memory re-

spectively. In our experimental setup, where 6 tiles share a memory controller, the

number of hops n to the memory controller could be 0 < n  8. Hence, the DRAM

accesses are far more expensive than the MPBs. Each core additionally has a test

and set register that is accessible from all other cores. The SCC uses 32-bit Pentium

cores. A programmable, software-managed Look-Up Table (LUT) provides a means

for implementing hybrid private and shared address spaces in the system.

3.1.1 Software System

From the programmer’s point of view, SCC resembles a cluster of nodes, with por-

tions of memory shared between the cores. Each core runs a linux kernel image, and

does not share any operating system services with the other cores. Since SCC does

not provide hardware cache coherence, it provides software support for managing co-

herence. First, SCC provides support for tagging a specific virtual address space as

28

shared across all of the cores. Caching can also be selectively enabled on this address

space; SCC tags this address space as having message passing bu↵er type (MPBT).

Data typed as MPBT bypass L2 and go directly to L1. SCC also provides a special,

1-cycle instruction called CL1INVMB that marks all data of type MPBT as invalid L1

lines. In addition, the usual WBINVD instruction can be used to flush and invalidate

the L1 cache. Since the cores use write-combine bu↵ers, a correct flushing procedure

should also flush the write-combine bu↵ers. SCC does not provide primitive support

for this purpose, but write-combine bu↵ers can easily be flushed in software by per-

forming a series of dummy writes to distinct memory locations, which fills the bu↵er

and flushes any previous writes.

Typically, a programmer works with release consistency in order to utilize cached

shared virtual memory. The SMC [69] library provides smcAcquire() to fetch

changes from other cores (invalidates MPBT cache lines in L1 cache) and issues

smcRelease() to publish its updates (flushes the L1 cache, if the cache is operating

in write back mode, and flushes the write-combine bu↵ers).

SCC’s software stack also includes cross-core message-passing libraries implemented

over the MPBs, including RCCE [26] and RCKMPI [70]. RCCE is optimized for Single

Program Multiple Data (SPMD) parallel programming model, where the program

is structured in such a way that the sender and the receiver ideally arrive at the

communication point at the same time. The sender writes the message to the MPB,

while the receiver busy waits (invalidating its cache every iteration to fetch recent

writes), waiting for a special flag value to be written along with the message. After

the sender writes the flag, the receiver reads the message into its private memory,

while the sender busy waits (also invalidating its cache every iteration). Finally, the

receiver writes a completion flag, which concludes the message transfer.

It is worthwhile pointing out that RCCE uses just the MPBs, while RCKMPI uses

MPBs for small messages (less than 8KB — the maximum message size that would

fully fit in the MPB) and the DRAM for larger messages. Despite having a higher

29

Private(
memory

Core(0

Local(
Heap

Private(
memory

Core(1

Local(
Heap

Private(
memory

Core(47

Local(
Heap

.(.(.(.(.(.(.

(Shared(Memory

Shared(Heap

Cached

Uncached

Saturday, October 18, 14

Figure 3.2. Local collector heap organization for the SCC

bandwidth and lower latency, the synchronization costs involved in transferring a

large multi-part message over the MPB outweighs the benefits.

3.2 Local Collector (LC)

Splitting a program heap among a set of cores is a useful technique to exploit

available parallelism on scalable multicore platforms: each core can allocate, collect,

and access data locally, moving objects to a global, shared heap only when they are

accessed by threads executing on di↵erent cores. This design allows local heaps to be

collected independently, with coordination required only for global heap collection. In

contrast, stop-the-world collectors need a global synchronization for every collection.

3.2.1 Heap Architecture

Our local collector design for the SCC is shown in Figure 3.2. The key idea here is

that the local heaps are allocated in each of the cores cached private memory, into

which new objects are allocated by default. The private heaps are allocated on the

30

memory banks closest to the core to optimize for the memory hierarchy and reduce

mesh congestion. Since the design allows independent collection of local heaps, the

design can scale to hundreds of cores [39], and benefits cache coherent architectures

as well. The shared heap is allocated in the shared memory, and visible to all of the

cores. In order to circumvent the coherence issues, we disable caching on the shared

heap. Hence, every shared memory access goes to the DRAM. The shared heap pages

are interleaved across all of the memory banks to uniformly spread the requests.

3.2.2 Heap Invariants

In order to ensure that cores cannot directly or indirectly access objects on other

local heaps, which would complicate the ability to perform independent local heap

collection, the following invariants need to be preserved:

• No pointers are allowed from one core’s local heap to another.

• No pointers are permitted from the shared heap to the local heap.

Both invariants are necessary to perform independent local collections. The reason

for the first is obvious. The second invariant prohibits a local heap from transitively

accessing another local heap object via the shared heap. In order to preserve these

invariants, the mutator typically executes a write barrier on every store operation.

The write barrier ensures that before assigning a local object reference (source) to a

shared heap object (target), the local object along with its transitive object closure

is lifted to the shared heap. We call such writes globalizing writes as they export

information out of local heaps. The execution of the write barrier creates forwarding

pointers in the original location of the lifted objects in the local heap. These point to

the new locations of the lifted objects in the shared heap. Since objects can be lifted

to the shared heap on potentially any write, the mutator needs to execute a read

barrier on potentially every read. The read barrier checks whether the object being

read is the actual object or a forwarding pointer, and in the latter case, indirects to

31

the object found on the shared heap. Forwarding pointers are eventually eliminated

during local collection.

3.2.3 Allocation and Collection

The allocations in the shared heap is performed similar to allocations in the stop-the-

world collector, where each core allocates a page-sized chunk in the shared heap and

performs object allocation by bumping its core-local shared heap frontier. Allocations

in the local heaps do not require any synchronization. Garbage collection in the local

heaps is similar to the baseline collector, except that it crucially does not require

global synchronization.

Objects are allocated in the shared heap only if they are to be shared between two or

more cores. Objects are automatically lifted to the shared heap because of globalizing

writes and spawning a thread on a di↵erent core. Apart from these, all globals are

allocated in the shared heap, since globals are visible to all cores by definition. Thus,

for the ML programmer on this system, the absence of cache coherence is completely

hidden, the SCC appears as a cache coherent multicore machine.

For a shared heap collection, all of the cores synchronize on a barrier and then a

single core collects the heap. Along with globals, all the live references from local

heaps to the shared heap are considered to be roots for a shared heap collection. In

order to eliminate roots from dead local heap objects, before a shared heap collection,

local collections are performed on each core to eliminate such references.

The shared heap is also collected using Sansom’s dual-mode garbage collector. How-

ever, we do not perform generational collection on the shared heap. This is because

of two reasons. First, objects in the shared heap, shared between two or more cores,

are expected to live longer than a typical object collected during generational collec-

tion. Secondly, shared heap collection requires global synchronization, and it is wise

to perform such collections rarely.

32

3.2.4 Remembered Stacks

In MultiMLton threads can synchronously or asynchronously communicate with

each other over first-class message-passing communication channels. If a receiver is

not available, a sender thread, or in the case of asynchronous communication the

implicitly created thread, can block on a channel. If the channel resides in the shared

heap, the thread object, its associated stack and the transitive closure of all objects

reachable from it on the heap would be lifted to the shared heap as part of the blocking

action. Since channel communication is the primary mode of thread interaction in

our system, we would quickly find that most local heap objects end up being lifted

to the shared heap. This would be highly undesirable.

Hence, we choose never to move stacks to the shared heap. We add an exception

to our heap invariants to allow thread ! stack pointers, where the thread resides on

the shared heap, and references a stack object found on the local heap. Whenever

a thread object is lifted to the shared heap, a reference to the corresponding stack

object is added to the set of remembered stacks. This remembered set is considered

as a root for a local collection to enable tracing of remembered stacks.

Before a shared heap collection, the remembered set is cleared; only those stacks

that are reachable from other GC roots survive the shared heap collection. After a

shared heap collection, the remembered set of each core is recalculated such that it

contains only those stacks, whose corresponding thread objects reside in the shared

heap, and have survived the shared heap collection.

Remembered stacks prevent thread local objects from being lifted to the shared

heap, but require breaking the heap invariant to allow a thread object in the shared

heap to refer to a stack object on the local heap. This relaxation of heap invariant is

safe. The only object that can refer to thread-local stacks is the corresponding thread

object. The thread objects are completely managed by the scheduler, and are not

exposed to the programmer. As a result, while the local heap objects can point to

a shared-heap thread object, whose stack might be located on a di↵erent local heap,

33

1 pointer readBarrier (pointer p) {

2 i f (! isPointer(p)) return p;

3 i f (getHeader(p) == FORWARDED)

4 return *(pointer *)p;

5 return p;

6 }

Figure 3.3. Read barrier.

the only core that can modify such a stack (by running the thread) is the core that

owns the heap in which the stack is located. Thus, there is no possibility of direct

references between local heaps. Hence, the remembered stack strategy is safe with

respect to garbage collection.

3.2.5 Read Barrier and Overheads

In a mostly functional language like Standard ML, the number of reads are far

likely to outweigh the number of mutations. Because of this fact, the aggregate cost

of read barriers can be both substantial and vary dramatically based on underlying

architecture characteristics [71]. To this end, we describe our read barrier design, and

the cost/benefit of read barriers in our system.

Read Barrier Design

Figure 3.3 shows the pseudo-C code for our read barrier. Whenever an object is

lifted to the shared heap, the original object’s header is set to FORWARDED , and the

first word of the object is overwritten with the new location of the object in the

shared heap. Before an object is read, the mutator checks whether the object has

been forwarded, and if it is, returns the new location of the object. Hence, our read

barriers are conditional [71, 72].

34

MLton represents non-value carrying constructors of (sum) datatypes using non-

pointer values. If such a type additionally happens to have value-carrying constructors

that reference heap-allocated objects, the non-pointer value representing the empty

constructor will be stored in the object pointer field. Hence, the read barrier must first

check whether the presumed pointer does in fact point to a heap object. Otherwise,

the original value is returned (line 2). If the given pointer points to a forwarded

object, the current location of the object in the shared heap is returned. Otherwise,

the original value is returned.

While our read barrier implementation is conditional [72], there exist unconditional

variants [73], where all loads unconditionally forward a pointer in the object header

to get to the object. For objects that are not forwarded, this pointer points to the

object itself. Although an unconditional read barrier, would have avoided the cost of

the second branch in our read barrier implementation, it would necessitate having an

additional address length field in the object header for an indirection pointer.

Most objects in our system tend to be small. In our benchmarks, we observed that

95% of the objects allocated were less than 3 words in size, including a word-sized

header. The addition of an extra word in the object header for an indirection pointer

would lead to substantial memory overheads, which in turn leads to additional garbage

collection costs. Moreover, trading branches with loads is not a clear optimization as

modern processors allow speculation through multiple branches, especially ones that

are infrequent. Hence, we choose to encode read barriers conditionally rather than

unconditionally.

In addition, MultiMLton performs a series of optimizations to minimize heap

allocation, thus reducing the set of read barriers actually generated. For example,

references and arrays that do not escape out of a function are flattened. Combined

with aggressive inlining and simplification optimizations enabled by whole-program

compilation, object allocation on the heap can be substantially reduced.

The compiler and runtime system ensure that entries on thread stacks never point to

a forwarded object. Whenever an object pointer is stored into a register or the stack,

35

AllP
ai

rs

Bar
ne

sH
ut

Cou
nt

gr
ap

hs

Gam
eO

fL
ife

Kc
lu

st
er

in
g

M
an

de
lb

ro
t

Nuc
le

ic

Ray
tra

ce
0

5

10

15

20

25

O
v
e
rh

e
a
d

 (
%

)

Figure 3.4. Read barrier overhead as a percentage of mutator time.

a read barrier is executed on the object pointer to get the current location of the

object. Immediately after an globalizing write or a context switch, the current stack

is walked and references to forwarded objects are updated to point to the new location

of lifted objects in the shared heap. Additionally, before performing an globalizing

write, register values are saved on the stack, and reloaded after exit. Thus, as a part

of fixing references to forwarding pointers from the stack, references from registers

are also fixed. This ensures that the registers never point to forwarded objects either.

Hence, no read barriers are required for dereferencing object pointers from the stack

or registers. This optimization is analogous to “eager” read barriers as described

in [74]. Eager read barrier elimination has marked location is loaded into a register,

but all further accesses can elide executing the barrier.

36

Table 3.1.
E↵ectiveness of read barrier checks: RB invocations represents the
average number of read barrier invocations and forwarded represents
the average number of instances when the read barrier encountered a
forwarded object.

Benchmark RB invocations (⇥106) Forwarded

AllPairs 9,753 ±431 123 ±11

BarnesHut 2,864 ±176 52,702 ±1830

CountGraphs 2,584 ±119 0 ±0

GameOfLife 4,858 ±276 2,143 ±43

KClustering 3,780 ±265 101 ±7

Mandelbrot 2,980 ±79 23 ±3

Nucleic 2,887 ±135 328 ±21

Raytrace 2,217 ±90 0 ±0

Evaluation

We evaluated a set of 8 benchmarks (described in Section 3.5) each running on

all 48 cores on the SCC to measure read barrier overheads. Figure 3.4 shows these

overheads as a percentage of mutator time. Our experiments reveal that, on average,

the mutator spends 15.3% of the time executing read barriers for our benchmarks.

The next question to ask is whether the utility of the read barrier justifies its cost. To

answer this question, we measure the number of instances the read barrier is invoked

and the number of instances the barrier finds a forwarded object (see Table 3.1). We

see that read barriers find forwarded objects in less than one thousandth of a percent

of the number of instances they are invoked. Thus, in our system, the cost of read

barriers is substantial, but only rarely do they have to perform the task of forwarding

references. These results motivate our interest in a memory management design that

eliminates read barriers altogether.

37

3.3 Procrastinating Collector (PRC)

Eliminating read barriers, however, is non-trivial. Abstractly, one can avoid read

barriers by eagerly fixing all references that point to forwarded objects at the time

the object is lifted to the shared heap, ensuring the mutator will never encounter

a forwarded object. Unfortunately, this requires being able to enumerate all the

references that point to the lifted object; in general, gathering this information is

very expensive as the references to an object might originate from any object in the

local heap.

We consider an alternative design that completely eliminates the need for read

barriers without requiring a full scan of the local heap whenever an object is lifted

to the shared heap. The design is based on the observation that read barriers can

be clearly eliminated if forwarding pointers are never introduced. One way to avoid

introducing forwarding pointers is to delay operations that create them until a local

garbage collection is triggered. In other words, rather than executing a store operation

that would trigger lifting a thread local object to the shared heap, we can simply

procrastinate, thereby stalling the thread that needs to perform the store. The garbage

collector must simply be informed of the need to lift the object’s closure during its

next local collection. After collection is complete, the store can take place with the

source object lifted, and all extant heap references properly adjusted. As long as

there is su�cient concurrency to utilize existing computational resources, in the form

of available runnable threads to run other computations, the cost of procrastination

is just proportional to the cost of a context switch.

Moreover, it is not necessary to always stall an operation that involves lifting an

object to the shared heap. We consider a new property for objects (and their transitive

object closures) called cleanliness. A clean object is one that can be safely lifted to

the shared heap without introducing forwarding pointers that might be subsequently

encountered by the mutator: objects that are immutable, objects only referenced

from the stack, or objects whose set of incoming heap references is known, are obvious

38

examples. The runtime analysis for cleanliness is combined with a specialized write

barrier to amortize its cost. Thus, procrastination provides a general technique to

eliminate read barriers, while cleanliness serves as an important optimization that

avoids stalling threads unnecessarily.

The e↵ectiveness of our approach depends on a programming model in which (a)

most objects are clean, (b) the transitive closure of the object being lifted rarely

has pointers to it from other heap allocated objects, and (c) there is a su�cient

degree of concurrency in the form of runnable threads; this avoids idling available

cores whenever a thread is stalled performing an globalizing write that involves an

unclean object. We observe that conditions (a) and (b) are common to functional

programming languages and condition (c) follows from the ACML runtime model.

Our technique does not rely on programmer annotations, static analysis or compiler

optimizations to eliminate read barriers, and can be completely implemented as a

lightweight runtime technique.

3.3.1 Cleanliness Analysis

Although ACML provides an abundance of concurrency, with the procrastination

mechanism, many of the threads in a program may end up blocked on globalizing

writes, waiting for a local garbage collection to unblock them. If all of the threads

on a particular core have procrastinated, then a local garbage collection is needed

in order to make progress. Such forced local garbage collections make the program

run longer, and hence subdue the benefit of eliminating read barriers. Hence, it is

desirable to avoid procrastination whenever possible.

In this section, we describe our cleanliness analysis, which identifies objects on which

globalizing writes do not need to be stalled. We first present auxiliary definitions that

will be utilized by cleanliness checks, and then describe the analysis.

39

Heap Session

Objects are allocated in the local heap by bumping the local heap frontier. In

addition, associated with each local heap is a pointer called sessionStart that

always points to a location between the start of the heap and the frontier. This pointer

introduces the idea of a heap session, to capture the notion of recently allocated

objects. Every local heap has exactly two sessions: a current session between the

sessionStart and the heap frontier and a previous session between the start of the

heap and sessionStart . Heap sessions are used by the cleanliness analysis to limit

the range of heap locations that need to be scanned to test an object closure2 for

cleanliness. Assigning the current local heap frontier to the sessionStart pointer

starts a new session. We start a new session on a context switch, a local garbage

collection and after an object has been lifted to the shared heap.

Reference Count

We introduce a limited reference counting mechanism for local heap objects that

counts the number of references from other local heap objects. Importantly, we do not

consider references from ML thread stacks. The reference count is meaningful only for

objects reachable in the current session. For such objects, the number of references

to an object can be one of four values: ZERO , ONE , LOCAL MANY , and GLOBAL . We

steal 2 bits from the object header to record this information. A reference count of

ZERO indicates that the object only has references from registers or stacks, while an

object with a count of ONE has exactly one pointer from the current session. A count

of LOCAL MANY indicates that this object has more than one reference, but that all of

these references originate from the current session. GLOBAL indicates that the object

has at least one reference that originates from outside the current session.

2In the following, we write object closure to mean the set of objects reachable from some root on the
heap; to avoid confusion, we write function closure to mean the representation of an SML function
as a pair of function code pointer and static environment.

40

GLOBAL LOCAL
MANY

ZERO ONE

r := x

Pr : isInCurrentSession (r)

Pr

~Pr Pr
~Pr

~Pr

Pr

Figure 3.5. State transition diagram detailing the behavior of the
reference counting mechanism with respect to object x involved in
an assignment, r := x, where Pr = isInCurrentSession(r).

The reference counting mechanism is implemented as a part of the write barrier

(Lines 13–22 in Figure 3.8). Figure 3.5 illustrates the state transition diagram for

the reference counting mechanism. Observe that reference counts are non-decreasing.

Hence, the reference count of any object represents the maximum number of references

that pointed to the object at any point in its lifetime.

Cleanliness

An object closure is said to be clean, if for each object reachable from the root of

the object closure,

• the object is immutable or in the shared heap. Or,

• the object is the root, and has ZERO references. Or,

• the object is not the root, and has ONE reference. Or,

• the object is not the root, has LOCAL MANY references, and is in the current

session.

Otherwise, the object closure is not clean.

41

1 bool isClean (pointer p, bool* isLocalMany) {

2 clean = true;

3 foreach o in reachable(p) {

4 i f (! isMutable(o) || isInSharedHeap(o))

5 continue;

6 nv = getRefCount(o);

7 i f (nv == ZERO)

8 clean &&= true;

9 e l se i f (nv == ONE)

10 clean &&= (o != p);

11 e l se i f (nv == LOCAL_MANY) {

12 clean &&= (isInCurrentSession(o));

13 *isLocalMany = true;

14 }

15 e l se

16 clean = false;

17 }

18 return clean;

19 }

Figure 3.6. Cleanliness check.

Figure 3.6 shows an implementation of an object closure cleanliness check. Since

the cleanliness check, memory barriers, and the garbage collector are implemented

in low-level code (C, assembly and low-level intermediate language in the compiler),

this code snippet, and others that follow in this section are in pseudo-C language,

to better represent their implementation. If the source of an globalizing assignment

is immutable, we can make a copy of the immutable object in the shared heap,

and avoid introducing references to forwarded objects. Standard ML does not allow

the programmer to test the referential equality of immutable objects. Equality of

42

x (0)
z (1)

y (1)

Current Stack

r

r := x

x
z

y

Current Stack

r

Shared Heap Shared Heap

Local Heap Local Heap

(a) Tree-structured object closure

p (0)

s (1)

Current
Session

Previous
Session

q (LM)

a

Shared Heap

r

r := p

Local Heap

Shared Heap

r p

s

q

Current
Session

Previous
Session

a

Local Heap

(b) Session-based cleanliness

Figure 3.7. Utilizing object closure cleanliness information for glob-
alizing writes to avoid references to forwarded objects.

immutable objects is always computed by structure. Hence, it is safe to replicate

immutable objects. If the object is already in the shared heap, there is no need to

move this object.

43

If the object closure of the source of a globalizing write is clean, we can move the

object closure to the shared heap and quickly fix all of the forwarding pointers that

might be generated. For example, consider an object that defines a tree structure;

such an object is clean if the root has ZERO references and all of its internal nodes

have ONE reference from their parent. A root having ZERO references means it is

accessed only via the stack; if it had a count of ONE , the outstanding reference may

emanate from the heap. Internal nodes having a reference count of ONE implies they

are reachable only via other nodes in the object being traced. Figure 3.7(a) shows

such an object closure. In this example, we assume that all objects in the object

closure are mutable. The reference count of relevant nodes is given in the brackets.

Both the root and internal nodes can have pointers from the current stack not tracked

by the reference count. After lifting the object closure, the references originating from

the current stack are fixed by walking the stack.

Object closures need not just be trees and can be arbitrary graphs, with multiple

incoming edges to a particular object in the object closure. How do we determine

if the incoming edges to an object originate from the object closure or from outside

the object closure (from the local heap)? We cannot answer this question without

walking the local heap. Hence, we simplify the question to asking whether all the

pointers to an object originate from the current session. This question is answered

in the a�rmative if an object has a reference count of LOCAL MANY (lines 11–13 in

Figure 3.6).

Figure 3.7(b) shows an example of a object closure whose objects have at most

LOCAL MANY references. Again, we assume that all objects in the object closure are

mutable. In the transitive object closure rooted at p , object q has locally many

references. These references might originate from the object closure itself (edges p !

q and s ! q) or from outside the object closure (edge a ! q). After lifting such

object closures to the shared heap, only the current session is walked to fix all of the

references to forwarded objects created during the copy. In practice (Section 3.5.2),

44

current session sizes are much smaller than heap sizes, and hence globalizing writes

can be performed quickly.

Finally, in the case of LOCAL MANY references, the object closure is clean, but unlike

other cases, after lifting the object closure to the shared heap, the current session

must be walked to fix any references to forwarded objects. This is indicated to the

caller of isClean function by assigning true to *isLocalMany , and is used in the

implementation of lifting an object closure to the shared heap (Figure 3.9).

3.3.2 Write Barrier

In this section, we present the modifications to the write barrier to eliminate the

possibility of creating references from reachable objects in the local heap to a for-

warded object. The implementation of our write barrier is presented in Figure 3.8.

A write barrier is invoked prior to a write and returns a new value for the source of

the write. The check isObjptr at line 2 returns true only for heap allocated objects,

and is a compile time check. Hence, for primitive valued writes, there is no write

barrier. Lines 4 and 5 check whether the write is globalizing. If the source of the

object is clean, we lift the transitive object closure to the shared heap and return the

new location of the object in the shared heap.

Delaying Writes

If the source of an globalizing write is not clean, we suspend the current thread

and switch to another thread in our scheduler. The source of the write is added to

a queue of objects that are waiting to be lifted. Since the write is not performed,

no forwarded pointers are created. If programs have ample amounts of concurrency,

there will be other threads that are waiting to be run. However, if all threads on a

given core are blocked on a write, we move all of the object closures that are waiting

to be lifted to the shared heap. We then force a local garbage collection, which will,

45

1 Val writeBarrier (Ref r, Val v) {

2 i f (isObjptr(v)) {

3 //Lift if clean or procrastinate

4 i f (isInSharedHeap(r) &&

5 isInLocalHeap(v)) {

6 isLocalMany = false;

7 i f (isClean(v, &isLocalMany))

8 v = lift(v, isLocalMany);

9 e l se

10 v = suspendTillGCAndLift(v);

11 }

12 // Tracking cleanliness

13 i f (isInLocalHeap (r) &&

14 isInLocalHeap(v)) {

15 n = getRefCount(v);

16 i f (! isInCurrentSession (r))

17 setNumRefs(v, GLOBAL);

18 e l se i f (n == ZERO)

19 setNumRefs(v, ONE);

20 e l se i f (n < GLOBAL)

21 setNumRefs(v, LOCAL_MANY);

22 }

23 }

24 return v;

25 }

Figure 3.8. Write barrier implementation.

as a part of the collection, fix all of the references to point to the new (lifted) location

on the shared heap. Thus, the mutator never encounters a reference to a forwarded

object.

46

Lifting Objects to the Shared Heap

Figure 3.9 shows the pseudo-C code for lifting object closures to the shared heap.

The function lift takes as input the root of a clean object closure and a Boolean

representing whether the object closure has any object that has LOCAL MANY refer-

ences. For simplicity of presentation, we assume that the shared heap has enough

space reserved for the transitive object closure of the object being lifted. In practice,

the lifting process requests additional shared heap chunks to be reserved for the cur-

rent processor, or triggers a shared heap collection if there is no additional space in

the shared heap.

Objects are transitively lifted to the shared heap, starting from the root, in the

obvious way (Lines 17–18). As a part of lifting, mutable objects are lifted and a

forwarding pointer is created in their original location, while immutable objects are

copied and their location added to imSet (Lines 9–10). After lifting the transitive

object closure to the shared heap, the shared heap frontier is updated to the new

location.

After object lifting, the current stack is walked to fix any references to forwarding

pointers (Line 21). Since we do not track references from the stack for reference

counting, there might be references to forwarded objects from stacks other than the

current stack. We fix such references lazily. Before a context switch, the target

stack is walked to fix any references to forwarded objects. Since immutable objects

are copied and mutable objects lifted, a copied immutable object might point to a

forwarded object. We walk all the shared heap copies of immutable objects lifted

from the local heap to fix any references to forwarded objects (Lines 22–23).

Recall that if the object closure was clean, but has LOCAL MANY references, then

it has at least one pointer from the current session. Hence, in this case, we walk

the current session to fix the references to any forwarded objects to point to their

shared heap counterparts (lines 25–27). Finally, session start is moved to the current

frontier.

47

1 Set imSet;

2 void liftHelper (pointer* op, pointer* frontierP) {

3 frontier = *frontierP;

4 o = *op;

5 i f (isInSharedHeap(o)) return;

6 copyObject (o, frontier);

7 *op = frontier + headerSize(o);

8 *frontierP = frontier + objectSize(o);

9 i f (isMutable(o)) {setHeader(o, FORWARDED); *o = *op;}

10 e l se imSet += o;

11 }

12

13 pointer lift (pointer op , bool isLocalMany) {

14 start = frontier = getSharedHeapFrontier ();

15 imSet = {};

16 //Lift transitive object closure

17 liftHelper (&op, &frontier);

18 foreachObjptrInRange (start , &frontier , liftHelper);

19 setSharedHeapFrontier(frontier);

20 //Fix forwarding pointers

21 foreachObjptrInObject (getCurrentStack (), fixFwdPtr);

22 foreach o in imSet

23 foreachObjptrInObject(o,fixFwdPtr);

24 frontier = getLocalHeapFrontier ();

25 i f (isLocalMany)

26 foreachObjptrInRange

27 (getSessionStart (), &frontier , fixFwdPtr);

28 setSessionStart(frontier);

29 return op;

30 }

Figure 3.9. Lifting an object closure to the shared heap.

48

1 ThreadID spawn (pointer closure , int target) {

2 ThreadID tid = newThreadID ();

3 Thread t = newThread(closure , tid);

4 isLocalMany = false;

5 i f (isClean(t, &isLocalMany)) {

6 t = lift(t, isLocalMany);

7 enqueThread(t, target);

8 }

9 e l se

10 liftAndReadyBeforeGC(t, target);

11 return tid;

12 }

Figure 3.10. Spawning a thread.

Remote Spawns

Apart from globalizing writes, function closures can also escape local heaps when

threads are spawned on other cores. For spawning on other cores, the environment of

the function closure is lifted to the shared heap and then, the function closure is added

to the target core’s scheduler. This might introduce references to forwarding pointers

in the spawning core’s heap. We utilize the techniques developed for globalizing writes

to handle remote spawns in a similar fashion.

Figure 3.10 shows the implementation of thread spawn. If the function closure is

clean, we lift the function closure to the shared heap, and enqueue the thread on the

target scheduler. Otherwise, we add it to the list of threads that need to be lifted to

the shared heap. Before the next garbage collection, these function closures are lifted

to the shared heap, enqueued to target schedulers, and the references to forwarded

objects are fixed as a part of the collection. When the target scheduler finds this new

thread (as opposed to other preempted threads), it allocates a new stack in the local

49

heap. Hence, except for the environment of the remotely spawned thread, all data

allocated by the thread is placed in the local heap.

Barrier Implementation

In our local collector, the code for tracking cleanliness (Lines 13–24 in Figure 3.8)

is implemented as an RSSA pass. In RSSA, we are able to distinguish heap allocated

objects from non-heap values such as constants, values on the stack and registers,

globals, etc. This allows us to generate barriers only when necessary.

The code for avoiding creation of references to forwarded objects (Lines 4–11 in

Figure 3.8) is implemented in the primitive library, where we have access to the

lightweight thread scheduler. suspendTillGCAndLift (line 10 in Figure 3.8) is

carefully implemented to not contain an globalizing write, which would cause non-

terminating recursive calls to the write barrier.

3.4 Integrating Software-Managed Cache Coherence (SMC)

In our next Aneris design, we integrate the SCC specific features into the runtime

system. Specifically, we describe a new GC design that integrates software-managed

cache coherence (SMC) capability, and utilizing the message-passing bu↵ers for inter-

core communication. The key enabling feature in both cases is the fact that Standard

ML is a mostly functional language, and MultiMLton’s ability to discriminate

objects at runtime based on the mutability information.

3.4.1 Heap Design

The heap design for taking advantage of SMC is given in Figure 3.11. The design

is similar to the local collector design (Section 3.2) with one key di↵erence. Instead

of a single uncached shared heap, we split our shared heap into cached and uncached

50

Private(
memory

Core(0

Local(
Heap

Private(
memory

Core(1

Local(
Heap

Private(
memory

Core(47

Local(
Heap

.(.(.(.(.(.(.

(Shared(Memory

Cached

Cached Mutable(object(heapImmutable(object(heap Uncached

Saturday, October 18, 14

Figure 3.11. Heap design utilizing SCC’s software-managed cache
coherence capability.

partitions. We take advantage of the fact that standard ML can statically distinguish

between mutable and immutable objects. Since immutable objects by definition will

not change after initialization, we enable caching on one of the shared heaps into

which only globalized immutable objects will be allocated. We call this heap a cached

shared heap (CSH). Since most objects in standard ML are immutable, we gain the

advantage of caching by placing these objects in CSH while not having to deal with

coherence issues. CSH is implemented using Software Managed Coherence (SMC) for

SCC [69], and we mark CSH as a MPB type area such that any cache line from CSH

will be tagged as MPB type. The CSH cached data bypasses L2 and caching operates

in a write-through mode.

Caching is disabled in the uncached shared heap (USH) into which globalized mu-

table objects are allocated. By disabling caching, we circumvent the coherence issues

at the cost of performance. A local heap object being globalized might contain both

mutable and immutable objects in its transitive object closure. Hence, globalization

might involve allocating new objects in both partitions of the shared heap. For the

same reason, pointers are allowed between the two partitions of the shared heap.

51

1 pointer readBarrier (pointer p) {

2 i f (! isPointer(p)) return p;

3 i f (getHeader(p) == FORWARDED) {

4 /* Address in shared heap */

5 p = *(pointer *)p;

6 i f (p > MAX_CSH_ADDR) {

7 /* Address in cached shared heap , and has not

8 * been seen so far. Fetch the updates. */

9 smcAcquire ();

10 MAX_CSH_ADDR = p;

11 }

12 }

13 return p;

14 }

Figure 3.12. Read barrier with software-managed cache coherence capability.

3.4.2 Memory Consistency

The key challenge now is to ensure that the updates to CSH are visible to all the

cores. Since CSH is cached, and SCC does not provide hardware cache coherence,

explicit cache invalidations and flushes must be implemented. Moreover, any missed

flushes or invalidations will lead to incoherent caches, while frequent flushes or inval-

idations leads to poor performance. The key observation is that the baseline local

collector design has both read and write barriers; our idea is to integrate the cache

control primitives into the memory barriers.

The CSH is always mapped to an address that is greater than the starting address of

the USH. Each core maintains the largest address seen in CSH in the MAX CSH ADDR

variable. During an object read, if the address of the object lies in the shared heap and

is greater than MAX CSH ADDR , we invalidate any cache lines that might be associated

52

1 val writeBarrier (Ref r, Val v) {

2 i f (isObjptr(v) && isInSharedHeap(r)

3 && isInLocalHeap(v)) {

4 /* Move transitive object closure to shared

5 * heap , and install forwarding pointers */

6 v = globalize (v);

7 /* Publish the updates */

8 smcRelease ();

9 }

10 return v;

11 }

Figure 3.13. Write barrier with software-managed cache coherence capability.

with CSH by invoking smcAcquire() (Line 9 in Figure 3.12). This ensures that the

values read are not stale. We update the MAX CSH ADDR if necessary. Since the objects

in CSH are immutable, there is no need to perform cache invalidation while reading

an address that is less than MAX CSH ADDR . Additionally, after garbage collection,

MAX CSH ADDR is set to point to the start of the CSH.

Similarly, whenever an object is globalized to the CSH, we must ensure that the up-

dates are visible to all of the cores. After an globalizing write, we invoke smcRelease(),

to flush any outstanding writes to the memory (Line 8 in Figure 3.13).

3.4.3 Mapping Channel Communication over Message-Passing Bu↵ers

In this section, we describe how we map the MultiMLton communication model

on top of the MPB. The main challenge here is the compatibility between the Mul-

tiMLton communication model and the capabilities of MPB. In MultiMLton,

threads communicate over first-class channels, which support many-to-many commu-

nication pattern. Hence, a receiver does not know the identity of the sender and

53

vice versa. Moreover, if a receiver is not available, the sender thread blocks; it is

descheduled, and some other thread from the scheduler queue continues execution on

that core. Moreover, the values sent over the channels in MultiMLton can be mu-

table. The channel itself is simply a data structure implemented over shared memory.

However, the communication on the SCC over libraries such as RCCE and RCKMPI

is optimized for SPMD programming model, where the sender and the receiver know

each other’s identities, and are expected to arrive at the communication point at the

same time. Hence, considering the fact that MPB memory is on 8KB, both RCCE

and RCKMPI use busy waiting strategy for inter-core communication. Thus, careful

design is needed to map MultiMLton communication abstraction over the MPB.

Our channel mapping implementation exploits both the cached shared heap and

MPB for e�cient inter-core message passing. We take advantage of our heap layout

and the availability of static type information to take advantage of the fast, on-die

MPB memory. We consider the following five cases:

1. Channel is located in the local heap

2. Channel is located in the shared heap, and the message being sent is an unboxed

value

3. Channel is located in the shared heap, the message is in the local heap, and at

least one of the objects in the transitive closure of the message being sent is

mutable

4. Channel is located in the shared heap, the message is in the local heap, and all

objects in the transitive closure of the message being sent are immutable

5. Channel and the message are located in the shared heap

For case 1, we observe that only channels that are located in the shared heap can

be used for inter-core communication. Our heap invariants prevent pointers from one

local heap to another. Thus, if a channel is located in the local heap, then no thread

54

Uncached Shared Heap

Local Heap 0

 a
M

C

T1

Before a blocking send

Local Heap 1

T2

Uncached Shared Heap

Local Heap 0

 a
MC

T1

After a blocking send

Local Heap 1

T2

Uncached Shared Heap

Local Heap 0

 a
MC

T1

After communication

Local Heap 1

T2

Figure 3.14. Steps involved in sending an mutable object a by thread
T1 on a shared heap channel C , which is eventually received by thread
T2 .

on the other cores have a reference to this channel. Thus, communication under case

1 only involves a value or a pointer exchange between the communicating lightweight

threads.

MultiMLton supports unboxed types that represent raw values. Hence, under case

2, we add a reference to the thread along with the value being sent to the channel.

In addition, we add a reference to the blocked thread to the remembered list so that

the local garbage collection can trace it.

If the message being sent has a mutable object in the transitive closure, we must

make this object visible to both the sender and the receiver core. Figure 3.14 shows

the case where a thread T1 sends a mutable object a on a shared heap channel C .

In this case, we eagerly globalize a before T1 blocks. Since the message is already

in the shared heap, when the receiver thread T2 eventually arrives, it just picks up

a pointer to the message in the shared heap.

Figure 3.15 shows the case where a thread T1 sends an immutable object a on a

shared channel C . Here, we simply add to the channel C , a reference to the message a

in the local heap, along with the reference to the thread T1 . In addition, a reference

55

Uncached Shared Heap

Local Heap 0

 a
I

C

T1

Before a blocking send

Local Heap 1

T2

Uncached Shared Heap

Local Heap 0

 a
I

C

T1

After a blocking send

Local Heap 1

T2

Uncached Shared Heap

Local Heap 0

 a
I

C

T1

After communication

Local Heap 1

T2 a
I

Figure 3.15. Steps involved in sending an immutable object a by
thread T1 on a shared heap channel C , which is eventually received
by thread T2 .

to the object a is added to the remembered list, so that a local garbage collection

will be able to identify a as being alive.

Afterward, when the receiver thread T2 arrives and finds the message not to be in

the shared heap, it sends an inter-core interrupt to the core on which the message is

located (core 0, in this case). After this message transfer is initiated over the MPB

using RCCE to transfer the object a from core 0 to core 1. Since Standard ML

immutable objects do not have identity, making a copy of the immutable object is

safe under MultiMLton.

If the channel and the message are located in the shared heap, communication only

involves a value or a pointer exchange. This case is similar to case 1.

3.5 Evaluation

The core, mesh controller, and memory on the SCC can be configured to run at

di↵erent frequencies. For our experiments we chose 533 MHz, 800 MHz, and 800

MHz for core, mesh, and memory respectively. In our results, wherever appropriate,

we present the 95% confidence intervals, obtained using Student’s t-distribution.

56

For our experimental evaluation, we picked 8 benchmarks from the MLton bench-

mark suite. The benchmarks were derived from sequential standard ML implemen-

tation and were parallelized using ACML [56]. The benchmarks are:

• AllPairs: an implementation of Floyd-Warshall algorithm for computing all

pairs shortest path.

• BarnesHut: an n-body simulation using Barnes-Hut algorithm.

• CountGraphs: computes all symmetries (automorphisms) within a set of

graphs.

• GameOfLife: Conway’s Game of Life simulator

• Kclustering: a k-means clustering algorithm, where each stage is spawned as

a server.

• Mandelbrot: a Mandelbrot set generator.

• Nucleic: Pseudoknot [75] benchmark applied on multiple inputs.

• Raytrace: a ray-tracing algorithm to render a scene.

The benchmark characteristics is given in Figure 3.2. The numbers were obtained

using local collector (LC) with programs running on 48 cores, and the average of the

results is reported. The benchmarks were designed such that the input size and the

number of threads are tunable. Out of the total bytes allocated during the program

execution, on average 5.4% is allocated in the shared heap. Thus, most of the objects

allocated are collected locally, without the need for stalling all of the mutators. The

allocation rate on the SCC is typically much lower than comparable general purpose

commercial o↵erings. On the SCC, not only is the processor slow (533MHz) but also

the serial memory bandwidth for our experimental setup is only around 70 MB/s.

57

Table 3.2.
Benchmark characteristics. %Sh represents the average fraction of
bytes allocated in the shared heap.

Benchmark
Allocation Rate Allocation

Threads
(MB/s) Total (GB) % Sh

AllPairs 53 ±2.3 16 ±0.23 11 ±0.09 512

BarnesHut 70 ±2.3 20 ±0.25 2 ±0.02 1024

CountGraphs 144 ±3.8 24 ±0.32 1 ±0.01 256

GameOfLife 127 ±5.0 21 ±0.47 13 ±0.17 1024

KClustering 108 ±2.9 32 ±0.31 3 ±0.05 1024

Mandelbrot 43 ±1.7 2 ±0.02 8 ±0.03 512

Nucleic 87 ±3.4 14 ±0.17 1 ±0.00 384

Raytrace 54 ±2.6 12 ±0.14 4 ±0.03 256

3.5.1 Performance

Figure 3.16 presents the speedup results and illustrates space-time trade-o↵s critical

for any garbage collector evaluation. Among the three variants, SMC performs the

best (Figure 3.16(a)) due to the fact that most of the accesses under SMC is cached,

unlike LC and PRC. We also see that the performance of LC and PRC start to

flatten out due to the contention on the uncached shared memory as we increase the

number of cores. Thus, with increasing number of cores, the uncached shared memory

becomes the bottleneck.

As we decrease the overall heap size, we see that the programs take longer to run, due

to the more frequent GCs (Figure 3.16(b)). The reduction in heap size, by definition,

does not adversely a↵ect the mutator time when compared with the GC time. At

3⇥ the minimum heap size under which the programs would run, PRC is 17% faster

than LC, and SMC is 18% faster than PRC. Overall, SMC is 32% faster than LC.

58

0 10 20 30 40 50
Cores

0

5

10

15

20

25

30

35

S
p

e
e
d

u
p

LC

PRC

SMC

(a) Speedup

0 1 2 3 4 5 6
Heap size relative to min heap size

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

N
o
rm

a
liz

e
d

 T
im

e

LC

PRC

SMC

(b) Total time (48 cores)

0 1 2 3 4 5 6
Heap size relative to min heap size

1.00

1.10

1.20

1.30

1.40

1.50

1.60

N
o
rm

a
liz

e
d

 M
u

ta
to

r
T
im

e LC

PRC

SMC

(c) Mutator time (48 cores)

0 1 2 3 4 5 6
Heap size relative to min heap size

1

2

4

8

16

32

64

128

N
o
rm

a
liz

e
d

 G
C

 T
im

e
 (

lo
g

) LC

PRC

SMC

(d) GC time (48 cores)

Figure 3.16. Performance comparison of local collector with read bar-
riers (LC), procrastinating collector without read barriers (PRC), and
collector utilizing software-managed cache coherence (SMC) : Geo-
metric mean for 8 benchmarks.

The mutator time (Figure 3.16(c)) of LC is consistently higher than PRC due to the

elimination of read barrier overheads under PRC. Although SMC does have read bar-

rier overheads, caching much of the shared memory accesses keeps the mutator time

low. We instrumented our read and write barriers to classify the memory accesses.

On average, across all of the benchmarks, 89% of the read or write requests were to

the local heap, which is private and is cached both in L1 and L2. This is common to

all three versions of the local collector. Thus, SMC derives mutator gains by caching

much of the 11% of the GC requests.

59

Out of the shared heap memory requests, on average, 93% of all requests were to

the cached shared heap. However, it should be noted that cached shared heap data

bypass L2, and are only cached in the comparatively smaller L1 cache. Hence, the

benefit of caching shared heap data, as far as the mutator is concerned, may not be

dramatic if the cached shared heap reads are far and few between. In any case, with

SMC, less than 1% of mutator accesses were to the uncached memory. Thus, SMC is

able to potentially cache more than 99% of memory accesses.

There is very little di↵erence between the GC times (Figure 3.16(d)) between LC

and PRC. This is because both the variants are similar in terms of the actual GC

work. However, SMC’s GC time tends to be lower since part of the expensive shared

heap collection itself is cached. Thus, software-managed cache coherence not only

benefits the mutator but also the garbage collector.

3.5.2 Evaluating Procrastinating Collector

In this section, we will focus on the procrastinating collector (PRC) design, and

analyze the impact of di↵erent optimizations.

Impact of Cleanliness

Cleanliness information allows the runtime system to avoid preempting threads on

a write barrier when the source of an globalizing write is clean. In order to study the

impact of cleanliness, we removed the reference counting code and cleanliness check

from the write barrier; thus, every globalizing write results in a thread preemption

and stall. The results presented here were taken with programs running on 48-cores.

Table 3.3 shows the number of preemptions on write barrier for di↵erent config-

urations. PRC represents the variant with all of the features enabled; PRC MU-

shows a cleanliness optimization that does not take an object’s mutability into con-

sideration in determining cleanliness (using only recorded reference counts instead),

60

Table 3.3.
Average number of preemptions on write barrier.

Benchmark PRC PRC MU- PRC CL-

AllPairs 604 ±42 616 ±43 28573 ±1429

BarnesHut 8376 ±503 82284 ±3291 23504887 ±1175244

CountGraphs 45 ±2 64 ±2 17061 ±1194

GameOfLife 11973 ±359 238462 ±16692 1936250 ±58088

KClustering 7227 ±217 15394 ±616 8107173 ±405359

Mandelbrot 44 ±2 84 ±5 5863 ±235

Nucleic 58 ±3 104594 ±4184 209840 ±14689

Raytrace 881 ±35 973 ±39 13464 ±404

and PRC CL- represents preemptions incurred when the collector does not use any

cleanliness information at all. Without cleanliness, on average, the programs perform

substantially more preemptions when encountering a write barrier.

Recall that if all of the threads belonging to a core get preempted on a write barrier,

a local major GC is forced, which lifts all of the sources of globalizing writes, fixes the

references to forwarding pointers and unblocks the stalled threads. Hence, an increase

in the number of preemptions leads to an increase in the number of local collections.

Table 3.4 shows the percentage of local major GCs that were forced compared to

the total number of local major GCs. PRC CL- shows the percentage of forced

GCs if cleanliness information is not used. On average, 49% of local major collection

performed is due to forced GCs if cleanliness information is not used, whereas it is less

than 1% otherwise. On benchmarks like BarnesHut, GameOfLife and Mandelbrot,

where all of the threads tend to operate on a shared global data structure, there

are a large number of globalizing writes. On such benchmarks almost all local GCs

are forced in the absence of cleanliness. This adversely a↵ects the running time of

programs.

61

Table 3.4.
Average percentage of forced GCs out of the total number of local major GCs.

Benchmark PRC PRC MU- PRC CL-

AllPairs 0.08 ±0 0.08 ±0 38.55 ±2.31

BarnesHut 0.17 ±0.01 19.2 ±0.96 100 ±3

CountGraphs 0 ±0 0.03 ±0 0.18 ±0.01

GameOfLife 3.54 ±0.21 9.47 ±0.47 99.75 ±4.99

KClustering 0 ±0 0.02 ±0 21.64 ±1.08

Mandelbrot 1.43 ±0.1 2.86 ±0.11 86.22 ±6.04

Nucleic 0 ±0 9.37 ±0.28 19.3 ±0.58

Raytrace 1.72 ±0.1 1.72 ±0.07 24.86 ±0.99

AllP
ai

rs

Bar
ne

sH
ut

Cou
nt

Gra
ph

s

Gam
eO

fL
ife

Kc
lu

st
er

in
g

M
an

de
lb

ro
t

Nuc
le

ic

Ray
tra

ce
−10

0

10

20

30

40

50

60

70

S
lo

w
d

o
w

n
 (

%
)

PRC MU-
PRC CL-

Figure 3.17. Impact of utilizing object mutability information and
cleanliness analysis on the performance of PRC.

62

Figure 3.17 shows the running time of programs without using cleanliness. On

average, programs tend to run 28.2% slower if cleanliness information is ignored. The

results show that cleanliness analysis therefore plays a significant role in the PRC

design.

Impact of Immutability

If the source of an globalizing write is immutable, we can make a copy of the object

in the shared heap and assign a reference to the new shared heap object to the target.

Hence, we can ignore the reference count of such objects. Not all languages may have

the ability to distinguish between mutable and immutable objects in the compiler or

in the runtime system. Hence, we study the impact of our local collector design with

mutability information in mind. To do this, we ignore the test for mutability in the

cleanliness check (Figure 3.6) and modify the object lifting code in Figure 3.9 to treat

all objects as mutable.

PRC MU- in Table 3.3 and Table 3.4 show the number of write barrier preemptions

and the percentage of forced GCs, respectively, if all objects were treated as muta-

ble. For some programs such as AllPairs, CountGraphs, or Kclustering, object

mutability does not play a significant factor. For benchmarks where it does, distin-

guishing between mutable and immutable objects helps avoid inducing preemptions

on a write barrier since a copy of the immutable object can be created in the shared

heap without the need to repair existing references to the local heap copy.

Figure 3.17 shows the performance impact of taking object mutability into account.

While ignoring object mutability information, BarnesHut, GameOfLife and Nucleic

are slower due to the increased number of forced GCs. Interestingly, AllPairs,

CountGraphs, Kclustering and Raytrace are marginally faster if the mutability

information is ignored. This is due to not having to manipulate the imSet (Line 15

in Figure 3.9), and walking immutable objects after the objects are lifted (Line 22 in

63

Table 3.5.
Impact of heap session: % LM clean represents the fraction of in-
stances when a clean object closure has at least one object with
LOCAL MANY references.

Benchmark % LM Clean Avg. Session Size (Bytes)

AllPairs 5.35 ±0.37 2966 ±119

Barneshut 13.27 ±0.53 1596 ±96

Countgraphs 8.86 ±0.53 3648 ±73

GameOfLife 23.9 ±1.2 1384 ±55

Kclustering 18.13 ±0.54 2248 ±135

Mandelbrot 4.64 ±0.09 8549 ±598

Nucleic 13.3 ±0.27 1226 ±37

Raytrace 8.28 ±0.41 1112 ±22

Figure 3.9). On average, we see a 11.4% performance loss if mutability information

is not utilized for cleanliness.

Impact of Heap Session

In order to assess the e↵ectiveness of using heap sessions, we measured the percent-

age of instances where the source of an globalizing write is clean with at least one

of the objects in the closure has a LOCAL MANY reference. During such instances, we

walk the current heap session to fix any references to forwarded objects. Without us-

ing heap sessions, we would have preempted the thread in the write barrier, reducing

available concurrency. The results are presented in Table 3.5.

The first column shows the percentage of instances when an object closure is clean

and has at least one object with LOCAL MANY references. On average, we see that

12% of clean closures have at least one object with LOCAL MANY references. We also

measured the average size of heap sessions when the session is traced as a part of

64

0 10 20 30 40 50
Cores

0

5

10

15

20

25

30

35

S
p

e
e
d

u
p

MPB-

MPB+

Figure 3.18. Performance comparison of first-class channel commu-
nication over the MPB (MBP+) vs solely over the shared memory
(MPB-) : Geometric mean over 8 benchmarks.

lifting an object closure to the shared heap (Line 25 in Figure 3.9). The average

size of a heap session when it is traced is 2859 bytes, which is less than a page size.

These results show that utilizing heap sessions significantly contributes to objects

being tagged as clean, and heap sessions are small enough to not introduce significant

overheads during tracing.

3.5.3 MPB Mapped Channels

In this section, we study the impact of MPB mapped channels. In order to evaluate

the benefit of mapping the first-class channel communication over the message passing

bu↵er memory, we implemented a version of our communication library that does not

use the message passing bu↵er memory. Recall that if the channel is located in the

shared heap, the message in the local heap, and the message does not have a mutable

object in its transitive closure, we perform the transfer over the message passing bu↵er

(Case 4 in Section 3.4.3). Instead, we eagerly globalize the transitive closure of the

message and just share the pointer with the receiving thread (similar to Case 3). We

call this version MPB-, and the original version MPB+.

65

Figure 3.18 shows the performance comparison of MPB+ versus MPB-. On 48-cores,

MPB+ is only around 9% faster than the MPB- version. We can attribute several

reasons for this marginal improvement. First, we observed that, on average, around

only 32% of channel communications were taking advantage of the MPB (Case 4) in

the case of MPB+. The rest of the channel communications were either local or were

using the shared memory to transfer the messages. Moreover, in the case of MPB-,

immutable inter-core messages are transferred over the CSH which is cached.

Second, the cost of inter-core interrupts is substantial, as was observed by others [76,

77]. We measured the time it takes between a core issuing an inter-core interrupt to

the time it sends or receives the first byte is around 2000 core cycles. Since majority of

the immutable messages exchanged between cores are small, the overhead of setting up

the message transfer outweighs the benefit of using the MPB. However, utilizing the

MPB prevents immutable messages from being globalized, thus reducing the pressure

on the shared memory. As a result, the number of expensive shared heap collections

are reduced.

3.6 Related Work

Over the years, several local collector designs [48, 66–68] have been proposed for

multi-threaded programs. Recently, variations of local collector design have been

adopted for multi-threaded, functional language runtimes like GHC [46] and Manti-

core [47]. Doligez et al. [67] proposed a local collector design for ML with threads

where all mutable objects are allocated directly on the shared heap, and immutable

objects are allocated in the local heap. Similar to our technique, whenever local ob-

jects are shared between cores, a copy of the immutable object is made in the shared

heap. Although this design avoids the need for read and write barriers, allocating all

mutable objects, irrespective of their sharing characteristics can lead to poor perfor-

mance due to increased number of shared collections, and memory access overhead

due to NUMA e↵ects and uncached shared memory as in the case of SCC. It is for

66

this reason we do not treat the shared memory as the oldest generation for our local

generation collector unlike other designs [46,67].

Several designs utilize static analysis to determine objects that might potentially

escape to other threads [68, 78]. Objects that do not escape are allocated locally,

while all others are allocated in the shared heap. The usefulness of such techniques

depends greatly on the precision of the analysis, as objects that might potentially

be shared are allocated on the shared heap. This is undesirable for architectures

like the SCC where shared memory accesses are very expensive compared to local

accesses. Compared to these techniques, our design only exports objects that are

definitely shared between two or more cores. Our technique is also agnostic to the

source language, does not require static analysis, and hence can be implemented as a

lightweight runtime technique.

Anderson [48] describes a local collector design (TGC) that triggers a local garbage

collection on every globalizing write of a mutable object, while immutable objects,

that do not have any pointers, are copied to the shared heap. This scheme is a lim-

ited form of our cleanliness analysis. In our system, object cleanliness neither solely

relies on mutability information, nor is it restricted to objects without pointer fields.

Moreover, TGC does not exploit delaying globalizing writes to avoid local collections.

However, the paper proposes several interesting optimizations that are applicable to

our system. In order to avoid frequent mutator pauses on globalizing writes, TGC’s

local collection runs concurrently with the mutator. Though running compaction

phase concurrently with the mutator would require read barriers, we can enable con-

current marking to minimize pause times. TGC also proposes watermarking scheme

for minimizing stack scanning, which can be utilized in our system to reduce the stack

scanning overheads during context switches and globalizing writes of clean objects.

Marlow et al. [46] propose globalizing only part of the transitive closure to the

shared heap, with the idea of minimizing the objects that are globalized. The rest

of the closure is exported essentially on demand during the next access from another

core. This design mandates the need for a read barrier to test whether the object

67

being accessed resides in the local heap of another core. However, since the target

language is Haskell, there is an implicit read barrier on every load, to check whether

the thunk has already been evaluated to a value. Since our goal is to eliminate read

barriers, we choose to export the transitive closure on an globalizing write.

Software managed cached coherence (SMC) [69] for SCC provides a coherent, shared

virtual memory to the programmer. However, the distinction between private and

shared memory still exists and it is the responsibility of the programmer to choose

data placement. In our system, all data start out as being private, and is only shared

with the other cores if necessary. The sharing is performed both through the shared

memory as well as over the MPB, based on the nature of message being shared.

MESH framework [79] provides a similar mechanism for flexible sharing policies on

the SCC as a middle-ware layer.

In the context of mapping first-class channels to MPBs, the work by Prell et al. [80]

which presents an implementation of Go’s concurrency constructs on the SCC is most

similar. However, unlike our channel implementation, channels are implemented di-

rectly on the MPB. Since the size of MPB is small, the number of channels that can

be concurrently utilized are limited. Moreover, their implementation diverges from

Go language specification in that the go-routines running on di↵erent cores run under

di↵erent address spaces. Hence, the result of transferring a mutable object over the

channels is undefined. Our channel communication utilizes both shared memory and

the MPBs for inter-core messaging. Barrelfish on the SCC [76] uses MPBs to transfer

small messages and bulk transfer is achieved through shared memory. However, Bar-

relfish di↵ers from our system since it follows a shared-nothing policy for inter-core

interaction.

3.7 Concluding Remarks

The Intel SCC provides an architecture that combines aspects of distributed sys-

tems (no cache coherence) with that of a shared memory machine, with support for

68

programmable cache coherence and fast inter-core messaging. In order to e↵ectively

utilize this architecture, it is desirable to hide the complexity behind the runtime

system. To this end, the Aneris programming platform provides a cache coherent

shared memory abstraction for the ML programmer. Aneris utilizes the mostly-

functional and highly concurrent nature of the programming model to implement a

memory management scheme that is optimized for the memory hierarchy found on

the SCC. The results and experience building Aneris illustrate that functional pro-

gramming language technology can mitigate the burden of developing software for

highly scalable manycore systems.

69

4 RX-CML: A PRESCRIPTION FOR SAFELY RELAXING SYNCHRONY

Concurrent ML [81] (CML) provides an expressive concurrency mechanism through

its use of first-class composable synchronous events. When synchronized, events al-

low threads to communicate data via message-passing over first-class channels. Syn-

chronous communication simplifies program reasoning because every communication

action is also a synchronization point; thus, the continuation of a message-send is

guaranteed that the data being sent has been successfully transmitted to a receiver.

The programming model of CML, however, assumes strong consistency; while the

channel itself is first-class and supports many-to-many communication pattern, the

communication has exactly-once requirement. If a receiver consumes a sent value,

then no other sender can consume the same value. Thus, synchronous communica-

tion needs coordination between the communicating parties for enforcing the exactly-

once requirement. Hence, while first-class channel based synchronous communication

provides a good abstraction, its correctness and performance implication in a high

latency, weakly consistent setting prevents its utility in a weakly consistent loosely

coupled environment.

While asynchronous extensions such as ACML [56] can be used to gain performance,

they sacrifice the simplicity provided by synchronous communication in favor of a

more complex and sophisticated set of primitives. Moreover, ACML also requires the

exactly-once requirement. Hence, even though ACML solves the problem of synchrony

at the cost of increased complexity, it does not solve the problem of coherence.

One way to enhance performance without requiring new additions to the core set

of event combinators CML supports, is to give the underlying runtime the freedom

to allow a sender to communicate data asynchronously. In this way, the cost of

synchronous communication can be masked by allowing the sender’s continuation to

70

send(c1,v1)
f()
send(c2,v2)

recv(c2)
g()
recv(c1)

send(c2,v3)
h()
recv(c2)

T1 T2 T3

Figure 4.1. Performing the first send in T1 asynchronously is not
meaning preserving with respect to synchronous evaluation.

begin execution even if a matching receiver is not yet available. Because asynchrony

is introduced only by the runtime, applications do not have to be restructured to ex-

plicitly account for new behaviors introduced by this additional concurrency. Thus,

we wish to have the runtime enforce the equivalence: [[send (c, v)]]k ⌘ [[asend (c, v)]]k

where k is a continuation, send is CML’s synchronous send operation that commu-

nicates value v on channel c, and asend is an asynchronous variant that bu↵ers v on

c and does not synchronize on a matching receiver.

To illustrate, consider the following simple program:

send(c1,v1)
f()
send(c2,v2)

g()
recv(c1)

recv(c2)
h()

T1 T2 T3

Thread T1 performs a synchronous send on channel c1 that is received by thread

T2, after it computes g() . After the communication is performed, T1 evaluates

f() , and then sends v2 on channel c2 , which is received by thread T3. Upon

receipt, T3 evaluates h() . Assuming f , g , and h perform no communication action

of their own, the synchronous communication on c1 by T1 could have been safely

converted into an asynchronous action in which v1 is bu↵ered, and read by T2 later

upon evaluation of g() . The observable behavior of the program in both cases (i.e.,

treating the initial send synchronously or asynchronously) would be the same.

Unfortunately, näıvely replacing synchronous communication with an asynchronous

one is not usually meaning-preserving as the example in Figure 4.1 illustrates. Under

a synchronous evaluation protocol, T2 would necessarily communicate first with T3,

71

send (c1,v1)

f()

send(c2,v2)

recv(c2)

g()

recv(c1)

send(c2,v3)

h()

recv(c2)

T1 T2 T3A

B

C

asend (c1,v1)

f()

send(c2,v2)

recv(c2)

g()

recv(c1)

send(c2,v3)

T1 T2 T3A

B
C

✘
Buf

Figure 4.2. Dependence graph induced by the execution of the pro-
gram presented in Figure 4.1.

receiving v3 on channel c2 . It is then able to receive v1 from T1; finally, T1

can communicate v2 to T3. If the send(c1,v1) operation by T1 were replaced by

asend(c1,v1) , the first receive on T2 has, in addition to the first send on T3, a new

potential matching opportunity – the send of v2 on channel c2 . If the receive by T2

matches with the send of v2 on channel c2 , it is impossible to satisfy the send on

T3. Thus, this asynchronous execution exhibits a new behavior not possible using

just synchronous operators.

The distinction between these two executions can be explained in terms of a de-

pendence graph that captures both intra- and inter-thread data- and control-flow.

We can depict the executions by explicitly drawing these dependencies as shown in

Figure 4.2.

The dashed edges reflect communication and synchronization dependencies among

threads, while solid edges capture thread-local control-flow. A bi-directional edge

connects a sender with either a receiver, in the case of a synchronous send, or a bu↵er,

in the case where it is asynchronous. In both instances, there is a synchronization

dependence between endpoints, and a data dependence from the sender to either

the matching receiver or bu↵er. The left-hand side of the figure shows a possible

execution in which all operations are synchronous; the right considers an execution

72

in which the initial send by T1 is asynchronous. The labels on the edges reflect the

order in which communication actions are executed.

The synchronous execution on the left reflects the description given earlier. The

asynchronous execution on the right depicts the send on thread T1 bu↵ering its

data (A), thus allowing the synchronous communication between T1 and T2 (B);

this action prohibits communication between T2 and T3. T2 subsequently receives

v1 from the bu↵er associated with channel c1 (C). This behavior could not be

realized by any synchronous execution: B could never have been performed if the

send operation on channel c1 was not asynchronous.

The formalization of well-formed executions, those that are the result of asyn-

chronous evaluation of CML send operations, but which nonetheless are observably

equivalent to a synchronous execution, and the means by which erroneous executions,

such as the right-hand execution above, can be detected and repaired, form the focus

of this chapter. Specifically, we make the following contributions:

• We present the rationale for a relaxed execution model for CML that specifies

the conditions under which a synchronous operation can be safely executed

asynchronously. Our model allows applications to program with the simplic-

ity and composability of CML synchronous events, but reap the performance

benefits of implementing communication asynchronously.

• We develop an axiomatic formulation of the model that can be used to reason

about correctness in terms of causal dependencies captured by a happens-before

relation. We relate this definition to an operational semantics that specifies

relaxed execution behavior for communicating actions, and relate the set of

traces admitted by the operational semantics to the safe executions defined by

the axiomatic formulation.

• A distributed implementation, �CML, that treats asynchronous communication

as a form of speculation is described. A mis-speculation, namely the execution

that could not have been realized using only synchronous communication, is

73

detected using a runtime instantiation of our axiomatic formulation. An un-

coordinated, distributed checkpointing mechanism is utilized to rollback and

re-execute the o↵ending execution synchronously, which is known to be safe.

• Several case studies on a realistic cloud deployment demonstrate the utility

of the model in improving the performance of CML programs in distributed

environments without requiring any restructuring of application logic to deal

with asynchrony.

4.1 Motivation

To motivate the utility of safe relaxation of synchronous behavior, consider the

problem of building a distributed chat application. The application consists of a

number of participants, each of whom can broadcast a message to every other member

in the group. The invariant that must be observed is that any two messages sent by

a participant must appear in the same order to all members. Moreover, any message

Y broadcast in response to a previously received message X must always appear after

message X to every member. Here, message Y is said to be causally dependent on

message X .

Building such an application using a centralized server is straightforward, but hin-

ders scalability. In the absence of central mediation, a causal broadcast protocol [82] is

required. One possible encoding of causal broadcast using CML primitives is shown in

Figure 4.3. A broadcast operation involves two phases. In the first phase, values (i.e.,

messages) are synchronously communicated to all receivers (except to the sender). In

the second phase, the sender simulates a barrier by synchronously receiving acknowl-

edgments from all recipients.

The synchronous nature of the broadcast protocol along with the fact that the

acknowledgment phase occurs only after message distribution ensure that no member

can proceed immediately after receiving a message until all other members have also

received the message. This achieves the desired causal ordering between broadcast

74

1 datatype ’a bchan = BCHAN of (’a chan list (*val*) *

2 unit chan list (*ack*))

3

4 (* Create a new broadcast channel *)

5 fun newBChan (n: int) (* n = number of participants *) =

6 BCHAN(tabulate(n,fn _ => channel ()),

7 tabulate(n,fn _ => channel ()))

8

9 (* Broadcast send operation *)

10 fun bsend (BCHAN (vcList , acList), v: ’a, id: int) : unit =

11 let

12 val _ = map (fn vc => if (vc = nth (vcList , id)) then ()

13 else send (vc , v))

14 vcList (* phase 1 -- Value distribution *)

15 val _ = map (fn ac => if (ac = nth (acList , id)) then ()

16 else recv ac)

17 acList (* phase 2 -- Acknowledgments *)

18 in ()

19 end

20

21 (* Broadcast receive operation *)

22 fun brecv (BCHAN (vcList , acList), id: int) : ’a=

23 let val v = recv (nth (vcList , id))

24 val _ = send (nth (acList , id), ())

25 in v

26 end

Figure 4.3. Synchronous broadcast channel

messages since every member would have received a message before the subsequent

causally ordered message is generated. We can build a distributed group chat server

using the broadcast channel as shown below.

75

(* bc is broadcast chan , daemon spawn as a separate thread *)

fun daemon id = display (brecv (bc , id)); daemon id

fun newMessage (m, id) = display m; bsend (bc , m, id)

Assume that there are n participants in the group, each with a unique identifier

id between 0 and n � 1. Each participant runs a local daemon thread that waits

for incoming messages on the broadcast channel bc . On a reception of a message,

the daemon displays the message and continues waiting. The clients broadcast a

message using newMessage after displaying the message locally. Observe that remote

messages are only displayed after all other participants have also received the message.

In a geo-distributed environment, where the communication latency is very high, this

protocol results in a poor user experience that degrades as the number of participants

increases.

Without making wholesale (ideally, zero!) changes to this relatively simple protocol

implementation, we would like to improve responsiveness, while preserving correct-

ness. One obvious way of reducing latency overheads is to convert the synchronous

sends in bsend to an asynchronous variant that bu↵ers the message, but does not

synchronize with a matching receiver. There are two opportunities where asynchrony

could be introduced, either during value distribution or during acknowledgment re-

ception. Unfortunately, injecting asynchrony at either point is not guaranteed to

preserve causal ordering on the semantics of the program.

Consider the case where the value is distributed asynchronously. Assume that there

are three participants: p1, p2, and p3. Participant p1 first types message X , which is

seen by p2, who in turn types the message Y after sending an acknowledgment. Since

there is a causal order between the message X and Y , p3 must see X followed by Y .

Figure 4.4 shows an execution where this is not the case. In the figure, uninteresting

messages have been elided for clarity. The key observation is that, due to asynchrony,

message X sent by the p1 to p3 might be in-flight, while the causally dependent

76

display(X)

S

S

R

R

S

display(Y)

Participant 1
UI Daemon

display(Y)

S

S

R

R

R

S

display(X)

Participant 2
UI Daemon

R

S

display(Y)

Participant 3
UI Daemon

Time

X

X
ack

Y

ack

Y

ack

Figure 4.4. Incorrect execution due to unsafe relaxation of sends dur-
ing broadcast. Dotted arrow represents in-flight message.

message Y sent by p2 reaches p3 out-of-order. This leads to a violation of the protocol’s

invariants.

Similarly, it is easy to see that sending acknowledgments message asynchronously

is also incorrect. This would allow a participant that receives a message to asyn-

chronously send an acknowledgment, and proceed before all other participants have

received the same message. As a result, causal dependence between messages is lost.

To quantify these issues in a realistic setting, we implemented a group chat sim-

ulator application using a distributed extension of the MultiMLton Standard ML

compiler. We launched three Amazon EC2 instances, each simulating a participant

in the group chat application, with the same communication pattern described in the

discussion above. In order to capture the geo-distributed nature of the application,

participants were placed in three di↵erent availability zones – EU West (Ireland), US

West (Oregon), and Asia Pacific (Tokyo), resp.

During each run, p1 broadcasts a message X , followed by p2 broadcasting Y . We

consider the run to be successful if the participant p3 sees the messages X , Y , in that

order. The experiment was repeated for 1K iterations. We record the time between

protocol initiation and the time at which each participant gets the message Y . We

77

Table 4.1.
Performance comparison of causal messaging passing

Execution Avg.time (ms) Errors

Sync 1540 ±53 0 ±0

Unsafe Async 520 ±17 7 ±2

Safe Async (�CML) 533 ±13 0 ±0

consider the largest of the times across the participants to be the running time. The

results are presented in Table 4.1.

The Unsafe Async row describes the variant where both value and acknowledgment

distribution is performed asynchronously; it is three times as fast as the synchronous

variant. However, over the total set of 1K runs, it produced seven erroneous ex-

ecutions. The Safe Async row illustrates our implementation, �CML, that detects

erroneous executions on-the-fly and remediates them. The results indicate that the

cost of ensuring safe asynchronous executions is quite low for this application, incur-

ring only roughly 2.5% overhead above the unsafe version. Thus, in this application,

we can gain the performance benefits and responsiveness of the asynchronous version,

while retaining the simplicity of reasoning about program behavior synchronously.

4.2 Axiomatic Semantics

We introduce an axiomatic formalization for reasoning about the relaxed behaviors

of a concurrent message-passing programs with dynamic thread creation. Not sur-

prisingly, our formulation is similar in structure to axiomatic formalizations used to

describe, for example, relaxed memory models [20–22].

An axiomatic execution is captured by a set of actions performed by each thread

and the relationship between them. These actions abstract the relevant behaviors

possible in a CML execution, relaxed or otherwise. Relation between the actions as a

78

result of sequential execution, communication, thread creation and thread joins define

the dependencies that any sensible execution must respect. A relaxed execution, as

a result of speculation, admits more behaviors than observable under synchronous

CML execution. Therefore, to understand the validity of executions, we define a

well-formedness condition that imposes additional constraints on executions to ensure

their observable e↵ects correspond to correct CML behavior.

We assume a set of T threads, C channels, and V values. The set of actions is

provided below. Superscripts m and n denote a unique identifier for the action.

Actions A := b
t

(t starts)

| e
t

(t ends)

| jm
t

t0 (t detects t’ has terminated)

| fm

t

t0 (t forks a new t’)

| sm
t

c, v (t sends value v on c)

| rm
t

c (t receives a value v on c)

| pm
t

v (t outputs an observable value v)

c 2 C (Channels) t, t0 2 T (Threads) v 2 V (Values) m,n 2 N (Numbers)

Action b
t

signals the initiation of a new thread with identifier t; action e
t

indicates

that thread t has terminated. A join action, jm
t

t0, defines an action that recognizes

the point where thread t detects that another thread t0 has completed. A thread

creation action, where thread t spawns a thread t0, is given by fm

t

t0. Action sm
t

c, v

denotes the communication of data v on channel c by thread t, and rm
t

c denotes the

receipt of data from channel c. An external action (e.g., printing) that emits value v

79

is denoted as pm
t

v. We can generalize these individuals actions into a family of related

actions:

A
r

= {rm
t

c | t 2 T} (Receives)

A
s

= {sm
t

c, v | t 2 T, v 2 V} (Sends)

A
c

= A
s

[A
r

(Communication)

A
o

= {pm
t

v | t 2 T, v 2 V} (Observables)

Notation. We write T (↵) to indicate the thread in which action ↵ occurs, and write

V (sm
t

c, v) to extract the value v communicated by a send action. Given a set of

actions A 2 2A, A
x

= A \ A
x

, where A
x

represents one of the action classes defined

above.

Definition 4.2.1 (Axiomatic Execution) An axiomatic execution is defined by

the tuple E := hP,A,!
po

,!
co

i where:

• P is a program.

• A is a set of actions.

• !
po

✓ A⇥ A is the program order, a disjoint union of the sequential actions of

each thread (which is a total order).

• !
co

✓ (A
s

⇥ A
r

) [(A
r

⇥ A
s

) is the communication order which is a symmet-

ric relation established between matching communication actions (i.e., ↵ !
co

� =) � !
co

↵). Moreover, a send and its matching receive must operate over

the same channel (i.e., sm
t

c, v !
co

rn
t

0c0 =) c = c0).

Additionally, there is an obvious ordering on thread creation and execution, as well

as the visibility of thread termination by other threads:

Definition 4.2.2 (Thread Dependence) If ↵ = fm

t

t0 and � = b
t

0 or ↵ = e
t

and

� = jm
t

0 t then ↵!
td

� holds.

80

(* current thread is t1 *)

val t2 = spawn (fn () => recv c2; print "2"; recv c1)

val t3 = spawn (fn () => send(c2 ,v2); print "3"; recv c2)

val _ = send(c1 ,v1)

val _ = print "1"

val _ = send(c2 ,v2)

Figure 4.5. A CML Program with potential for mis-speculation.

Definition 4.2.3 (Happens-before relation) The happens-before order of an ex-

ecution is the transitive closure of the union of program order, thread dependence

order, and actions related by communication and program order:

!
hb

= (!
po

[!
td

[

{(↵, �) | ↵!
co

↵0 ^ ↵0 !
po

�} [

{(�,↵) | � !
po

↵0 ^ ↵0 !
co

↵})+

For any two actions ↵, � 2 A, if ↵ =
hb

�, then ↵ and � are said to be concurrent

actions. Importantly, our happens-before relation defines a preorder. A preorder is a

reflexive transitive binary relation. Unlike partial orders, preorders are not necessarily

anti-symmetric, i.e. they may contain cycles.

Definition 4.2.4 (Happens-before Cycle) A cycle exists in a happens-before re-

lation if for any two actions ↵, � and ↵!
hb

� !
hb

↵.

We provide an example to illustrate these definitions and to gain an insight into

erroneous executions that manifest as a result of speculative communication. Consider

the simple CML program (Figure 4.5) which shows a simple CML program and two

possible executions (Figure 4.6). The execution in Figure 4.6(a) imposes no causal

dependence between the observable actions (i.e., print statements) in t2 or t3; thus,

81

bt1
po

po

po

po

po

po

po

po

po

po

po

po

po

po

ft1t2

ft1t3

pt11

et1

st1c2, v2

td

td

bt2

rt2c2

pt22

rt2c1

et2

co

co

co

bt3

st3c2, v3

pt33

et3

st1c1, v1
rt3c2

(a) Well-formed execution

bt1
po

po

po

po

po

po

po

po

po

po

po

ft1t2

ft1t3

pt11

et1

st1c2, v2

td

td

bt2

rt2c2

pt22

rt2c1

et2

co

bt3

st3c2, v3

st1c1, v1

co

(b) Ill-formed execution

Figure 4.6. Potential axiomatic executions of the CML program pre-
sented in Figure 4.5.

an interleaving derived from this execution may permute the order in which these

statements execute. All interleavings derivable from this execution correspond to

valid CML behavior.

In contrast, the execution depicted in Figure 4.6(b), exhibits a happens-before cycle

between t1 and t2, through a combination of program and communication order edges.

Such cyclic dependences never manifest in any correct CML execution. Cyclic depen-

dences may however manifest when synchronous sends are speculatively discharged

asynchronously. We must therefore strengthen our notion of correct executions to

discard those that contain such cycles.

To do so, we first note that the semantics as currently presented is concerned only

with actions that introduce some form of causal dependence either within a thread (via

program order) or across threads (via thread dependence or communication order).

However, a real program also does computation, and reasoning about an execution’s

82

correctness will require us to specify these actions as well. To facilitate this reason-

ing, we abstract the intra-thread semantics, and parameterize our definition of an

axiomatic execution accordingly.

Intra-Thread Semantics.

The intra-thread semantics is abstracted in our formulation via a labeled transition

system. Let State
intra

denote the intra-thread state of a thread; its specific structure

is not interesting for the purposes of the axiomatic definition. A labeled transition

between intra-thread states is captured by the relation,
.

�⇣✓ State
intra

⇥ Label
intra

⇥

State
intra

, given to each thread t 2 T. The transition labels are in the set Label
intra

=

(A \ A
r

) [(A
r

⇥ V) [{⌧}. Thus, a thread can either take a global action step (e.g.,

creating another thread, performing a send action, ending a thread, etc.), execute a

silent thread-local computation (denoted by label ⌧), or execute a receive action that

receives the value associated with the label. The requirements on the intra-thread

semantics are:

•
.

�⇣ can only relate states belonging to the same thread.

• there is an initial state Ready: no transition leads to it, and a thread t steps

from it if and only if it emits a begin action b
t

.

• there is a final state Done: a thread leads to it if and only if it emits an end

action e
t

and no transition leads from it.

Definition 4.2.5 (Intra-trace) Let tr = ↵ be a sequence of actions in set A, and

!
co

be a communication order on A. Given a thread t 2 T in a program P, tr is

a valid intra-trace for t if there exists a set of states {�0, �1, . . .}, and a set of labels

l = {l0, l1, . . .} such that:

• for all ↵
i

2 ↵, T (a) = t

83

• �0 is the initial state Ready

• for all 0  i, �
i

li�⇣ �
i+1

• the projection � of l to non-silent labels is such that �
i

= (↵
i

, V (�
i

)) if ↵
i

2 A
r

and ↵
i

!
co

�
i

, or �
i

= ↵
i

otherwise.

We write InTrP[t] set of such pairs (tr,!
co

) for P.

Definition 4.2.6 (Well-formed Execution) An execution E := hP,A,!
po

,!
co

i

is well-formed if the following conditions hold:

1. Intra-thread consistency: for all threads t 2 T, ([!
po

]
t

,!
co

) 2 InTrP[t]

2. Happens-before correctness: The happens-before relation !
hb

constructed from

E has no cycles.

3. Observable correctness: Given ↵ 2 A
o

and � 2 A
c

if � !
hb

↵ then there exists

�0 2 A
c

s.t. � !
co

�0.

For an axiomatic execution E := hP,A,!
po

,!
co

i to be well-formed, the actions,

program order and communication order relations must have been obtained from

a valid execution of the program P as given by the intra-thread semantics defined

above (1). As we noted in our discussion of Figure 4.6, no valid execution of a CML

program may involve a cyclic dependence between actions; such dependencies can

only occur because of speculatively performing what is presumed to be a synchronous

send operation (2).

Finally, although the relaxed execution might speculate, i.e., have a send operation

transparently execute asynchronously, the observable behavior of such an execution

should mirror some valid non-speculative execution, i.e., an execution in which the

send action was, in fact, performed synchronously. We limit the scope of speculative

actions by requiring that they complete (i.e., have a matching recipient) before an

observable action is performed (3). Conversely, this allows communication actions

84

not preceding an observable action to be speculated upon. Concretely, a send not

preceding an externally visible action can be discharged asynchronously. The match

and validity of the send needs to be checked only before discharging the next such

action. This is the key idea behind our speculative execution framework.

Safety.

An axiomatic execution represents a set of interleavings, each interleaving defining a

specific total order that is consistent with the partial order defined by the execution1.

The well-formedness conditions of an axiomatic execution implies that any observable

behavior of an interleaving induced from it must correspond to a synchronous CML

execution. The following two definitions formalize this intuition.

Definition 4.2.7 (Observable dependencies) In a well-formed axiomatic execu-

tion E := hP,A,!
po

,!
co

i, the observable dependencies A
od

is the set of actions that

precedes (under !
hb

) some observable action, i.e., A
od

= {↵ | ↵ 2 A, � 2 A
o

,↵!
hb

�}.

Definition 4.2.8 (Cml Execution) Given a well-formed axiomatic execution E :=

hP,A,!
po

,!
co

i, the pair (E,!
to

) is said to be in Cml(P) if !
to

is a total order on

A
od

and !
to

is consistent with !
hb

.

In the above definition, an interleaving represented by!
to

is only possible since the

axiomatic execution is well-formed, and thereby does not contain a happens-before

cycle.

Lemma 4.2.1 If a total order!
to

is consistent with!
hb

, then!
hb

does not contain

a cycle involving actions in A
od

.

1Two ordering relations P and Q are said to be consistent if 8x, y,¬(xPy ^ yQx).

85

Next, we show that a well-formed axiomatic execution respects the safety property

of a CML program executed non-speculatively. When a CML program evaluates non-

speculatively, a thread performing a communication action is blocked until a matching

communication action is available. Hence, if (hP,A,!
po

,!
co

i,!
to

) 2 Cml(P), and a

communication action ↵ on a thread t is followed by an action � on the same thread,

then it must be the case that there is a matching action ↵ !
co

↵0 that happened

before � in !
to

. This is captured in the following theorem.

Theorem 4.2.1 Given a CML execution (E,!
to

) 2 Cml(P), 8↵, � such that ↵ 2

A
c

, T (↵) = T (�),↵!
to

�, there exists an action ↵!
co

↵0 such that ↵0 !
to

�.

Proof Let E := hP,A,!
po

,!
co

i. First, we show that ↵0 2 A. Since ↵ !
to

�,

↵ 2 A
od

, by Definition 4.2.8. By Definition 4.2.7, there exists some � 2 A
o

such that

↵ !
hb

�. Since E is well-formed and ↵ !
hb

�, by Definition 4.2.6, there exists an

↵0 2 A such that ↵!
co

↵0.

Next, we show that ↵0 2 A
od

. By Definition 4.2.3, ↵0 !
co

↵!
hb

� implies ↵0 !
hb

�.

Hence, ↵0 2 A
od

, and is related by !
to

. Finally, since T (↵) = T (�) and ↵ !
to

�,

↵ !
po

�. And, ↵0 !
co

↵ !
po

� implies ↵0 !
hb

�. By Lemma 4.2.1 and Defini-

tion 4.2.8, ↵0 !
to

�.

4.3 Operational Semantics

The axiomatic semantics provides a declarative way of reasoning about executions.

However, it is unclear how to use this semantics to execute a CML program that

performs the sends asynchronously while ensuring that the observable behaviors cor-

respond to a synchronous execution of the program; that is, how we can we ensure

that implementations produce relaxed executions that always conform to a CML ex-

ecution in the sense of Definition 4.2.8? In this section, we present an operational

definition of a relaxed execution as a labeled transition system that allows us to

express the constraints necessary to prevent non-CML observable behaviors.

86

e 2 Exp := v | x | e e | ch() | print(e) | spawn(e)

| send(e, e) | recv(e) | join(e)

v 2 Val := unit | c | �x.e | t

E := • | E e | v E | print(E)

| spawn(E) | send(E, e) | send(c, E)

| recv(E) | join(E)

c 2 ChannelId

↵,� 2 Action := A | (↵,�) | ⌧

t

| ✏(P,tr)
� 2 SendSoup := A

s

L 2 LocalState := e | Ready
op

(e) | Done
op

t 2 ThreadId

T 2 Thread := (t, L)

T 2 ThreadSoup := ; | T k T

hT , �i 2 ProgState

Figure 4.7. Syntax and states for the relaxed execution semantics of
a subset of CML.

The operational machine, Rel, takes as its input an operational execution, which

is composed of a program, and a trace tr of operational actions. It evaluates the

program according to the trace, by manipulating a send soup, an unordered set into

which pending sends are added asynchronously. Informally, we can think of the trace

as a history or log of actions we wish to perform; the machine either accepts the trace,

if executing the actions found in the trace using the reduction rules leads to a CML

execution (as defined by Definition 4.2.8), or gets stuck otherwise.

Definition 4.3.1 (Operational Action) An operational action ↵ 2 A
op

is either:

• an action in A \ A
r

.

87

h(t, E[(�x.e)v]) k T , �i ⌧t�! h(t, E[e[v/x]]) k T , �i [App]

c fresh

h(t, E[ch()]) k T , �i ⌧t�! h(t, E[c]) k T , �i
[Chan]

h(t,Ready
op

(e)) k T , �i bt�! h(t, e) k T , �i [Begin]

h(t, v) k T , �i et�! h(t,Done
op

) k T , �i [End]

h(t, E[spawn e]) k T , �i
f

i
t t

0
��! h(t, E[t0]) k (t0,Ready

op

(e)) k T , �i [Spawn]

h(t, E[join t

0]) k (t0,Done
op

) k T , �i
j

i
tt

0
��! h(t, E[unit]) k (t0,Done

op

) k T , �i [Join]

h(t, E[print v]) k T , �i
p

i
tv��! h(t, E[unit]) k T , �i [Print]

↵ = s

i

t

c, v

h(t, E[send(c, v)]) k T , �i ↵�! h(t, E[unit]) k T , � [{↵}i
[Send]

↵ = r

i

t

c � = (sj
t

0c, v) 2 �

h(t, E[recv c]) k T , �i (↵,�)���! h(t, E[v]) k T , � \ �i
[Recv]

WF((P, tr))

hT , �i
✏(P,tr)���! hT , �i

[Commit]

Figure 4.8. A relaxed execution operational semantics for a subset of CML.

• a pair in A
r

⇥A
s

where each receive action is paired up with the matching send

action on the same channel,

88

• a silent action ⌧
t

indexed by a thread identifier that indicates the evaluation of

a computation step (e.g., a function call).

• a commit action ✏(P,tr) that checks whether the machine state is well-formed in

the sense of Definition 4.2.6. Intuitively, a well-formed machine state is one

that could have been reached if all send operations were executed synchronously.

Definition 4.3.2 (Operational Execution) An operational execution is a pair

(P, tr), where P is a program and tr 2 A
op

, and there are no duplicates in tr.

The operational semantics of the machine used to interpret the trace is given in

Figure 4.7 and Figure 4.8. The program state is composed of a tuple with T repre-

senting the pool of concurrently executing threads and a collection of unmatched send

actions �. Each thread in T is a tuple with a thread id and a local state. This state

is either an initial state Ready
op

(e) containing the expression that will be evaluated

by this thread, or a completed state Done
op

, or the expression being evaluated by this

thread. Each state transition is a�xed with an action drawn from the trace that is

used by the machine to determine which rule to apply, as we describe below.

The source language contains function abstraction, application, first-class channels,

a thread creation operation (spawn), message-passing primitives on these channels,

and a print statement to capture an observable action. Reductions are labeled with

operational actions. Rules App and Chan represent silent (thread-local) actions.

The Spawn rule creates a new thread with the initial local state Ready
op

(e). Rule

Begin initiates execution of the thread from its initial state. A thread moves to the

Done
op

local state once the expression being evaluated is reduced to a value (Rule

End). The completed thread remains in the thread pool so that other threads may

also join on it. A thread can wait on another thread’s completion by joining on its

thread identifier. The calling thread is paused until the joined thread moves to the

final local state Done
op

(Rule Join).

The Send rule adds the associated send action ↵ into �, the collection of pending

send actions, and allows execution to proceed. Thus, this rule captures asynchronous

89

behavior. The transition defined by the Recv has a label defined as a pair, consisting

of the receive action ↵ and an unmatched send action �, which belongs to the send

pool. The receiver thread consumes the value contained in the send action, and

removes the action from �. An observable action (rule Print) is evaluated only

if the trace emits a print action; this rule exists primarily to allow us to reason

about equivalence of observable behaviors as we describe below. Finally, we define

a commit rule (rule Commit) that checks whether the interleaving generated thus

far corresponds to a sensible CML execution, i.e., whether the interleaving exhibits a

behavior that could have been observed if all send operations executed thus far were

evaluated synchronously. It uses an operator WF defined in definition 4.3.6.

Definition 4.3.3 (Rel execution) Given a trace tr = �.✏(P,�) terminating in a

commit action, an operational execution (P, tr) is a relaxed execution (Rel(P, tr))

if there exists an ordered sequence � 2 ProgState satisfying the following:

• �0 = h(t0,Ready
op

(P)), ;i for some unique thread identifier t0.

• for all ↵
i

2 tr , there exists �
i

, �
i+1 2 � such that �

i

↵i�! �
i+1.

Clearly, not every operational execution (P, tr) is a relaxed execution. Consider the

following program P:

1 fun main () =

2 let val c = channel ()

3 in print (send(c,v); recv c)

4 end

with trace

tr = b
t

. si
t

c, v . (rj
t

c; si
t

c, v) . pk
t

v . e
t

where silent transitions have been elided. When su�xed with a commit action ✏(P,tr),

the resulting behavior would not be accepted by the semantics, since no synchronous

90

execution of the program would result in a match of the send operation with a recv

action on the same thread. The prohibition of such behavior is encapsulated within

the definition of well-formedness found in the antecedent of the Commit rule that

we formalize below.

We reason about sensible (well-formed) relaxed executions by transforming them

into an equivalent axiomatic one. A well-formed Rel execution is one whose corre-

sponding axiomatic execution is well-formed. Since an axiomatic semantics is param-

eterized by an intra-thread semantics, we first provide a translation that produces

this semantics given the transitions defined by the operational semantics.

Definition 4.3.4 (Intra-thread semantics) Given a program P, let

State
intra

:= Ready | Done | e

where e 2 P. For each labeled transition of the form h(t, s)kT ,�i ↵�! h(t, s0)kT 0
,�0i,

where ↵ 6= ✏(P,tr), we define �
�

�⇣ �0, where �, �0 2 State
intra

such that:

• if s = Ready
op

(e), then � = Ready, otherwise, � = s.

• if s0 = Done
op

, then �0 = Done, otherwise �0 = s0

• if ↵ = ((ri
t

c), (sj
t

0c, v)) then � = (ri
t

c; v)

• if ↵ = ⌧
t

then � = ⌧

• otherwise, ↵ = �

Definition 4.3.5 (T op
ax operator) Let E

o

= (P, tr) be an operational execution. T op
ax

is defined as T op
ax (Eo

) = hP,A,!
po

,!
co

i parameterized with the intra-thread semantics

�⇣ (Definition 4.3.4), where

• A is a set of non-silent, non-commit actions in tr.

• for all ↵, � 2 A, ↵!
po

� i↵ T (↵) = T (�) and ↵ precedes � in tr.

91

• for all pairs (a, b) such that a = ri
t

c and b = sj
t

0c, v, a!
co

b ^ b!
co

a

For perspicuity, in the definition of A and !
po

above, a receive operational action

(a, b) 2 A
op

is simply treated as a 2 A
r

.

Definition 4.3.6 (Well-formed Rel execution) Let E
o

= (P, tr) 2 Rel(P) be an

operational execution. If the axiomatic execution E
ax

= T op
ax (Eo

) is well-formed, then

E
o

is well-formed. This is written as WF(E
o

).

Theorem 4.3.1 If E
o

= (P, tr) and WF(E
o

), then (T op
ax (Eo

),!
to

) 2 Cml(P).

Proof We provide a witness for T op
ax (Eo

) via a generative operator Gop
ax (Defini-

tion 4.3.7) such that Gop
ax(Eo

) is an axiomatic execution (Theorem 4.3.2) and Gop
ax(Eo

) =

T op
ax (Eo

) (Theorem 4.3.3). We then prove that if E
o

is well-formed, then Gop
ax(Eo

) is

well-formed (Lemma 4.3.1). Since Gop
ax(Eo

) is well-formed, by definition 4.2.8 and

theorem 4.3.3, (T op
ax (Eo

),!
to

) 2 Cml(P).

Definition 4.3.7 (Gop
ax operator) Let E

op

= (P, tr) 2 Rel(P) be a well-formed op-

erational execution. Gop
ax(Eop

) is an axiomatic execution parameterized with the intra-

thread semantics �⇣ (definition 4.3.4) defined as follows:

• Gop
ax(P, ;) = hP, ;, ;, ;i

• If Gop
ax(P,↵) = hP,A,!po

,!
co

i , then E
ax

= Gop
ax(P,↵.�) defined as follows:

1. if � = ⌧
t

or � = ✏(P,↵), then E
ax

= hP,A,!
po

,!
co

i

2. if � /2 (A
r

⇥A
s

), then E
ax

= hP,A[{�},!
po

[{� !
po

� | � 2 A, T (�) =

T (�)},!
co

i

3. if � = (�, ⇣), then E
ax

= hP,A [{�},!
po

[{⌘ !
po

� | ⌘ 2 A, T (⌘) =

T (�)},!
co

[{� !
co

⇣, ⇣ !
co

�}i

Theorem 4.3.2 Let E
op

= (P, tr) 2 Rel(P) be an operational execution. Then,

Gop
ax(Eop

) is an axiomatic execution.

92

Proof We show that the quadruple generated by the Gop
ax operator satisfies the con-

ditions necessary for an axiomatic execution (Definition 4.2.1). In particular, (1) A

is composed of actions from A, (2) !
po

is a disjoint total order on actions belonging

to each thread. (3) !
co

is a symmetric relation and relates actions belonging to the

same channel. We show these conditions hold by induction on |tr |.

The base case is if E
op

= (P, ;) 2 Rel(P), then Gop
ax(Eop

) is an axiomatic execution.

If the trace is empty, then Gop
ax(Eop

) = hP,A,!
po

,!
co

i. Here, P is a valid program.

A, !
po

, and !
co

are empty. Hence, the conditions defined under Definition 4.2.1

trivially hold.

Assume Gop
ax(P, a) is an axiomatic execution. We show that Gop

ax(P, a.b) is an axiomatic

execution, where b 2 A
op

. If b is a silent action or a commit action (Definition 4.3.7.1),

then Gop
ax(P, a.b) = Gop

ax(P, a).

Let b /2 (A
r

⇥ A
s

). Then b 2 A (Definition 4.3.1). In this case (Definition 4.3.7.2),

Gop
ax operator adds b to A and adds !

po

edges from all actions ↵ 2 A such that

T (↵) = T (b) to b (preserving the total order). !
co

is not modified. By the induction

hypothesis, Gop
ax(P, a.b) is an axiomatic execution.

Let b = (↵, �). ↵ 2 A
r

, � 2 A
s

(Definition 4.3.1). In this case, by Definition 4.3.7.3,

Gop
ax adds ↵ to A, and introduces !

po

edges from all actions in A that belong to the

thread T (↵) to ↵ (preserving the total order). !
co

is extended with {↵!
co

�, � !
co

↵}. By the induction hypothesis, !
co

is a symmetric relation. By Definition 4.3.1, ↵

and � operate on the same channel. Thus, Gop
ax(P, a.b) is an axiomatic execution.

Theorem 4.3.3 Given E
o

= (P, tr) 2 Rel(P), T op
ax (Eo

) = Gop
ax(Eo

).

Proof By theorem 4.3.2, Gop
ax(Eo

) is an axiomatic execution. We need to show that

each component in the axiomatic execution defined by T op
ax and generated by Gop

ax are

the same. Both operators use the same program P and set of actions A from E
o

.

T op
ax defines a !

po

relation between actions ↵ and � i↵ T (↵) = T (�) and ↵ precedes

� in the trace (Definition 4.3.5.1). Assume that the operational trace is tr = ↵.�.

93

For any � such that T (�) = T (�), � 2 ↵, � belongs to the action set A of Gop
ax(P,↵).

Definition 4.3.7.2 and 4.3.7.3 add a !
po

edge from such a � to �.

Definition 4.3.5.3 defines !
co

such that for all pairs (↵, �) in tr, ↵ !
co

� and

� !
co

↵. Gop
ax extends !

co

in a similar fashion (Definition 4.3.7.3).

Lemma 4.3.1 Let E
o

= (P, tr) 2 Rel(P). If E
o

is well-formed, then Gop
ax(Eo

) is well-

formed.

Proof Since E
o

is well-formed, T op
ax (Eo

) is a well-formed axiomatic execution (by

Definition 4.3.6). By Theorem 4.3.3, T op
ax (Eo

) = Gop
ax(Eo

). Hence, Gop
ax(Eo

) is a well-

formed axiomatic execution.

4.4 Implementation

The axiomatic semantics provides a declarative way of reasoning about correct CML

executions. In particular, a well-formed execution does not have a happens-before

cycle. However, in practice, a speculative execution framework that discharges syn-

chronous sends asynchronously (speculatively), needs to track the relations necessary

to perform the integrity check on-the-fly, detect and remediate any execution that

has a happens-before cycle.

To do so, we construct a dependence graph that captures the dependencies described

by an axiomatic execution, and ensure the graph has no cycles. If a cycle is detected,

we rollback the e↵ects induced by the o↵ending speculative action, and re-execute it

as a normal synchronous operation. By definition, this synchronous re-execution is

bound to be correct. The context of our investigation is a distributed implementation

of CML called �CML (RelaXed CML) built on top of the MultiMLton SML compiler

and runtime [39]. We have extended MultiMLton with the infrastructure necessary

for distributed execution.

94

Cloud

ZeroMQ Pub/Sub

Serialization Support

 Instance
User-level

threads
Communication

Manager
Cycle

Detector

would result in a match of the send operation with a recv ac-
tion on the same thread. The prohibition of such behavior is en-
capsulated within the definition of well-formedness found in the
antecedent of the COMMIT rule that we formalize below.

We reason about sensible (well-formed) relaxed executions by
transforming them into an equivalent axiomatic one. A well-formed
REL execution is one whose corresponding axiomatic execution is
well-formed. Since an axiomatic semantics is parameterized by an
intra-thread semantics, we first provide a translation that produces
this semantics given the transitions defined by the operational se-
mantics.

Definition 14 (Intra-thread semantics). Given a program P, let

State
intra

:= READY | DONE | e

where e � P. For each labeled transition of the form �(t, s)�T , �� ���
�(t, s0)�T 0

, �0�, where � �= �(P,tr), we define �
�

�⇣ �0, where
�, �0 � State

intra

such that:

• if s = READYop(e), then � = READY, otherwise, � = s.
• if s0 = DONEop, then �0 = DONE, otherwise �0 = s0

• if � = ((ri
tc), (sj

t�c, v)) then � = (ri
tc; v)

• if � = �t then � = �
• otherwise, � = �

Definition 15 (T OP
AX operator). Let Eo = (P, tr) be an operational

execution. T OP
AX is defined as T OP

AX (Eo) = �P, A, �po, M� parame-
terized with the intra-thread semantics �⇣ (Definition 14), where

• A is a set of non-silent, non-commit actions in tr.
• for all �, � � A, � �po � iff T (�) = T (�) and � precedes �

in tr.
• for all pairs ((ri

tc), (sj
t�c, v)) in tr, M(ri

tc) = sj
t�c, v and

M(sj
t�c, v) = ri

tc.

For perspicuity, in the definition of A and �po above, a receive
operational action (a, b) � Aop is simply treated as a � Ar .

Definition 16 (Well-formed REL execution). Let Eo = (P, tr) �
REL(P) be an operational execution. If the axiomatic execution
Eax = T OP

AX (Eo) is well-formed, then Eo is well-formed.

Theorem 17. If Eo = (P, tr) and WF(Eo), then
(T OP

AX (Eo), �to) � CML(P).

Proof Sketch. Details are provided in the supplementary material.

5. Implementation
The operational semantics defined in the previous section checks
whether an interleaving (expressed as a trace) conforms to a CML
execution. By translating the trace, which represents a history of
actions performed by the program, into an axiomatic execution that
subsumes the behavior of that trace, we can check if that execution
is well-formed, i.e., there are no cycles in the constructed happens-
before relation. However, in practice it is necessary to perform this
check on-the-fly; in other words, we need to build the relations
necessary to check the integrity of the interleaving as the program
executes. To do so, we construct a dependence graph that captures
the dependencies described by an axiomatic execution, and ensure
the graph has no cycles. If a cycle is detected, we rollback the
effects induced by the offending speculative action, and re-execute
it as a normal synchronous operation.

The context of our investigation is a distributed implementation
of CML called �CML(RELAXED CML)3 built on top of the Mul-
tiMLton SML compiler and runtime [16]. Before describing how

3 http://multimlton.cs.purdue.edu/mML/rx-cml.html

Cloud

ZeroMQ Pub/Sub

Serialization Support

C-Rex Instance
User-level

threads
Communication

Manager
Cycle

Detector

Figure 6: �CML application stack.

we build, maintain, and check the distributed dependence graph, we
first describe some of the challenges, several of which have overlap-
ping concerns, in transplanting CML to a distributed environment:

• Absence of coherent shared memory: In a shared-memory
environment, CML channels can be implemented as a lock-
protected queues. This enables communicating threads to atom-
ically poll the channels for availability of a matching commu-
nication, and block on the channel if none is available. In a dis-
tributed setting, it is necessary to reason about multiple repli-
cated, yet globally consistent, versions of CML channels.

• Serialization: CML channels allow typesafe communication
of polymorphic values. Since CML imposes no restriction on
these values, which may be arbitrarily complex data structures,
a serialization mechanism that can communicate these values
across different machines is necessary.

• Transport layer: CML channels allow multiple producers
and consumers to operate over the same channel. Supporting
this functionality in a distributed setting requires an intelligent
transport layer that supports efficient broadcast as a primitive
operation.

• Speculative Execution: Central to �CML’s design is the specu-
lative execution of message sends that allows a synchronous
send to be transparently executed asynchronously. Because
speculations can be wrong, the implementation must provide
a low-cost mechanism to save application state, detect errors,
and rollback to a globally consistent state without requiring a
global barrier for error detection or rollback.
The ability to construct globally consistent checkpoints can also
effectively serve as a vehicle to handle process failures.

A schematic diagram of the �CML application stack is presented in
Figure 6. A �CML application consists of multiple instances, each
of which is the same MLton program. These instances might run
on the same node, on different nodes within the same datacenter,
or on nodes found in different data centers. Each instance has a
scheduler which preemptively multiplexes execution of user-level
CML threads.

5.1 System Architecture
5.1.1 Transport Layer
Communication between instances is performed through the Ze-
roMQ messaging library [28]. ZeroMQ is not a true message bro-
ker unlike other systems such as RabbitMQ [19], etc., and transmits
messages directly between processes that use ZeroMQ library with-
out the involvement of a broker process. In addition to providing
reliable and efficient point-to-point communication, ZeroMQ also
provides the ability to construct higher-level multicast patterns. In
particular, we leverage ZeroMQ’s publish/subscribe support to im-
plement CML channel communication.

7 2013/4/2

Figure 4.9. �CML application stack.

4.4.1 System Architecture

A schematic diagram of the �CML application stack is presented in Figure 4.9. An

�CML application consists of multiple instances, each of which runs the same Mul-

tiMLton executable. These instances might run on the same node, on di↵erent nodes

within the same datacenter, or on nodes found in di↵erent data centers. Each in-

stance has a scheduler which preemptively multiplexes execution of user-level CML

threads over multiple cores. We use the ZeroMQ messaging library [83] as the trans-

port layer over which the �CML channel communication is implemented. In addition to

providing reliable and e�cient point-to-point communication, ZeroMQ also provides

the ability to construct higher-level multicast patterns. In particular, we leverage

ZeroMQ’s publish/subscribe support to implement CML’s first-class channel based

communication.

The fact that every instance in an �CML application runs the same program, in

addition to the property that CML channels are strongly-typed, allows us to provide

typesafe serialization of immutable values as well as function closures. Serializing

95

mutable references is disallowed, and an exception is raised if the value being serialized

refers to a mutable object. To safely refer to the same channel object across multiple

instances, channel creation is parameterized with an identity string. Channels created

with the same identity string refer to the same channel object across all instances in

the �CML application. Channels are first-class citizens and can be sent as messages

over other channels to construct complex communication protocols.

4.4.2 Communication Manager

Each �CML instance runs a single communication manager thread, which main-

tains globally consistent replica of the CML channels utilized by its constituent CML

threads. The protocol for a single CML communication is illustrated in Figure 4.10.

Since CML channel might potentially be shared among multiple threads across dif-

ferent instances, communication matches are determined dynamically. In general, it

is not possible to determine the matching thread and its instance while initiating

the communication action. Hence, whenever a thread intends to send or receive a

value on the channel, its intention (along with a value in the case of a send opera-

tion), is broadcast to every other �CML instance. Importantly, the application thread

performing the send does not block and speculatively continues execution.

Subsequently, an application thread that performs a receive on this channel con-

sumes the send action, sends a join message to the sender thread’s instance, and

proceeds immediately. In particular, receiver thread does not block to determine if

the send action was concurrently consumed by a thread in another instance. This

corresponds to speculating on the communication match, which will succeed in the ab-

sence of concurrent receives for the same send action. On receiving the join message,

a match message is broadcast to every instance, sealing the match. Those instances

that speculatively matched with the send, except the one indicated in the match

message, treat their receive action as a mis-speculation. Other instances that have

96

send (c,v)

recv (c)join

Instance 1 Instance 2 Instance 3

broadcast
match

c [v] c [v]

c [v]c []

c [v]

c []

broadcast
send

c []c [] c []

Figure 4.10. Communication manager behavior during a send and its
matching receive.

not matched with this particular send remove the send action from the corresponding

local channel replica.

4.4.3 Speculative Execution

Aborting a mis-speculation requires restoring the computation to a previously known

consistent state. Achieving this entails rolling back all threads that communicated

with the o↵ending action, transitively. In this regard, stabilizers [84] provide a suit-

able abstraction for restoring consistent checkpoints in message-passing programs. A

stabilizer builds a dependence graph that takes into account intra-thread program

order and inter-thread communication dependence. However, the implementation

reported in [84] assumes a centralized structure, and a global barrier that stops all

execution while a checkpoint is restored; neither condition is reasonable in a high-

latency, distributed environment.

97

Replicated Dependence Graph.

Instead, �CML exploits the broadcast nature of the match message (Section 4.4.2)

to incrementally construct a globally-consistent replica of the dependence graph at

every instance. The nodes in the dependence graph correspond to the actions in the

axiomatic definition. Thread spawn and join actions are broadcast to allow other

instances to add necessary nodes and edges. Maintaining a replica of the depen-

dence graph at each replica allows ill-formed executions to be detected locally and

remediated.

Well-formedness Check.

To ensure observable behavior of an �CML program to its synchronous equivalent,

the compiler automatically inserts a well-formedness check before observable actions

in the program. �CML treats system calls, access to mutable references, and foreign

function calls as observable actions. On reaching a well-formedness check, a cycle-

detector is invoked which checks for cycles in the dependence graph leading up to this

point. If the execution is well-formed (no cycles in the dependence graph), then the

observable action is performed. Since there is no need to check for well-formedness

of this fragment again, the verified dependence graph fragment is garbage collected

on all instances.

Checkpoint.

After a well-formedness check, the state of the current thread is consistent. Hence,

right before the next (speculative) communication action, we checkpoint the current

thread by saving its current continuation. This ensures that the observable actions

performed after the well-formedness check are not re-executed if the thread happens

to rollback. In addition, this checkpointing scheme allows multiple observable actions

to be performed between a well-formedness check and the subsequent checkpoint.

98

Unlike Stabilizers [84], every thread in an �CML application has exactly one saved

checkpoint continuation during the execution. Moreover, �CML checkpointing is un-

coordinated [85], and does not require that all the threads that transitively interacted

capture their checkpoint together, which would be unreasonable in geo-distributed

application.

Remediation.

If the well-formedness check does report a cycle, then all threads that have transi-

tively observed the mis-speculation are rolled back. The protocol roughly follows the

same structure described in [84], but is asynchronous and does not involve a global

barrier. The recovery process is a combination of checkpoint (saved continuation)

and log-based (dependence graph) rollback and recovery [85]. Every mis-speculated

thread is eventually restored to a consistent state by replacing its current continuation

with its saved continuation, which was captured in a consistent state.

Recall that �CML automatically captures a checkpoint, and only stores a single check-

point per thread. As a result, rolling back to a checkpoint might entail re-executing,

in addition to mis-speculated communication actions, correct speculative communi-

cations as well (i.e., communication actions that are not reachable from a cycle in

the dependence graph). Thus, after the saved continuation is restored, correct spec-

ulative actions are replayed from the dependence graph, while mis-speculations are

discharged non-speculatively (i.e., synchronously). This strategy ensures progress.

Finally, we leverage ZeroMQ’s guarantee on FIFO ordered delivery of messages to

ensure that messages in-flight during the remediation process are properly accounted

for.

99

4.4.4 Handling Full CML

Our discussion so far has been limited to primitive send and recv operations. �CML

also supports base events, wrap, guard, and choice combinators. The wrap and

guard combinators construct a complex event from a simpler event by su�xing and

prefixing computations, resp. Evaluation of such a complex event is e↵ectively the

same as performing a sequence of actions encapsulated by the event. From the per-

spective of reasoning about well-formed executions, wrap and guard are purely syn-

tactic additions.

Choices are more intriguing. The choose combinator operates over a list of events,

which when discharged, non-deterministically picks one of the enabled events. If

none of the choices are already enabled, one could imagine speculatively discharg-

ing every event in a choice, picking one of the enabled events, terminating other

events and rolling back the appropriate threads. However, in practice, such a solu-

tion would lead to large number of mis-speculations. Hence, �CML discharges choices

non-speculatively. In order to avoid spurious invocations, negative acknowledgment

events (withNack) are enabled only after the selection to which they belong is part

of a successful well-formedness check.

4.4.5 Extensions

Our presentation so far has been restricted to speculating only on synchronous sends.

Speculation on receives is, in general, not possible since the continuation might de-

pend on the value received. However, if the receive is on a unit channel, speculation

has a sensible interpretation. The well-formedness check only needs to ensure that

the receive action has been paired up, along with the usual well-formedness checks.

Speculating on these kinds of receive actions, which essentially serve as synchroniza-

tion barriers, is useful, especially during a broadcast operation of the kind described

in Figure 4.3 for receiving acknowledgments.

100

4.5 Case Studies

4.5.1 Online Transaction Processing

Our first case study considers a CML implementation of an online transaction pro-

cessing (OLTP) system. Resources are modeled as actors that communicate to clients

via message-passing, each protected by a lock server. A transaction can span mul-

tiple resources, and is implemented pessimistically. Hence, a transaction must hold

all relevant locks before starting its computation. We can use our relaxed execution

semantics to allow transactions to e↵ectively execute optimistically, identifying and

remediating conflicting transactions post facto; the key idea is to model conflicting

transactions as an ill-formed execution. We implement each lock server as a single

CML thread, whose kernel is:

fun lockServer (lockChan: unit chan) (unlockChan: unit chan) =

(recv lockChan;

recv unlockChan;

lockServer lockChan unlockChan)

In order to obtain a lock, a unit value is synchronously sent to the lockChan . Since

the lock server moves to a state where the only operation it can perform is receive a

value on the unlockChan , we have the guarantee that no two threads can obtain the

lock concurrently. After the transaction, a unit value is sent on the unlockChan to

release the lock. It is up to the application to ensure that the lock servers are correctly

used, and when obtaining multiple locks, locks are sorted to avoid deadlocks.

In the absence of contention, the involvement of the lock server adds unnecessary

overhead. By communicating with lockChan asynchronously, we can allow the client

(the thread performing the transaction), to concurrently proceed with obtaining other

locks or executing the transaction. Of course, synchronous communication on the

lockChan ensures atomicity of a transaction performed on the resource protected by

the lock. However, these guarantees are lost in the presence of asynchrony.

101

Client 1

lock

B

A

unlock

Client 2

lock
C

unlock

Lock
Server

L
U

U
L

Resource

A
C

B

S
S

Figure 4.11. A possible serializability violation that arises because of
asynchronous (speculative) communication with the lock server.

Consider the example presented in Figure 4.11, which shows a serializability vi-

olation that arises because communication with the lock server takes place asyn-

chronously, e↵ectively introducing speculation. Two clients transactionally perform

operations A,B and C, resp. on a shared resource. This resource is protected by the

lock server. Happens-before edges are represented as directed edges. During spec-

ulative execution, clients send lock requests speculatively, labeled S on the edges,

allowing them to continue with their transactions without waiting for the lock server

to respond.

In this figure, serializability violations are captured as a cycle in the dependence

graph, represented by the dotted edges. �CML rejects such executions, causing the

transaction to abort, and be re-executed non-speculatively.

Results

For our evaluation, we implemented a distributed version of this program (vacation)

taken from the STAMP benchmark suite [86]. To adapt the benchmark for a dis-

102

0 10 20 30 40 50
Clients

24

25

26

27

28

29

210

T
im

e
 (

S
e
cs

)

Rx

Sync

Figure 4.12. Performance comparison on distributed vacation
(OLTP) benchmark. Lower is better.

tributed environment, we partitioned resources into 16 shards, each protected by a

lock server. The workload was setup for moderate contention, and each transaction

involves 10 operations. The shards were spread across 16 EC2 M1 large instances

within the same EC2 availability zone. The clients were instantiated from all of the

di↵erent regions on M1 small instances to simulate the latencies involved in a real

web-application. A benchmark run involved 10K transactions, spread equally across

all of the available clients.

The performance results are presented in the Figure 4.12. The number of clients

concurrently issuing transaction requests was increased from 1 to 48. �CML is the

speculative version, while Sync is the synchronous, non-speculative variant. The 1-

client Sync version took 1220 seconds to complete. For comparison, we extended

the original C version with a similar shared distribution structure. This run was

1.3⇥ faster than the CML baseline. The benchmark execution under �CML scales

much better than the Sync version due to optimistic transactions. With 48 clients,

�CML version was 5.8⇥ faster than then Sync version. Under �CML, the number of

transaction conflicts does increase with the number of clients. With 48 clients, 9%

of the transactions executed under �CML were tagged as conflicting and re-executed

non-speculatively. This does not, however, adversely a↵ect scalability.

103

4.5.2 Collaborative Editing

Our next case study is a real-time, decentralized collaborative editing tool. Typi-

cally, commercial o↵erings such as Google Docs, EtherPad, etc., utilize a centralized

server to coordinate between the authors. Not only does the server eventually be-

come a bottleneck, but service providers also need to store a copy of the document,

along with other personal information, which is undesirable. We consider a fully de-

centralized solution, in which authors work on a local copy of the shared document

for responsiveness, with remote updates merged incrementally. Although replicas are

allowed to diverge, they are expected to converge eventually. This convergence is

achieved through operational transformation [87]. Dealing with operational transfor-

mation in the absence of a centralized server is tricky [88], and commercial collabora-

tive editing services like Google Wave impose additional restrictions with respect to

the frequency of remote updates [89] in order to build a tractable implementation.

We simplify the design by performing causal atomic broadcast when sending updates

to the replicas. Causal atomic broadcast ensures that the updates are applied on all

replicas in the same global order, providing a semblance of a single centralized server.

Implemented näıvely, i.e., performing the broadcast synchronously, however, is an

expensive operation, requiring coordination among all replicas for every broadcast

operation compromising responsiveness. Our relaxed execution model overcomes this

ine�ciency.

The key advantage of our system is that the causal atomic broadcast is performed

speculatively, allowing client threads to remain responsive. Each client participating

in the collaborative editing session runs a server daemon, whose implementation is

given in Figure 4.13. The server daemon fetches updates from the user-interface

thread (client) over the channel lc , and coordinates with other server daemons at

other remote locations over the channel rc . rIn represents the list of incoming

remote operations that have not yet been merged with the local document replica.

lOut represents the list of local operations yet to be broadcast.

104

1 (* lc: client chan , sc: server chan , tc: timeOut chan *)

2 fun serverDaemon id rIn lOut =

3 let

4 (* Updates from other server daemons *)

5 val remoteRecv = wrap (brecvEvt sc , fn rOps ’ =>

6 serverDaemon id (rIn @ rIn ’) lOut)

7 (* Updates to other server daemons *)

8 val remoteSend =

9 if lOut = [] then neverEvt ()

10 else

11 let val (lOut ’,_) = xform (lOut , rIn)

12 in wrap (bsendEvt (sc , lOut ’, id),

13 fn () => serverDaemon id rIn [])

14 end

15 (* interaction with the client *)

16 val localComm =

17 wrap (recvEvt tc , fn () =>

18 let

19 val lOps = sync (choose (recvEvt lc , alwaysEvt []))

20 val (_, rIn ’) = xform (lOps , rIn)

21 val _ = updateDocument(rIn ’)

22 in serverDaemon id [] (lOut @ lOps)

23 end)

24 in

25 sync (choose (localComm ,remoteRecv ,remoteSend))

26 end

27

28 fun timeoutManager to =

29 sync (wrap (timeoutEvent to ,

30 fn () => send (tc ,()); timerThread to))

Figure 4.13. Server Daemon for Collaborative Editing.

105

At every iteration of the server daemon loop, there is a choice (line 25) between

performing (a) a local receive (localComm), (b) a remote send (remoteSend), or (c)

a remote receive (remoteRecv). We have extended the implementation of broadcast

primitives presented in Figure 4.3 with events that encapsulate broadcast send and

receive. Remote sends are only enabled if lOut is not empty. Otherwise, it is a

neverEvt() which will never be picked in a choice. If lOut is not empty, then the

outstanding messages are transformed against the remote messages and sent to all

other daemons using causal atomic broadcast (lines 11-13).

By receiving broadcasted messages on the same thread as the one that performs

the broadcast, we ensure a total order on message reception at every client. Causal

atomic broadcast ensures that all daemons receive the update in the same order,

ensuring convergence of all remote states. On receiving a remote update, the server

daemon simply appends the update to the list of pending updates yet to be applied

to the local replica (lines 5-6).

The user-interface thread sends the updates to the server daemon on the lc chan-

nel, making them available to other replicas. This communication is also made asyn-

chronous through speculation, so that the UI stays responsive to the author. The

daemon uses a timeoutManager (lines 28-30) to periodically fetch updates from the

user interface thread. The daemon then receives local updates lOps , if any, from the

channel lc (lines 19).

Causal atomic broadcast for inter-daemon communication ensures that operations

in rIn at every daemon appear in the same order. In other words, every daemon

is in the same abstract state. Hence, we can simply transform the unapplied remote

operations rIn with respect to local operations lOps , to yield an rIn’ (line 20) that

considers the remote updates in the context of local ones. The daemon then updates

the document with the remote operations, by applying further transformation to

account for additional local updates that might have occurred between the time the

user-interface sent a message to it and now (line 21). This operation might perform

106

2 3 4 5 6
Authors

0

1

2

3

4

5

6

7

T
im

e
 (

X
 1

0
0

0
 S

e
cs

)

Rx

Sync

Figure 4.14. Performance comparison on collaborative editing bench-
mark. Lower is better.

a well-formedness check to check for consistency as updating the document is an

e↵ectful operation. This commit prevents speculation from leaking to the user.

Results

We use a collaborative editing benchmark generator described in [90] to generate a

random trace of operations, based on parameters such as trace length, percentage of

insertions, deletions, number of replicas, local operation delay, etc. Our benchmarking

trace contains 30K operations, 85%(15%) of which are insertions(deletions), and 20%

of which are concurrent operations. We insert a 25 ms delay between two consecutive

local operations to simulate user-interaction. Updates from each replica is causal

atomically broadcasted every 250 ms. Each replica is represented by a �CML instance

placed in widely distributed Amazon EC2 availability zones chosen to capture the

geo-distributed nature of collaborative editing. The average inter-instance latency

was 173 ms, with a standard deviation of 71.5. Results are reported as the average

of five runs.

107

We consider the time taken by a collaborative editing session to be the time between

the first operation generation and the completion of the last broadcast operation, at

which point the documents at every replica would have converged. Figure 4.14 shows

results with respect to total running time. Sync represents an ordinary CML execu-

tion, while �CML represents our new implementation. With 2-authors, �CML version

took 485 seconds to complete, and was 37% faster than the synchronous version. As

we increase the number of concurrent authors, the number of communication actions

per broadcast operation increases. Hence, we expect the benchmark run to take longer

to complete. The non-speculative version scales poorly due to the increasing number

of synchronizations involved in the broadcast operations. Indeed, Sync is 7.6⇥ slower

than �CML when there are six concurrent authors. Not surprisingly, �CML also takes

longer to complete a run as we increase the number of concurrent authors. This

is because of increasing communication actions per broadcast as well as increase in

mis-speculations. However, with six authors, it only takes 1.67⇥ longer to complete

the session when compared to having just two authors, and illustrates the utility of

speculative communication.

4.6 Related Work

Causal-ordering of messages is considered an important building block [82] for dis-

tributed applications. Similar to our formulation, Charron-Bost et al. [91] develop an

axiomatic formulation for causal-ordered communication primitives, although their

focus is on characterizing communication behavior and verifying communication pro-

tocols, rather than latency hiding. Speculative execution has been shown to be ben-

eficial in other circumstances under high latency environments such as distributed

file systems [92], asynchronous virtual machine replication [93], state machine repli-

cation [94], deadlock detection [95] etc., although we are unaware of other attempts

to use it for transparently converting synchronous operations to asynchronous ones.

108

Besides Erlang [96], there are also several distributed implementations of functional

languages that have been proposed [97, 98]. More recently, Cloud Haskell [99] has

been proposed for developing distributed Haskell programs. While all these systems

deal with issues such as type-safe serialization and fault tolerance central to any

distributed language, �CML’s focus is on enforcing equivalence between synchronous

and asynchronous evaluation. The formalization used to establish this equivalence is

inspired by work in language and hardware memory models [20,21,100]. These e↵orts,

however, are primarily concerned with visibility of shared-memory updates, rather

than correctness of relaxed message-passing behavior. Thus, while language memory

models [20, 100] are useful in reasoning about compiler optimizations, our relaxed

communication model reasons about safe asynchronous manifestations of synchronous

protocols.

Transactional events(TE) [101, 102] combine first-class synchronous events with an

all-or-nothing semantics. They are strictly more expressive than CML, although such

expressivity comes at the price of an expensive runtime search procedure to find

a satisfiable schedule. Communicating memory transactions (CMT) [103] also uses

speculation to allow asynchronous message-passing communication between shared-

memory transactions, although CMT does not enforce any equivalence with a syn-

chronous execution. Instead, mis-speculations only arise because of a serializability

violation on memory.

4.7 Concluding Remarks

CML provides a simple, expressive, and composable set of synchronous event com-

binators that facilitate concurrent programming, albeit at the price of performance,

especially in high-latency environments. This paper shows how to regain this perfor-

mance by transparently implementing synchronous operations asynchronously, e↵ec-

tively treating them as speculative actions. We formalize the conditions under which

such a transformation is sound, and describe a distributed implementation of CML

109

called �CML that incorporates these ideas. Our reported case studies illustrate the

benefits of our approach, and provide evidence that �CML is a basis upon which we

can build clean, robust, and e�cient distributed CML programs.

110

5 QUELEA: DECLARATIVE PROGRAMMING OVER EVENTUALLY

CONSISTENT DATA STORES

Many real-world web services — such as those built and maintained by Amazon,

Facebook, Google, Twitter, etc. — replicate application state and logic across mul-

tiple replicas within and across data centers. Replication is intended not only to

improve application throughput and reduce user-perceived latency, but also to tol-

erate partial failures without compromising overall service availability. Traditionally

programmers have relied on strong consistency guarantees such as linerarizability [18]

or serializability [19] in order to build correct applications. While strong consistency

is an easily stated property, it masks the reality underlying large-scale distributed sys-

tems with respect to non-uniform latency, availability and network partitions [29,31].

Indeed, modern web services, which aim to provide an ”always on” experience, over-

whelmingly favor availability and partition tolerance over strong consistency. To this

end, several weak consistency models such as eventual consistency, causal consistency,

session guarantees, and timeline consistency have been proposed.

Under weak consistency, the developer needs to be aware of concurrent conflicting

updates, and has to pay careful attention to avoid unwanted inconsistencies (e.g.,

negative balances in a bank account, or having an item appear in a shopping cart after

it has been removed [9]). Oftentimes, the inconsistency leaks from the application

and is witnessed by the user. Ultimately, the developer must decide the consistency

level appropriate for a particular operation; this is understandably an error-prone

process requiring intricate knowledge of both the application as well as the semantics

and implementation of the underlying data store, which typically have only informal

descriptions. Nonetheless, picking the correct consistency level is critical not only

for correctness but also for scalability of the application. While choosing a weaker

111

consistency level than required may introduce program errors and anomalies, choosing

a stronger one than necessary can negatively impact program scalability.

Weak consistency also hinders compositional reasoning about programs. While an

application might be naturally expressed in terms of well-understood and expressive

data types such as maps, trees, queues, or graphs, geo-distributed stores typically

only provide a minimal set of data types with in-built conflict resolution strategies

such as last-writer-wins (LWW) registers, counters, and sets [10, 52]. Furthermore,

while traditional database systems enable composability through transactions, geo-

distributed stores typically lack unrestricted transactional access to the data. Working

in this environment thus requires application state to be suitably coerced to function

using only the capabilities of the store.

To address these issues, we describeQuelea, a declarative programming model and

implementation for eventually consistent geo-distributed data stores. The key nov-

elty of Quelea is an expressive contract language to declare and verify fine-grained

application-level consistency properties. The programmer uses the contract language

to axiomatically specify the set of legal executions allowed over the replicated data

type. Contracts are constructed using primitive consistency relations such as visibility

and session order along with standard logical and relational operators. A contract

enforcement system automatically maps operations over the datatype to a particular

consistency level available on the store, and provably validates the correctness of the

mapping. The chapter makes the following contributions:

• We introduce Quelea, a shallow extension of Haskell that supports the de-

scription and validation of replicated data types found on eventually consistent

stores. Contracts are used to specify fine-grained application-level consistency

properties, and are analyzed to assign the most e�cient and sound store con-

sistency level to the corresponding operation.

• Quelea supports coordination-free transactions over arbitrary datatypes. We

extend our contract language to express fine-grained transaction isolation guar-

112

antees, and utilize the contract enforcement system to automatically assign the

correct isolation level for a transaction.

• We provide metatheory that certifies the soundness of our contract enforcement

system, and ensures that an operation is only executed if the required conditions

on consistency are met.

• An implementation of Quelea as a transparent shim layer over Cassandra [10],

a well-known general-purpose data store. Experimental evaluation over a set

of real-world applications, including a Twitter-like micro-blogging site and an

eBay-like auction site illustrates the practicality of our approach.

The rest of the chapter is organized as follows. The next section describes the system

model. We describe the challenges in programming with eventually consistent data

stores, and introduces Quelea contracts as a proposed solution to overcome these

issues in Section 5.2. Section 5.3 provides more details the contract language, and

its mapping to the store consistency levels. Section 5.4 presents the meta-theoretic

result that certifies the correctness of the Quelea contract enforcement. Section 5.5

introduces transaction contracts and classification. Section 5.6 describes the imple-

mentation and provides details about the optimizations needed to make the system

practical. Section 5.7 discusses experimental evaluation. Section 5.8 and 5.9 present

related work and conclusions.

5.1 System Model

Figure 5.1 provides a schematic diagram of our system model. The distributed store

is composed of a collection of replicas, each of which stores a set of objects (x, y, . . .).

We assume that every object is replicated at every replica in the store. The state of

an object at any replica is the set of all updates (e↵ects) performed on the object.

For example, the state of x at replica 1 is the set composed of e↵ects wx

1 and wx

2 .

113

Eventually Consistent Data Store

Replica�Replica� Replican

......x → {wx
� , wx

� }
y → {w y

� , w y
� }.

.

.

w y
�

wx
�

y → {w y
� } x → {wx

� }

...

Session� Session�

.

.

.Session
Order

v�← x . f oo(arg�); �wx
� �

v�← x .bar(arg�); �wx
� �

Figure 5.1. Quelea system model.

Each object is associated with a set of operations. The clients interact with the

store by invoking operations on objects. The sequence of operations invoked by a

particular client on the store is called a session. The data store is typically accessed

by a large number of clients (and hence sessions) concurrently. Importantly, the

clients are oblivious to which replica an operation is applied to; the data store may

choose to route the operation to any replica in order to minimize latency, balance

load, etc. For example, the operations foo and bar invoked by the same session on

the same object, might end up being applied to di↵erent replicas because replica 1

(to which foo was applied) might be unreachable when the client invokes bar.

When foo is invoked on a object x with arguments arg1 at replica 1, it simply reduces

over the current set of e↵ects at that replica on that object (wx

1 and wx

2), produces

a result v1 that is sent back to the client, and emits a single new e↵ect wx

4 that is

appended to the state of x at replica 1. Thus, every operation is evaluated over a

snapshot of the state of the object on which it is invoked. In this case, the e↵ects wx

1

and wx

2 are visible to wx

4 , written logically as vis(wx

1 , w
x

4)^vis(wx

2 , w
x

4), where vis is the

114

visibility relation between e↵ects. Visibility is an irreflexive and asymmetric relation,

and only relates e↵ects produced by operations on the same object. Executing a

read-only operation is similar except that no new e↵ects are produced.

The e↵ect added to a particular replica is asynchronously sent to other replicas,

and eventually merged into all other replicas. Two e↵ects wx

4 and wx

5 that arise from

the same session are said to be in session order (written logically as so(wx

4 , w
x

5)).

Session order is an irreflexive, transitive relation. The e↵ects wx

4 and wx

5 arising from

operations applied to the same object x are said to be under the same object relation,

written sameobj(wx

4 , w
x

5). Finally, we can associate every e↵ect with the operation

that generated the e↵ect with the help of a relation oper. In the current example,

oper(wx

4 , foo) and oper(wx

5 , bar) hold. For simplicity, we assume all operation names

across all object types are distinct.

This model admits all the inconsistencies associated with eventual consistency. The

goal of this work is to identify the precise consistency level for each operation such that

application-level constraints are not violated. In the next section, we will concretely

describe the challenges associated with constructing a consistent bank account on

top of an eventually consistent data store. Subsequently, we will illustrate how our

contract and specification language, armed with the primitive relations vis, so, sameobj

and oper, mitigates these challenges.

5.2 Motivation

Consider how we might implement a highly available bank account on top of an

eventually consistent data store, with the integrity constraint that the balance must be

non-negative. We begin by implementing a bank account replicated data type (RDT)

in Quelea, and then describe the mechanisms to obtain the desired correctness

guarantees.

115

5.2.1 RDT Specification

A key novelty in Quelea is that it allows the addition of new RDTs to the store,

which obviates the need for coercing the application logic to utilize the store provided

data types. In addition, Quelea treats the convergence semantics of the data type

separately from its consistency properties. This separation of concerns permits op-

erational reasoning for conflict resolution, and declarative reasoning for consistency.

The combination of these techniques enhances the programmability of the store.

Let us assume that the bank account object provides three operations: deposit ,

withdraw and getBalance , with the assumption that the withdraw fails if the ac-

count has insu�cient balance. Every operation in Quelea is of the following type,

written in Haskell syntax:

1 type Operation e a r = [e] ! a ! (r, Maybe e)

It takes a list of e↵ects (the context for the operation), and an input argument, and

returns a result along with an optional e↵ect (read-only operations return Nothing).

The new e↵ect (if emitted) is added to the state of the object at the current replica,

and asynchronously sent to other replicas. The implementation of the bank account

operations in Quelea is given in Figure 5.2:

The datatype Acc represents the e↵ect type for the bank account. The context of

the operations is a snapshot of the state of the object at some replica. In this sense,

every operation on the RDT is atomic, and thus permitting sequential reasoning

for implementing eventually consistent data types. We have implemented a large

corpus of RDTs for realistic benchmarks including shopping carts, auction and micro-

blogging sites in few tens of lines of code.

116

1 data Acc = Deposit Int | Withdraw Int | GetBalance

2

3 getBalance :: [Acc] ! () ! (Int , Maybe Acc)

4 getBalance ctxt _ =

5 let res = sum [x | Deposit x ctxt]

6 - sum [x | Withdraw x ctxt]

7 in (res , Nothing)

8

9 deposit :: [Acc] ! Int ! ((), Maybe Acc)

10 deposit _ amt = (amt , Just $ Deposit amt)

11

12 withdraw :: [Acc] ! Int ! (Bool , Maybe Acc)

13 withdraw ctxt v =

14 if sel1 $ getBalance ctxt () � v

15 then (True , Just $ Withdraw v)

16 else (False , Nothing)

Figure 5.2. Definition of a bank account expressed in Quelea.

5.2.2 Anomalies under Eventual Consistency

Our goal is to choose the correct consistency level for each of the bank account

operations such that (1) the balance remains non-negative and (2) the getBalance

operation never incorrectly returns a negative balance. Let us first consider the

anomalies that could arise under eventual consistency.

Consider the execution shown in Figure 5.3(a). Assume that all operations in the

figure are on the same bank account object with the initial balance being zero. Session

1 performs a deposit of 100, followed by a withdraw of 80 in the same session. The

withdraw operation witnesses the deposit and succeeds1. Subsequently, session 2

perform a withdraw operation, but importantly, due to eventual consistency, only

1Although visibility and session order relations relate e↵ects, we have abused the notation in these
examples to relate operations, with the idea that the relations relate the e↵ect emitted by those
operations

117

Session 1

withdraw (70)

Session 2
vis

getBalance → -50

withdraw (80)

deposit (100)
vis so

vis

vis so

(a) Unsafe withdraw

deposit (100)

Session 1

withdraw (50)

Session 2

getBalance → -50

Session 3

vis

vis

(b) Negative balance

deposit (100)

withdraw (50)

getBalance → 100

vis, so

so

vis

Session 1

(c) Missing update

Figure 5.3. Anomalies possible under eventual consistency for the get
balance operation.

witnesses the deposit from session 1, but not the subsequent withdraw. Hence, this

withdraw also incorrectly succeeds, violating the integrity constraint. A subsequent

getBalance operation, that happens to witness all the previous operations, would

report a negative balance.

It is easy to see that preventing concurrent withdraw operations eliminates this

anomaly. This can be done by insisting that withdraw be executed as a strongly

consistent operation. Despite this strengthening, getBalance operation may in-

correctly report a negative balance to the end user. Consider the execution shown

in fig. 5.3(b), which consists of three concurrent sessions performing a deposit , a

withdraw , and a getBalance operation, respectively, on the same bank account ob-

ject. As the vis edge indicates, operation withdraw(50) in session 2, witnesses the

e↵ects of deposit(100) from session 1, concludes that there is su�cient balance,

and completes successfully. However, the getBalance operation may only witness

this successful withdraw, but not the causally preceding deposit , and reports the

balance of negative 50 to the user.

118

Under eventual consistency, the users may also be exposed to other forms of incon-

sistencies. Figure 5.3(c) shows an execution where the getBalance operation in a

session does not witness the e↵ects of an earlier withdraw operation performed in

the same session, possibly because it was served by a replica that has not yet merged

the withdraw e↵ect. This anomaly leads the user to incorrectly conclude that the

withdraw operation failed to go through.

Although it is easy to understand the reasons behind the occurrence of the afore-

mentioned anomalies, finding the appropriate fixes is not readily apparent. Making

getBalance a strongly consistent operation is definitely su�cient to avert anomalies,

but is it really necessary? Given the cost of enforcing strong consistency [52, 104], it

is preferable to avoid it unless there are no viable alternatives. Exploring the space of

these alternatives requires understanding the subtle di↵erences in semantics of various

kinds of weak consistency alternatives.

5.2.3 Contracts

Quelea helps facilitate the mapping of operations to appropriate consistency levels

by letting the programmer declare application-level consistency constraints as con-

tracts (Figure 5.42) that axiomatically specify the set of allowed executions involving

this operation. In the case of the bank account, any execution that does not exhibit

the anomalies described in the previous section is a well-formed execution on the bank

account object. By specifying the set of legal executions for each data type in terms

of a trace of operation invocations on that type, Quelea ensures that all executions

over that type are well-formed.

In our running example, it is clear that in order to preserve the integrity constraint,

the withdraw operation must be strongly consistent. That is, given two withdraw

2Quelea exposes the contract construction language as a Haskell library

119

operations a and b, either a is visible to b or vice versa. We express this application-

level consistency requirement as a contract (
w

) over withdraw :

8(a : withdraw). sameobj(a, ⌘̂)) a = ⌘̂ _ vis(a, ⌘̂) _ vis(⌘̂, a)

Here, ⌘̂ stands for the e↵ect emitted by the withdraw operation. The syntax

a : withdraw states that a is an e↵ect emitted by a withdraw operation i.e.,

oper(a, withdraw) holds. The contract specifies that if the current operation emits

an e↵ect ⌘̂, then for any operation a which was emitted by a withdraw operation,

it is the case that a = ⌘̂ or a is visible to ⌘̂, or vice versa. Any execution on a bank

account object that preserves the above contract for a withdraw operation is said to

be derived from a correct implementation of withdraw .

For getBalance , we construct the following contract (
gb

):

8(a : deposit), (b : withdraw), (c : deposit _ withdraw).

vis(a, b) ^ vis(b, ⌘̂)) vis(a, ⌘̂)

^ (so \ sameobj)(c, ⌘̂)) vis(c, ⌘̂)

The expression c : deposit _ withdraw states that c is an e↵ect that was emit-

ted either by a deposit or a withdraw operation. If a withdraw b is visible to

getBalance ⌘̂, then all deposit operations a visible to b should also be visible to ⌘̂.

This prevents negative balance anomalies. Our contract language provides operators

to compose relations. The syntax (R1 \ R2)(a, b) is equivalent to R1(a, b) ^ R2(a, b).

The last line of the above contract says that if a deposit or a withdraw operation

precedes a getBalance operation in session order, and is applied on the same ob-

ject as the getBalance operation, then it must be the case that the getBalance

operation witnesses the e↵ects of the preceding operations.

Finally, since there are no restrictions on when or how a deposit operation can

execute, its contract is simply true.

120

5.2.4 From Contracts to Implementation

Notice that the contracts for withdraw and getBalance only express application-

level consistency requirements, and make no reference to the semantics of the underly-

ing store. To write contracts, a programmer only needs to reason about the semantics

of the application under theQuelea system model. The mapping of application-level

consistency requirements to appropriate store-level guarantees is done automatically

behind-the-scene. How might one go about ensuring that an execution adheres to a

contract? The challenge is that a contract provides a declarative (axiomatic) specifi-

cation of an execution, while what is required is an operational procedure for enforcing

its implicit constraints.

One strategy would be to execute operations speculatively. Here, operations are

tentatively applied as they are received from the client or other replicas. We can

maintain a runtime manifestation of executions, and check well-formedness conditions

at runtime, rolling back executions if they are ill-formed. However, the overhead of

state maintenance and the complexity of user-defined contracts is likely to make this

technique infeasible in practice.

We devise a static approach instead. Contracts are analyzed with the help of a

theorem prover, and statically mapped to a particular store-level consistency prop-

erty that the prover guarantees preserves contract semantics. We call this procedure

contract classification. Given the variety and complexity of store level consistency

properties, the idea is that the system implementor parameterizes the classification

procedure by describing the store semantics in the same contract language as the one

used to express the contract on the operations. In the next section, we describe the

contract language in detail and describe the classification procedure for a particular

store semantics.

121

x, y, ⌘̂ 2 EffVar Op 2 OperName

 2 Contract := 8(x : ⌧). | ⇡

⌧ 2 EffType := Op | ⌧ _ ⌧

⇡ 2 Prop := true | R(x, y) | ⇡ _ ⇡

| ⇡ ^ ⇡ | ⇡) ⇡

R 2 Relation := vis | so | sameobj | R+

| R [R | R \R

Figure 5.4. Contract language.

5.3 Contract Language

5.3.1 Syntax

The syntax of our core contract language is shown in Figure 5.4. The language

is based on first-order logic (FOL), and admits prenex universal quantification over

typed and untyped e↵ect variables. We use a special e↵ect variable (⌘̂) to denote

the e↵ect of current operation - the operation for which a contract is being written.

The type of an e↵ect is simply the name of the operation (eg: withdraw) that

induced the e↵ect. We admit disjunction in types to let an e↵ect variable range over

multiple operation names. The contract 8(a : ⌧1 _ ⌧2). is just syntactic sugar for

8a.(oper(a, ⌧1)_oper(a, ⌧2))) . An untyped e↵ect variable ranges over all operation

names.

Quantifier-free propositions in our contract language are conjunctions, disjunctions

and implications of predicates expressing relations between pairs of e↵ect variables.

The syntactic class of relations is seeded with primitive vis, so, and sameobj rela-

122

⌘ 2 Effect 2 Contract ⌘ 2 Effect Set

A 2 EffSoup := ⌘

vis, so, sameobj 2 Relations := A⇥ A

E 2 ExecState := (A,vis,so,sameobj)

Figure 5.5. Axiomatic execution.

tions, and also admits derived relations that are expressible as union, intersection, or

transitive closure3 of primitive relations.

• Same object session order: soo = so \ sameobj.

• Happens-before order: hb = (so [vis)+.

• Same object happens-before order: hbo = (soo [vis)+.

5.3.2 Semantics

Quelea contracts are constraints over axiomatic definitions of program execu-

tions. Figure 5.5 summarizes artifacts relevant to define an axiomatic execution.

We formalize an axiomatic execution as a tuple (A,vis,so,sameobj), where A, called

the e↵ect soup, is the set of all e↵ects generated during the program execution, and

vis, so, sameobj ✓ A⇥A are visibility, session order, and same object relations, respec-

tively, witnessed over generated e↵ects at run-time.

Note that the axiomatic definition of an execution (E) provides interpretations for

primitive relations (eg: vis) that occur free in contract formulas, and also fixes the

domain of quantification to set of all e↵ects (A) observed during the program execu-

tion. As such, E is a potential model for any first-order formula () expressible in

3Strictly speaking, R

+ is not the transitive closure of R, as transitive closure is not expressible in
FOL. Instead, R

+ in our language denotes a superset of transitive closure of R. Formally, R

+ is any
relation R

0 such that forall x, y, and z, a) R(x, y)) R

0(x, y), and b) R

0(x, y) ^ R

0(y, z)) R

0(x, z)

123

our contract language. If E is indeed a valid model for (written as E |=), we say

that the execution E satisfied the contract :

Definition 5.3.1 An axiomatic execution E is said to satisfy a contract if and only

if E |= .

5.3.3 Capturing Store Semantics

An important aspect of our contract language is its ability to capture store-level

consistency guarantees, along with application-level consistency requirements. Simi-

lar to [54], we can rigorously define a wide variety of store semantics including those

that combine any subset of session and causality guarantees, and multiple consistency

levels. However, for our purposes, we identify three particular consistency levels –

eventual, causal, and strong, commonly o↵ered by many distributed stores with tun-

able consistency, with increasing overhead in terms of latency and availability.

• Eventually consistency: Eventually consistent operations can be satisfied

as long as the client can reach at least one replica. In the bank account exam-

ple, deposit is an eventually consistent operation. While eventually consistent

data stores typically o↵er basic eventual consistency with all possible anoma-

lies, we assume that our store provides stronger semantics that remain highly-

available [34, 105]; the store always exposes a causal cut of the updates. This

semantics can be formally captured in terms of the following contract definition:

ec

= 8a, b. hbo(a, b) ^ vis(b, ⌘̂)) vis(a, ⌘̂)

• Causal consistency: Causally consistent operations are required to see a

causally consistent snapshot of the object state, including the actions performed

on the same session. The latter requirement implies that if two operations o1

and o2 from the same session are applied to two di↵erent replicas r1 and r2,

the second operation cannot be discharged until the e↵ect of o1 is included in

124

 
sc

WellFormed()

 
ec

EventuallyConsistent()

 6
ec

 
cc

CausallyConsistent()

 6
cc

 
sc

StronglyConsistent()

Figure 5.6. Contract classification.

r2. The getBalance operation requires causal consistency, as it requires the

operations from the same session to be visible, which cannot be guaranteed

under eventual consistency. The corresponding store semantics is captured by

the contract
cc

defined below:

cc

= 8a. hbo(a, ⌘̂)) vis(a, ⌘̂)

• Strong Consistency: Strongly consistent operations may block indefinitely

under network partitions. An example is the total-order contract on withdraw

operation. The corresponding store semantics is captured by the
sc

contract

definition:

sc

= 8a. sameobj(a, ⌘̂)) vis(a, ⌘̂) _ vis(⌘̂, a) _ a = ⌘̂

5.3.4 Contract Comparison and Classification

Our goal is to map application-level consistency constraints on operations to ap-

propriate store-level consistency guarantees capable of satisfying these constraints.

The ability to express both these kinds of constraints as contracts in our contract

language lets us compare and determine if contract (
op

) of an operation (op) is weak

enough to be satisfied under a store consistency level identified by the contract
st

.

125

Towards this end, we define a binary weaker than relation for our contract language

as following:

Definition 5.3.2 A contract
op

is said to be weaker than
st

(written
op


st

)

if and only if � ` 8⌘̂.
st

)
op

.

The quantifier in the sequent binds ⌘̂ that occurs free in
st

and
op

. Context (�)

of the sequent is a conjunction of assumptions about the nature of primitive relations.

A well-formed axiomatic execution (E) is expected to satisfy these assumptions (i.e.,

E |= �).

Definition 5.3.3 An axiomatic executions E = (A,vis,so,sameobj) is said to be well-

formed if the following axioms (�) hold:

• The happens-before relation is acyclic: 8a. ¬hb(a, a).

• Visibility only relates actions on the same object: 8a, b. vis(a, b)) sameobj(a, b).

• Session order is a transitive relation: 8a, b, c. so(a, b) ^ so(b, c)) so(a, c).

• Same object is an equivalence relation:

– 8a. sameobj(a, a).

– 8a, b. sameobj(a, b)) sameobj(b, a).

– 8a, b, c. sameobj(a, b) ^ sameobj(b, c)) sameobj(a, c).

If the contract (
op

) of an operation (op) is weaker than a store contract (
st

), then

constraints expressed by the former are implied by guarantees provided by the latter.

The completeness of first-order logic allows us to assert that any well-formed execution

(E) that satisfies
st

(i.e., E |=
st

) also satisfies
op

(i.e., E |=
op

). Consequently, it

is safe to execute operation op under a store consistency level captured by
st

.

Observe that the contracts
sc

,
cc

and
ec

are themselves totally ordered with

respect to the  relation:
ec


cc


sc

. This concurs with the intuition that

126

any contract satisfiable under
ec

or
cc

is satisfiable under
sc

, and any contract

that is satisfiable under
ec

is satisfiable under
cc

. We are interested in the weakest

guarantee (among
ec

,
cc

, and
sc

) required to satisfy the contract. We define the

corresponding consistency level as the consistency class of the contract.

The classification scheme, presented formally in Figure 5.6, defines rules to judge

the consistency class of a contact. For example, the scheme classifies the getBalance

contract (
gb

) from Section 5.2 as a CausallyConsistent contract, because the sequent

� `
cc

)
gb

is valid in first-order logic (therefore,
gb


cc

), whereas the sequent

� `
ec

)
gb

is invalid (therefore,
gb

6
ec

). Since we confine of our contract

language to a decidable subset of the logic, validity of such sequents can be decided

mechanically allowing us to automate the classification scheme in Quelea.

Along with three straightforward rules that classify contracts into consistency classes,

the classification scheme also presents a rule that judges well-formedness of a con-

tract. A contract is well-formed if and only if it is satisfiable under
sc

- the strongest

possible consistency guarantee that the store can provide. Otherwise, it is considered

ill-formed, and rejected statically.

5.3.5 Soundness of Contract Classification

We now present a meta-theoretic result that certifies the soundness of classification-

based contract enforcement. To help us state the result, we define an operational

semantics of the our system described informally in Section 5.1:

op 2 Operation

⌧ 2 ConsistencyClass := ec, cc, sc

� 2 Session := · | hop, ⌧i; �

⌃ 2 Session Soup := � k ⌃ | ;

Config := E,⌃

We model the system as a tuple E,⌃, where the axiomatic execution E captures the

data store’s current state, and session soup ⌃ is the set of concurrent client sessions

127

interacting with the store. A session � is a sequence of pairs composed of replicated

data type operations op, tagged with the consistency class ⌧ of their contracts (as

determined by the contract classification scheme). We assume a reduction relation of

form:

E, hop, ⌧i; � k ⌃
⌘

,�! E0, � k ⌃

on the system state. The relation captures the progress of the execution (from E to

E0) due to the successful completion of a client operation op from one of the sessions in

⌃, generating a new e↵ect ⌘. If the resultant execution E0 satisfies the store contract

⌧

(i.e., E |=
⌧

), then we say that the store has enforced the contract
⌧

in the

execution E0. With help of the operational semantics, we now state the soundness of

contract enforcement as follows:

Theorem 5.3.1 (Soundness of Contract Enforcement) Let be a well-formed

contract of a replicated data type operation op, and let ⌧ denote the consistency class

of as determined by the contract classification scheme. For all well-formed execution

states E, E0 such that E, hop, ⌧i; � k ⌃
⌘

,�! E0, � k ⌃, if E0 |=
⌧

[⌘/⌘̂], then E0 |= [⌘/⌘̂]

The theorem states that if a data store correctly enforces
sc

,
cc

, and
ec

contracts

in all well-formed executions, then the same store, extended with the classification

scheme shown in Figure 5.6, can enforce all well-formedQuelea contracts. The proof

of the theorem is given below:

Proof. Hypothesis:

E, hop, ⌧i; � k ⌃
⌘

,�! E0, � k ⌃ H0

E0 |=
⌧

[⌘/⌘̂] H1

Since ⌧ is the contract class of , by inversion, we have 
⌧

. By the definition of

 relation:

� ` 8⌘̂.
⌧

) H2

128

Since ⌘ denotes new e↵ect, it is a fresh variable that does not occur free in �. From

H2, after instantiating bound ⌘̂ with ⌘, we have:

� `
⌧

[⌘/⌘̂]) [⌘/⌘̂] H3

Due to the soundness of natural deduction for first-order logic, H3 implies that for

all models M such that M |= �, if M |=
⌧

[⌘/⌘̂] then M |= [⌘/⌘̂]. Since E0 is

well-formed, we have:

E0 |= � H4

Proof follows from H1, H3, and H4.

It is important to note that Theorem 5.3.1 does not ascribe any semantics to the

reduction relation (�!). As such, it makes no assumptions about how the store ac-

tually implements ec, cc and sc guarantees. The specific implementation strategy is

determined by the operational semantics of the store, which defines the reduction re-

lation for that particular store. The following section describes operational semantics

of the store used by the Quelea implementation.

5.4 Operational Semantics

We now describe operational semantics of a data store that implements strong,

causal and eventual consistency guarantees. The semantics also serves as a high-level

description of our implementation of the store underlying Quelea.

Figures 5.7 and 5.8 present operational semantics as rules defining the reduction

relation (�!) over the execution state. Since we now have a concrete store, we extend

our system model with ⇥, a representation of the store as a map from replicas to

their local states. The local state of a replica r (i.e., ⇥(r)) is a set of e↵ects that are

currently visible at r. An operation op performed at replica r can only witness the set

of e↵ects (⇥(r)) visible at r. To avoid too many parenthesis in our formal presentation,

we represent operation op, whose contract is in consistency class ⌧ , as op
⌧

instead

129

RDT Specification Language

� 2 ReplicatedDatatype

v 2 Value

e 2 Expression

op 2 Operation

⇤ 2 OperationDefinition := op 7! e

 2 Contract

 2 OperationContract := op 7!

RDTSpecification := (�,⇤,)
System Model

s 2 SessID i 2 SeqNo r 2 ReplID

⌘ 2 Effect := (s, i, op, v)

A 2 EffSoup := ⌘

vis, so, sameobj 2 Relations := A⇥ A

E 2 ExecState := (A,vis,so,sameobj)

⇥ 2 Store := r 7! ⌘

⌧ 2 ConsistencyClass := ec, cc, sc

� 2 Session := · | op
⌧

:: �

⌃ 2 Session Soup := hs, i, �i k ⌃ | ;

Config := (E,⇥,⌃)
Auxiliary Definitions

oper(s, i, op, v) = op

ctxt(s, i, op, v) = (op, v)

Figure 5.7. Syntax and states of operational semantics.

of the usual hop, ⌧i. For the sake of clarity, we only consider a single replicated

object of well-defined type (for eg: a replicated object of type BankAccount) in our

130

Auxiliary Reduction ⇥ ` (E, hs, i, opi) r

,�! (E0, ⌘)

[Oper]

r 2 dom(⇥) ctxt = ctxt⇤(⇥(r)) ⇤(op)(ctxt) ⇤v

⌘ = (s, i, op, v) {⌘0} = A(SessID=s, SeqNo=i�1)

A0 = {⌘} [A vis0 = ⇥(r)⇥ {⌘} [vis

so0 = (so�1(⌘0) [⌘0)⇥ {⌘} [so sameobj0 = A0 ⇥ A0

⇥ ` ((A, vis, so, sameobj), hs, i, opi) r

,�! ((A0, vis0, so0, sameobj0), ⌘)

Operational Semantics (E,⇥,⌃)
⌘�! (E0,⇥0,⌃0)

[EffVis]

⌘ 2 A ⇥0 = ⇥ [[r 7! {⌘} [⇥(r)]

⌘ /2 ⇥(r) E.vis�1(⌘) [E.so�1(⌘) ✓ ⇥(r)

(E,⇥,⌃)
⌘�! (E,⇥0,⌃)

[EC]

⌧ = EventuallyConsistent ⇥ ` (E, hs, i, opi) r

,�! (E0, ⌘)

(E,⇥, hs, i, op
⌧

:: �i k ⌃) ⌘�! (E0,⇥, hs, i+ 1, �i k ⌃)
[CC]

⌧ = CausallyConsistent ⇥ ` (E, hs, i, opi) r

,�! (E0, ⌘) E0.so�1(⌘) ✓ ⇥(r)

(E,⇥, hs, i, op
⌧

:: �i k ⌃) ⌘�! (E0,⇥, hs, i+ 1, �i k ⌃)
[SC]

⌧ = StronglyConsistent ⇥ ` (E, hs, i, opi) r

,�! (E0, ⌘) E.A ✓ ⇥(r)

dom(⇥0) = dom(⇥) 8r0 2 dom(⇥0).⇥0(r0) = ⇥(r0) [{⌘}

(E,⇥, hs, i, op
⌧

:: �i k ⌃) ⌘�! (E,⇥0, hs, i+ 1, �i k ⌃)

Figure 5.8. Operational semantics of a replicated data store.

131

formalization. Our semantics are parametric over the specification of this replicated

data type. Figure 5.8 formalizes replicated data type (RDT) specification as tuple

(�,⇤,), where � is the data type, ⇤ maps labels (op) of operations on � to their

definitions, while maps them to their consistency contracts (). The definition

of an operation is expected to be a lambda expression, although we do not enforce

this in our formalization. For technical reasons, we tag each session with a session

identifier (s) and the sequence number (i) of the next operation in the session.

The state of an operational execution (E) is a tuple (A,vis,so,sameobj) where A is

a set of e↵ects, and vis, so, sameobj ✓ A ⇥ A are visibility, session order, and same

object relations over e↵ects, respectively. We define an e↵ect (⌘) as a tuple (s, i, op, v),

which records the fact that ith action in session with SessID s, which is an operation

op on the replicated object, has been successfully executed on some replica yielding

a return value v. Note that the combination of s and i uniquely identifies the e↵ect.

Session order relation (so) relates e↵ects generated by the same session. An e↵ect

⌘ = (s, i, op, v) is said to precede another e↵ect ⌘0 = (s0, i0, op0, v0) in session order if

and only if s0 = s and i0 � i. Since we only consider one replicated object in our

formalization, the sameobj relation relates every pair of e↵ects in the e↵ect soup (A).

An e↵ect generated at a replica becomes visible at rest of the replicas eventually. If

we denote the e↵ect generated by the operation op as ⌘
op

, then ⇥(r)⇥ {⌘
op

} ✓ vis.

Often, in our formalization, we use vis and so binary relations to obtain a set of e↵ects

visible to a given e↵ect ⌘, or set of e↵ects that precede a given e↵ect ⌘ in the session

order. As a syntactic convenience, whenever R is a binary relation, we write R(⌘) to

denote the set of all ⌘0 such that (⌘, ⌘0) 2 R. Conversely, we write R�1(⌘) to denote

the set of all ⌘0 such that (⌘0, ⌘) 2 R.

Basic guarantee provided by the store is causal visibility, which is captured by the

rule [EffVis] as a condition for an e↵ect to be visible at a replica. The rule makes

an e↵ect (⌘) visible at a replica r only after all the e↵ects that causally precede ⌘

are made visible at r. It is important to note that that enforcing causal visibility

does not require any inter-replica coordination. Any eventually consistent store can

132

provide causal visibility while being eventually consistent. Therefore, we do not lose

any generality by assuming that the store provides causal visibility.

Rule [Oper] is an auxiliary reduction of the

⇥ ` (E, hs, i, opi) r

,�! (E0, ⌘)

Under the store configuration ⇥, the rule captures the progress in execution (from E

to E0) due to the application of operation op to replica r resulting in a new e↵ect ⌘.

The rule first constructs a context for the application from the local state (⇥(r)) of the

replica, by projecting4 relevant information from e↵ects in ⇥(r). It then substitutes

the definition (⇤(op)) of the operation for its label (op), and relies on the reduction

relation () of the server-side language to reduce the application ⇤(op)(ctxt) to a

value v0. Subsequently, the the attributes of execution state, namely A, vis, so, and

sameobj are extended to incorporate the new e↵ect (⌘).

If the operation op is EventuallyConsistent, we simply apply the operation to any

replica r. Since the store provides causal visibility, eventually consistent operations

are satisfiable under any replica. If the operation is CausallyConsistent, the operation

can be applied to a replica r only if it already contains the e↵ects of all the previous

operations from the same session. This guarantee can be satisfied by applying all

operations from the same session to the same logical copy of the database. If such a

logical copy is untenable, then the operation might block. Since the store is assumed to

converge eventually, the blocked causally consistent operation guaranteed to unblock

eventually.

A StronglyConsistent operation expects sequential consistency. That is, universe of

all e↵ects (A) in an execution (E) must be partitionable into a set of e↵ects that hap-

pened before ⌘ and another set that happened after ⌘, where ⌘ is the e↵ect generated

by an strongly consistent operation. The rule [SC] enforces this sequencing in two

steps; firstly, it insists that the the strongly consistent operation (op) witness e↵ects

of all operations executed so far by requiring the global set of e↵ects A to be a subset

4
ctxt* is auxiliary function ctxt extended straightforwardly to set of e↵ects

133

of local state (⇥(r)) of the replica (r) executing op. Secondly, the rule requires the

e↵ect (⌘) generated by op to be added to the local state of every other replica in the

store, so that further operations on these replicas can witness the e↵ect of op. Since

both these steps require global coordination among replicas, the store is unavailable

during the time it is executing op.

5.4.1 Soundness of Operational Semantics

We now prove a meta-theoretic property that establishes the soundness of our op-

erational semantics in enforcing
ec

,
cc

, and
sc

consistency guarantees at every

reduction step. As a corollary of this result, and Theorem 5.3.1, we have the assur-

ance that Quelea correctly enforces all well-formed consistency contracts.

First, we prove a useful lemma:

Lemma 5.4.1 (Auxiliary Reduction Preserves Well-Formedness) For

every execution state E that is well-formed, if ⇥ ` (E, hs, i, opi) r

,�! (E0, ⌘), then E0 is

well-formed.

Proof. Let us denote E.A, E.vis, E.so, and E.sameobj as A, vis, so, and sameobj re-

spectively. Likewise, let us denote E0.A, E0.vis, E0.so, and E0.sameobj as A0, vis0, so0,

and sameobj0, respectively. By inversion on ⇥ ` (E, hs, i, opi) r

,�! (E0, ⌘), we have

following hypotheses:

r 2 dom(⇥) H0

ctxt = ctxt⇤(⇥(r)) H1

⌘ = (s, i, op, v) H2

{⌘0} = A(SessID=s, SeqNo=i�1) H3

A0 = {⌘} [A H4

vis0 = ⇥(r)⇥ {⌘} [vis H5

so0 = (so�1(⌘0) [⌘0)⇥ {⌘} [so H6

sameobj0 = A0 ⇥ A0 H7

134

Since E is well-formed, from the definition of well-formedness and models relation, we

have the following:

8(a 2 A).¬hb(a, a) H8

8(a, b 2 A).vis(a, b)) sameobj(a, b) H9

8(a, b, c 2 A).so(a, b) ^ so(b, c)) so(a, c) H10

8(a 2 A).sameobj(a, a) H11

8(a, b 2 A).sameobj(a, b)) sameobj(b, a) H12

8(a, b, c 2 A).so(a, b) ^ so(b, c)) so(a, c) H13

Since hb = (vis [so)+, H8 is equivalent to conjunction of following assertions:

8(a 2 A).¬vis(a, a) H14

8(a 2 A).¬so(a, a) H15

8(a, b 2 A).¬(vis(a, b) ^ so(b, a)) H16

Since ⌘ is fresh, ⌘ /2 ⇥(r). From H4, H5, and H14, we have the acyclicity property

for vis0:

8(a 2 A0).¬vis0(a, a) H17

Also, ⌘ /2 A, and from H4, H6 and H15, we have acyclicity for so0:

8(a 2 A0).¬so0(a, a) H18

Similarly, from the uniqueness of ⌘, and H5, H6, and H16, we have the following:

8(a, b 2 A0).¬(vis0(a, b) ^ so0(b, a)) H19

From H17� 19, we prove the acyclicity of hb0:

8(a 2 A0).¬hb(a, a) G0

The sameobj0 relation is simply the cross product A0 ⇥ A0. Hence following trivially

hold:

8(a, b 2 A0).vis0(a, b)) sameobj0(a, b) G1

8(a 2 A0).sameobj0(a, a) G2

8(a, b 2 A0).sameobj0(a, b)) sameobj0(b, a) G3

135

Finally, from H3, H4, H6 and H10, we have transitivity for so0:

8(a, b, c 2 A0).so0(a, b) ^ so0(b, c)) so0(a, c) G4

Well-formedness of E0 follows from G0� 4.

We now define causal consistency property of the store formally:

Definition 5.4.1 Given an execution E = (A,vis,so,sameobj), a store ⇥ is said to be

causally consistent under an execution if and only if:

8(r 2 dom(⇥)).8(⌘ 2 ⇥(r)).

8(a 2 A).hbo(a, ⌘)) a 2 ⇥(r) H20

Where, hbo = (vis [soo)+

The following theorem proves that our operational semantics correctly enforce
ec

,

cc

, and
sc

guarantees:

Theorem 5.4.1 (Soundness Modulo Classification) For every well-formed exe-

cution state E, for every store ⇥ that is causally consistent under E, and for every

contract class ⌧ 2 {ec, cc, sc}, if:

(E,⇥, hs, i, op
⌧

:: �i k ⌃) ⌘�! (E0,⇥0, hs, i+ 1, �i k ⌃)

then (i) E0 is well-formed, and (ii) E0 |=
⌧

[⌘/⌘̂]

Proof. By case analysis on the derivation:

(E,⇥, hs, i, op
⌧

:: �i k ⌃) ⌘�! (E0,⇥0, hs, i+ 1, �i k ⌃)

Cases:

• Case [EC]: Hypotheses:

⌧ = EventuallyConsistent H0

⇥ ` (E, hs, i, opi) r

,�! (E0, ⌘) H1

136

Goal (i) follows from H1 and lemma 5.4.1. Goal (ii) is the following:

E0 |= 8a, b. hbo(a, b) ^ vis(b, ⌘)) vis(a, ⌘) G0

Let A0 = E0.A, vis0 = E0.vis, so0 = E0.so, and hbo0 = (so0 [vis0)+. By inversion on

H1, we get the following hypotheses:

A0 = A [{⌘} H2

vis0 = ⇥(r)⇥ ⌘ [vis H3

r 2 dom(⇥) H4

sameobj0 = A0 ⇥ A0 H5

Since E0 defines A0 as the universe of values. Therefore, the goal can be rewritten:

8(a, b 2 A0).E 0 |= [[hbo(a, b) ^ vis(b, ⌘)]]) [[vis(a, ⌘)]] G1

New hypotheses after intros :

a 2 A0 H6

b 2 A0 H7

And new goal:

E 0 |= [[hbo(a, b) ^ vis(b, ⌘)]]) [[vis(a, ⌘)]] G2

Since (M |= A) B), (M |= A)M |= B), we prove G0 by proving:

(E0 |= hbo(a, b) ^ vis(b, ⌘))) (E0 |= vis(a, ⌘)) G3

After intros:

E0 |= hbo(a, b) ^ vis(b, ⌘) H8

Since E0 defines hbo0 and vis0 as interpretations for hbo and vis respectively, we

have:

hbo0(a, b) ^ vis0(b, ⌘) H9

137

And the goal is:

vis0(a, ⌘) G4

Inversion on H9:

hbo0(a, b) H10

vis0(b, ⌘) H11

Since ⌘ is unique, from H3 and H11 we have the following:

b 2 ⇥(r) H12

Since a, b 6= ⌘, we have that hbo0(a, b)) hbo(a, b). Since ⇥ is causally consistent

under E, using H10 and H12 we derive the following:

a 2 ⇥(r) H13

Now, from H3 and H13, we deduce:

(a, ⌘) 2 vis0

which is what needs to be proven (G4).

• Case [CC]: Hypotheses:

⌧ = CausallyConsistent H14

⇥ ` (E, hs, i, opi) r

,�! (E0, ⌘) H15

E0.so(⌘) ✓ ⇥(r) H16

Goal (i) follows from H15 and lemma 5.4.1. We now prove Goal (ii). Expanding

the definition of
cc

, goal is the following:

E0 |= 8a. hbo(a, ⌘)) vis(a, ⌘) G5

138

Let A0 = E0.A, vis0 = E0.vis, so0 = E0.so, and hbo0 = (so0 [vis0)+. By inversion on

H15, we get the following:

A0 = A [{⌘} H17

vis0 = ⇥(r)⇥ ⌘ [vis H18

{⌘0} = A(SessID=s, SeqNo=i�1)

so0 = (so�1(⌘0) [⌘0)⇥ {⌘} [so H19

sameobj0 = A0 ⇥ A0 H20

Expanding |= followed by intros on G5 yields a context with following hypothe-

ses:

a 2 A0 H21

hbo0(a, ⌘) H22

And the goal is the following:

vis0(a, ⌘) G6

Since happens-before is transitive, by inversion on H22, we get two cases5:

– SCase 1: Hypotheses:

(so0 [vis0)(a, ⌘) H23

Note that we Inversion on H23 leads to two subcases. In one case, we

assume vis0(a, ⌘) and try to prove the goal G6. The proof for this case

mimics the proof for Case [EC]. Alternatively, in second case, we assume:

so0(a, ⌘) H24

and prove G6. From H24 and H16, we infer:

a 2 ⇥(r) H25

5Recall that we only consider single replicated object in our formalization. Accordingly, for any
execution E = (A,vis,so,sameobj), we have sameobj = A⇥A. Since, soo = so\sameobj and so ✓ A⇥A,
we use so and soo interchangeably in proofs.

139

Now, from H25 and H18 we know:

(a, ⌘) 2 vis0

which is the goal (G6). 26

– SCase 2: Hypotheses (after abbreviating the occurrence of(so0 [vis0)+ as

hbo’):

9(c 2 A0).hbo0(a, c) ^ (so0 [vis0)(c, ⌘) H27

Inverting H27, followed by expanding so0 [vis0:

c 2 A0 H28

hbo0(a, c) ^ (so0(c, ⌘) _ vis0(c, ⌘)) H29

Inverting the disjunction in H29, we get two cases:

∗ SSCase R: Hypothesis is

hbo0(a, c) ^ vis0(c, ⌘) H30

Observe that hypothesis H30 and current goal (G6) are same as hy-

pothesis H9 and goal (G4) in Case [EC]. The proof for this SSCase

is also the same.

∗ SSCase L: Hypothesis is

hbo0(a, c) ^ so0(c, ⌘) H31

Inverting H31:

hbo0(a, c) H32

so0(c, ⌘) H33

From H33 and H16, we infer:

c 2 ⇥(r) H34

140

Since a, c 6= ⌘, we know that hbo0(a, c)) hbo(a, c). Since ⇥ is causally

consistent under E, using H32 and H34 we derive the following:

a 2 ⇥(r) H35

Proof follows from H35 and H18.

• Case [SC]: Hypotheses:

⌧ = StronglyConsistent H36

⇥ ` (E, hs, i, opi) r

,�! (E0, ⌘) H37

E.A ✓ ⇥(r) H38

dom(⇥0) = dom(⇥) H39

8r0 2 dom(⇥0).⇥0(r0) = ⇥(r0) [{⌘} H40

Let A0 = E0.A, vis0 = E0.vis, so0 = E0.so, and hbo0 = (so0 [vis0)+. Inversion on

H37 gives:

A0 = A [{⌘} H41

vis0 = ⇥(r)⇥ ⌘ [vis H42

{⌘0} = A(SessID=s, SeqNo=i�1)

so0 = (so�1(⌘0) [⌘0)⇥ {⌘} [so H43

sameobj0 = A0 ⇥ A0 H44

Goal (i) follows from H37 and Lemma 5.4.1. Expanding the definition of
sc

,

followed by expanding |= relation, and then doing intros, we get the following

context:

a 2 A0 H45

And the goals are following:

sameobj0(a, ⌘)) hbo0(a, ⌘) _ hbo0(⌘, a) _ a = ⌘) G7

hbo0(a, ⌘)) vis0(a, ⌘) G8

hbo0(⌘, a)) vis0(⌘, a) G9

From H41 and H45, we know that either a = ⌘ or a 2 A. When a = ⌘:

141

– G7 follows trivially

– From lemma 5.4.1, we know that hbo0 is acyclic. Hence hbo0(⌘, ⌘) = false.

Therefore, G8� 9 are valid vacuously.

When a 2 A:

– Intros on G7 gives following hypothesis:

sameobj0(a, ⌘)

From H38 we know that a 2 ⇥(r). Using H42, we derive:

vis0(a, ⌘) H46

Introducing disjunction:

(vis0 [so0)(a, ⌘) H47

Now, since hbo0 = (vis0 [so0)+, proof follows from last hypothesis.

– Intros on G8 gives following hypothesis:

hbo0(a, ⌘)

From H38 we know that a 2 ⇥(r). Using H42, we derive:

vis0(a, ⌘) H48

Which proves G8.

– Intros on G9 gives:

hbo0(⌘, a) H49

From lemma 5.4.1, we know that E0 is well-formed. Hence:

¬hbo0(a, a) H50

142

Since sameobj0 = A0 ⇥ A0, we have:

sameobj0(a, ⌘) H51

Using previous hypothesis, we can reuse the proof for G7 to derive:

hbo0(a, ⌘) H52

Since hbo0 is a transitive relation, from H49 and H52, we derive:

hbo0(a, a) H53

H53 and H50 are contradicting hypothesis. Proof follows.

We now show that every configuration of the store that is reachable via the reduction

relation (�!) is causally consistent.

Theorem 5.4.2 (Causal Consistency Preservation) For every well-formed exe-

cution state E, and a store ⇥ that is causally consistent under E, if:

(E,⇥, hs, i, op
⌧

:: �i k ⌃) ⌘�! (E0,⇥0, hs, i+ 1, �i k ⌃)

then ⇥0 is causally consistent under E0.

Proof. By case analysis on on:

(E,⇥, hs, i, op
⌧

:: �i k ⌃) ⌘�! (E0,⇥0, hs, i+ 1, �i k ⌃)

Cases:

143

• Case [EffVis]: Final execution state is same as the initial (i.e., E0 = E).

Therefore, we need to prove that new store configuration ⇥ is causally consistent

under E = (A,vis,so,sameobj). Hypotheses:

r 2 ReplID H0

⌘ 2 A H1

⌘ /2 ⇥(r) H2

E.vis�1(⌘) [E.so�1(⌘) ✓ ⇥(r) H3

⇥0 = ⇥ [[r 7! {⌘} [⇥(r)] H4

8(r 2 dom(⇥)).8(⌘ 2 ⇥(r)).

8(a 2 A).hbo(a, ⌘)) a 2 ⇥(r) H5

From H4 and H5, it su�ces to prove:

8(a 2 A).hbo(a, ⌘)) a 2 ⇥0(r) G0

After intros, hypotheses:

a 2 A H6

hbo(a, ⌘) H7

Goal:

a 2 ⇥0(r) G1

Inversion on H7 leads to two cases:

– SCase a directly precedes ⌘ : Hypothesis:

(vis [so)(a, ⌘) H8

From H3 and H8, we conclude that a 2 ⇥0(r).

– SCase a transitively precedes ⌘: Hypothesis:

9(c 2 A).hbo(a, c) ^ (vis [so)(c, ⌘) H9

144

Inverting H9:

c 2 A H10

hbo(a, c) H11

(vis [so)(c, ⌘) H12

From H3 and H12, we have:

c 2 ⇥0(r) H13

From H5, H13 and H11, we conclude that a 2 ⇥0(r).

• Cases [EC] and [CC]: Store configuration (⇥) remains unchanged. Further, no

new happens before order is added either among existing e↵ects, or from the

newly generated e↵ect to existing e↵ects. Consequently, proof is trivial.

• Case [SC]: Let E = (A,vis,so,sameobj) and E0 = (A0, vis0, so0, sameobj0). Hypothe-

ses:

r 2 ReplID H14

⌧ = StronglyConsistent() H15

⇥ ` (E, hs, i, opi) r

,�! (E0, ⌘) H16

A ✓ ⇥(r) H17

dom(⇥0) = dom(⇥) H18

8r0 2 dom(⇥0).⇥0(r0) = ⇥(r0) [{⌘} H19

8(r0 2 dom(⇥)).8(⌘0 2 ⇥(r0)).

8(a 2 A).hbo(a, ⌘0)) a 2 ⇥(r0) H20

The goal:

8(r0 2 dom(⇥0)).8(⌘0 2 ⇥0(r0)).

8(a 2 A0).hbo0(a, ⌘0)) a 2 ⇥0(r0) G2

145

Inverting H16:

A0 = A [{⌘} H21

vis0 = ⇥(r)⇥ ⌘ [vis H22

{⌘0} = A(SessID=s, SeqNo=i�1)

so0 = (so�1(⌘0) [⌘0)⇥ {⌘} [so H23

sameobj0 = A0 ⇥ A0 H24

Using H19 and H20, we can reduce the goal (G2) to:

8(r0 2 dom(⇥0)).8(a 2 A0).hbo0(a, ⌘)) a 2 ⇥0(r0) G3

After intros, hypotheses:

r0 2 dom(⇥0) H25

a 2 A0 H26

hbo0(a, ⌘) H27

Goal:

a 2 ⇥0(r0) G4

From H26 and H21, we know that either a 2 A or a = ⌘.

– If a 2 A, then from H17, we know that a 2 ⇥(r0). However, from H19 we

know that ⇥(r0) ⇢ ⇥0(r0), which lets us conclude that a 2 ⇥0(r0).

– If a = ⌘, then H27 is hbo0(⌘, ⌘). However, from lemma 5.4.1 we know that

E0 is well-formed, which means that hbo0 is acyclic. Hence, a contradiction.

Proof follows from contradiction.

Corollary 5.4.1 (Soundness) For every well-formed execution state E, for every

store ⇥ that is causally consistent under E, for every contract class ⌧ 2 {ec, cc, sc},

and for every consistency contract in the contract class ⌧ , If:

(E,⇥, hs, i, op
⌧

:: �i k ⌃) ⌘�! (E0,⇥0, hs, i+ 1, �i k ⌃)

then (i) E0 is well-formed, (ii) ⇥0 is causally consistent under E0, and (iii) E0 |= [⌘/⌘̂]

Proof. Follows from Theorems 5.3.1, 5.4.2, and 5.4.1.

146

5.5 Transaction Contracts

While contracts on individual operations o↵er the programmer object-level declar-

ative reasoning, real-world scenarios often involve operations that span multiple ob-

jects. In order to address this problem, several recent systems [36, 105, 106] have

proposed eventually consistent transactions in order to compose operations on mul-

tiple objects. However, given that classical transaction models such as serializabil-

ity and snapshot isolation require inter-replica coordination, these systems espouse

coordination-free transactions that remain available under network partitions, but

only provide weaker isolation guarantees. Coordination-free transactions have intri-

cate consistency semantics and widely varying runtime overheads. As with operation-

level consistency, the onus is on the programmer to pick the correct transaction kind.

This choice is further is complicated by consistency semantics of individual operations.

5.5.1 Syntax and Semantics Extension

Quelea automates the choice of assigning the correct and most e�cient transac-

tion isolation level. Similar to contracts on individual operations, the programmer

associates contracts with transactions, declaratively expressing its consistency spec-

ification. We extend the contract language with a new term under quantifier-free

propositions - txn S1 S2, where S1 and S2 are sets of e↵ects, and introduce a new

primitive equivalence relation sametxn that holds for e↵ects from the same transaction.

txn{a, b}{c, d} is just syntactic sugar for sametxn(a, b) ^ sametxn(c, d) ^ ¬sametxn(a, c),

where a and b considered to belong to the current transaction.

We assume that operations not part of any transaction belong to their own unique

transaction. While transactions may have varying isolation guarantees, we make the

standard assumption that all transactions provide atomicity. Hence, we include the

following axioms in �:

• Same transactions is an equivalence relation:

147

– 8a. sametxn(a, a).

– 8a, b. sametxn(a, b)) sametxn(b, a).

– 8a, b, c. sametxn(a, b) ^ sametxn(b, c)) sametxn(a, c).

• Atomicity of transaction:

– 8a, b, c. txn{a}{b, c} ^ sameobj(b, c) ^ vis(b, a)) vis(c, a).

• Transaction does not span across sessions:

– 8a, b. sametxn(a, b)) so(a, b) _ so(b, a) _ a = b.

• Transactions are contiguous:

– 8a, b, c. sametxn(a, c) ^ so(a, b) ^ so(b, c)) sametxn(a, b).

The semantics of the atomicity axiom is illustrated in Figure 5.9(a).

5.5.2 Transactional Bank Account

In order to illustrate the utility of declarative reasoning for transactions, consider an

extension of our running example to use two accounts (objects) – current (c) and sav-

ings (s). Each account provides operations withdraw , deposit and getBalance ,

with the same contracts as defined previously. We consider two transactions –

save(amt) , which transfers amt from current to savings, and totalBalance , which

returns the sum of the balances of individual accounts. Our goal is to ensure that

totalBalance returns the result obtained from a consistent snapshot of the object

states. The Quelea code for the transactions is given below:

148

1 save amt =

2 x $(classify sv)

3 atomically x $ do

4 b withdraw c amt

5 when b $ deposit s amt

1 totalBalance =

2 x $(classify tb)

3 atomically x $ do

4 b1 getBalance c

5 b2 getBalance s

6 return b1 + b2

sv

and
tb

are the contracts on the corresponding transactions. The function

classify assigns the contracts statically to one of the transaction isolation levels

o↵ered by the store; $() is meta-programming syntax for splicing the result into

the program. The atomically construct invokes the enclosing operations at the

given isolation level x, ensuring that the e↵ects of the operations are made visible

atomically.

While making both transactions serializable would ensure correctness, distributed

stores rarely o↵er serializable transactions since it is unavailable and hinders scal-

ability [105]. As we will see, these transactions can be satisfied with much weaker

isolation guarantees. Despite the atomicity o↵ered by the transaction, anomalies are

still possible. For example, the two getBalance operations in totalBalance trans-

actions might be served by di↵erent replicas with distinct set of committed save

transactions. If the first(second) getBalance operation witness a save transaction

that is not witnessed by the second(first) getBalance operation, then the balance

returned will be less(greater) than the actual balance. It is not immediately apparent

which weakest isolation guarantee will be su�cient to prevent the anomaly.

Instead, Quelea requires the programmer to simply state the consistency require-

ment as a contract. Since we would like both the getBalance operations to witness

the same set of save transactions, we define the constraint on totalBalance trans-

action
tb

as:

tb

= 8a : getBalance , b : getBalance ,

(c : withdraw _ deposit), (d : withdraw _ deposit).

txn{a, b}{c, d} ^ vis(c, a) ^ sameobj(d, b)) vis(d, b)

149

x.b x.c

Txn 2
x.a

vis vis

Txn 1

(a) Atomicity

x.c y.d

Txn 2
x.a

vis vis

Txn 1

y.b
so

(b) Monotonic Atomic

View

x.c y.d

Txn 2
x.a

vis vis

Txn 1

y.b

(c) Repeatable Read

Figure 5.9. Semantics of transaction contracts. x and y are distinct
objects. The dotted line represents the visibility requested by the
contracts.

The key idea in the above definition is that the txn primitive allows us to relate

operations on di↵erent objects. The save transaction only needs to ensure that the

two writes it performs are made visible atomically. Since this is ensured by combining

them in a transaction, save does not require any additional constraints, and 1 is

simply true.

5.5.3 Coordination-free Transactions

In order to illustrate the utility of transaction contract classification, we identify

three popular coordination-free transaction semantics – Read Committed (RC) [107],

Monotonic Atomic View (MAV) [105] and Repeatable Read (RR) [107], and illustrate

the classification strategy. Our technique can indeed be applied to a di↵erent isolation

level lattice.

A transaction with ANSI RC semantics only witnesses committed operations. Let

us assume that the store bu↵ers updates until all the updates from the transaction

are available at a replica. If the transaction commits, the bu↵ered updates are made

visible. Otherwise, the bu↵ered updates are discarded. RC does not entail any further

150

isolation guarantees. Hence, a store implementing RC does not require inter-replica

coordination. We can express RC as follows:

rc

= 8a, b, c. txn{a}{b, c} ^ sameobj(b, c) ^ vis(b, a)) vis(c, a)

Notice that the above definition is the same as the atomicity guarantee of transaction

described in Section 5.5.1. The save is an example for RC transaction.

MAV semantics ensures that if some operation in a transaction T1 witnesses the

e↵ects of another transaction T2, then subsequent operations in T1 will also witness

the e↵ects of T2. MAV semantics is useful for maintaining the integrity of foreign

key constraints, materialized views and secondary updates. In order to implement

MAV, a store only needs to keep track of the set of transactions S
t

witnessed by the

running transaction, and before performing an operation at some replica, ensure that

the replica includes all the transactions in S
t

. Hence, MAV is coordination-free. MAV

semantics is captured with the following contract:

mav

= 8a, b, c, d. txn{a, b}{c, d} ^ so(a, b) ^ vis(c, a) ^ sameobj(d, b)) vis(d, b)

whose semantics is illustrated in the Figure 5.9(b).

ANSI RR semantics requires that the transaction witness a snapshot of the data

store state. Importantly, this snapshot can be obtained from any replica, and hence

RR is coordination-free. An example for such a transaction is the totalBalance

transaction. The semantics of RR is captured by the following contract:

rr

= 8a, b, c, d. txn{a, b}{c, d} ^ vis(c, a) ^ sameobj(d, b)) vis(d, b)

whose semantics is illustrated in the Figure 5.9(c).

5.5.4 Classification

Similar to operation-level contracts, with respect to  relation, the coordination-

free transaction semantics described here form a total order:
rc


mav


rr

. The

151

Quelea Replicated Store

Eventually Consistent Distributed Store • O�-the-shelf store
• Failure handling
• Persistence (on-disk)
• Eventual consistency

Shim Layer (RDTs) • So�-state (in-memory)
• Datatype operations
• Summarization
• Stronger consistency

select insert
update

Clients

obj.oper(args)

res
Business Logic (incl. Transactions)

REST
API

Figure 5.10. Implementation model.

transaction classification is also similar to the operation-level contract classification

presented in Figure 5.6; given a contract on a transaction, we start from the weakest

transaction contract
rc

, and progressively compare its strength to the known trans-

action contracts until we find a isolation level under which can be safely discharged.

Otherwise, we report a type error.

5.6 Implementation

Quelea is implemented as a shallow extension of GHC Haskell and runs on top of

Cassandra, an o↵-the-shelf eventually consistent distributed data (or backing) store

responsible for all data management issues (i.e., replication, fault tolerance, availabil-

ity, and convergence). Template Haskell is used implement static contract classifica-

tion, and proof obligations are discharged with the help of the Z3 [108] SMT solver.

Figure 5.10 illustrates the overall system architecture.

Replicated data types and the stronger consistency semantics are implemented and

enforced in the shim layer. Our implementation supports eventual, causal, and strong

consistency for data type operations, and RC, MAV, and RR semantics for transac-

tions. This functionality is implemented entirely on top of the standard interface

152

exposed by Cassandra. From an engineering perspective, leveraging an o↵-the-shelf

data store enables an implementation comprising roughly only 2500 lines of Haskell

code, which is packaged as a library.

5.6.1 Shim Layer

The shim layer maintains a causally consistent in-memory snapshot of a subset of

objects in the backing store, by explicitly tracking dependencies introduced between

the e↵ects due to visibility, session and same transaction relations. The dependence

tracking is similar to the techniques presented in [109] and [35], with the usual op-

timizations making use of transitivity properties for minimizing the number of de-

pendencies. Shim layer performs the reductions associated with replicated datatype

operations corresponding to client requests. As the backing store provides durabil-

ity, convergence and fault tolerance, each shim layer node simply acts as a soft-state

cache, and can safely be terminated at any instant. Similarly, more shim layer nodes

can be spawned on demand.

5.6.2 Operation Consistency

Every e↵ect generated as a result of an e↵ectful operation on an object inserts a new

row (o, e, vis, txn, val) into the backing store, where o and e are object and (unique)

e↵ect identifiers, vis is the set of identifiers of e↵ects visible to this operation, txn

is an optional transaction identifier, and val is the value associated with the e↵ect

(eg: Withdraw 50). The shim layer periodically fetches updates from the backing

store for those objects which were accessed since updates were last fetched. Since

causally consistent operations require an up-to-date view of the current session, the

shim layer node synchronously fetches operations if the causally preceding operations

in the current session are not available in the cache. Strongly consistent operations

are performed after obtaining exclusive leases on objects. The lease mechanism is im-

153

m

e1 e2 e3

 atomically {

 o1.oper1(v1); //Emits effect e1

 o2.oper2(v2); //e2

 o3.oper3(v3); //e3

 }

m

e1 e2

During transaction execution After transaction completion

Figure 5.11. Implementing atomicity semantics. Dotted circle repre-
sents e↵ects not yet inserted into the backing store.

plemented with the help of Cassandra’s support for conditional updates and expiring

columns.

5.6.3 Transactions

While Cassandra o↵ers all-or-nothing failure semantics for multiple writes through

batching, readers may witness the initial write while the batch is in progress. Quelea

implements atomic visibility by exploiting shim layer causality guarantee – an e↵ect

is included only if all the e↵ects if depends on are also included.

Consider the example given in Figure 5.11. For every transaction in Quelea, we

instantiate a special transaction marker e↵ect m. But importantly, do not insert

into the backing store. m is included as a dependence to every e↵ect generated in

the transaction. In the figure, the graph on the left shows the state of the store

in the middle of a transaction. Each circle represents an e↵ect. The dotted circle

154

indicates that the e↵ect has been instantiated, but has not yet been inserted into

the store. Since the causally preceding e↵ect m has not yet been written to the

store, no operation will witness e1 and e2 while the transaction in progress. After

the transaction has finished execution, we insert m into the backing store, marking

all the e↵ects from the transactions as a dependence for m. Now any replica which

includes one of the e↵ects from the transaction must include m, and transitively must

include every e↵ect from the transaction. This ensures atomicity and satisfies the RC

requirement.

The above scheme prevents a transaction from witnessing its own e↵ects. This might

conflict with the causality requirement on the operations. Hence, transactions piggy-

back the previous e↵ects from the same transaction for each request. MAV semantics

is implemented by keeping track of the set of transaction markers M witnessed by

the transaction, and before performing an operation at some replica, ensuring that

M is a subset of the transaction markers included at that replica. If not, the missing

e↵ects are synchronously fetched. RR semantics is realized by capturing a optimized

snapshot of the state of some replica; each operation from an RR transaction is applied

to this snapshot state. Any generated e↵ects are added to this snapshot.

5.6.4 Summarization

The main challenge in realizing an e�cient implementation of operation-based repli-

cated data types is that the state of the object i.e., the set of e↵ects grows with every

e↵ectful operation on the object. If left unchecked, the operations slow down over

time, until the shim layer memory or backing store disk runs out of memory. Luckily,

the state of the operation-based replicated data type can often be summarized to an

observably equivalent smaller state. For example,

• A last-writer-wins register with multiple updates where v is the value of the last

write is observably equivalent to a register with a single write v.

155

• A bank account with a series of deposits and withdraws with current balance b

is equivalent to a bank account with a single deposit of b.

• A set with collection of add and remove operations is equivalent to a set with

a series of add operations of live elements from the original set.

Since the semantics of summarization depends on the semantics of the data type,

we expect the programmer to provide a summarization function for each RDT with

the following type:

1 summarize :: [e] ! [e]

with the intention that the length of the result is smaller that the length of the

argument. We utilize the summarize function to summarize the object state both in

the shim layer node and the backing store, typically when the number of e↵ects on

an object crosses a tunable threshold. Shim layer summarization is straight-forward;

a summarization thread takes the local lock on the object, and replaces its state with

the summarized state. The shim layer node remains unavailable for that particular

object during summarization (usually a few milliseconds).

Compared to the shim layer, summarization in the backing store is more compli-

cated. The main challenge is that unlike the shim layer, summarization cannot run as

an atomic operation. Summarization in the backing store involves deleting previously

inserted rows and inserting new rows, where each row corresponds to an e↵ect. It

is essential that concurrent client operations are permitted, but are not allowed to

witness the intermediate state of the summarization process.

To this end, we adopt a novel summarization strategy that builds on the causality

property of the store. Figure 5.12 illustrates the summarization strategy. Suppose

the original set of e↵ects on an object are o1, o2 and o3. When summarized, the

new e↵ects yielded are n1 and n2. We first instantiate a summarization marker s,

and similar to transaction marker, we do not insert it into the store immediately. We

insert the new e↵ects n1 and n2, with strong consistency, including s as a dependence.

156

summarize [o1,o2,o3] = [n1,n2]

o1 o2

o3

Before summarization

o1 o3o2

During summarization

sn2 n2

After summarization, before deletion

o1 o3o2

sn2 n2

Figure 5.12. Summarization in the backing store. Dotted circle rep-
resents e↵ects not yet inserted into the backing store.

Since s is not yet in the store, the new e↵ects are not made visible to the clients.

Then we insert s with strong consistency, including the original e↵ects o1, o2 and o3 as

dependence. Strongly consistent insertions ensure that a shim layer node witnessing

s on some object must also witness n1 and n2 on the same object. A shim layer

node which witnesses all the e↵ects removes the original e↵ects from its cache since

they are superseded by the new e↵ects. Finally, the old e↵ects are deleted from

the backing store. This process ensures that clients either witness the old or the

new e↵ects, but not both; the summarization process appears to be atomic from the

clients perspective.

5.7 Evaluation

In this section, we evaluate Quelea programs, report their contract profile and

illustrate the performance benefits of fine-grained consistency classification on oper-

ations and transactions. We also evaluate on the impact of the summarization. We

implemented the following applications, which includes individual RDTs as well as

larger applications composed of several RDTs:

157

• LWW register: A last-write-wins register that provides read and write op-

erations. Each write is associated with a timestamp, which is used to resolve

conflicting concurrent writes – newer write wins.

• DynamoDB register: A integer register that allows eventual and strong puts

and gets, conditional puts, increment and decrement operations.

• Bank account: Our running example, with savings and current accounts.

• Shopping list: Collaborative shopping list which allows adding and deleting

items.

• Online store: Models an online store with shopping cart and dynamically

changing item prices. Checkout process verifies that the customer only pays the

accepted price.

• RUBiS: An ebay-like auction site [110]. The application allows users to browse

items, bid for items on sale, and pay for items from a wallet modelled after a

bank account.

• Microblog: A twitter-like microblogging site, modelled after Twissandra [111].

The application allows adding a new user, adding and replying to tweets, fol-

lowing, unfollowing and blocking users, and fetching a user’s timeline, userline,

followers and following.

The distribution of contracts in these applications is given in Table 5.1. We see that

majority of the operations and transactions are classified as eventually consistent and

RC, respectively. Operation contracts are used to enforce integrity and visibility con-

straints on individual fields in the tables. Transactions are mainly used to consistently

modify and access related fields across tables. In Quelea, the contract classification

process is completely performed at compile time and has no overheads at runtime.

The proof obligations associated with contract classification is discharged through the

158

Table 5.1.
The distribution of classified contracts. #T refers to the number of
tables in the application. The columns 4-6 (7-9) represent operations
(transactions) assigned to this consistency (isolation) level.

Benchmark LOC #T EC CC SC RC MAV RR

LWW Reg 108 1 2 2 2 0 0 0

DynamoDB 126 1 3 1 2 0 0 0

Bank Account 155 1 1 1 1 1 0 1

Shopping List 140 1 2 1 1 0 0 0

Online store 340 4 9 1 0 2 0 1

RUBiS 640 6 14 2 1 4 2 0

Microblog 659 5 13 6 1 6 3 1

Z3 SMT Solver. Across our benchmarks, classifying a contract took 11.5 milliseconds

on average.

For our performance evaluation, we deploy Quelea applications in clusters, where

each cluster is composed of 5 fully replicated Cassandra replicas within the same

datacenter. We instantiate one shim layer node for every Cassandra replica, and

place it on the same VM as the Cassandra replica. Clients are instantiated on the

same data center as the store, and run transactions. We deploy the each node in

the cluster on c3.4xlarge Amazon EC2 instances. Our shim layer nodes are multi-

threaded, and we allocate 8 CPUs (out of 16 available) for each shim layer node.

The clients also run on c2.4xlarge instances. We call this 1DC configuration. For

our geo-distributed experiments (2DC), we instantiate 2 clusters, each with 5 nodes,

and place the clusters on US-east (Virginia) and US-west (Oregon). The average

inter-region latency was 85ms.

Figure 5.13 shows the performance of operations in bank account example as we in-

crease the number of clients in 1DC configuration. Our client workload was generated

159

0 128 256 384 512 640 768 896 1024
Clients

0

40

80

120

160

200

La
te

n
cy

 (
m

s)

EC

CC

SC

Quelea

(a) Latency

0 128 256 384 512 640 768 896 1024
Clients

1

2

3

4

5

6

7

8

9

T
h

ro
u

g
h

p
u

t
(X

1
0

0
0

 o
p

s/
s) EC

CC

SC

Quelea

(b) Throughput

0 1 2 3 4 5 6 7 8 9
Throughput (X 1000 ops/s)

0

20

40

60

80

100

120

140

160

180

La
te

n
cy

 (
m

s)

EC

CC

SC

Q

(c) Throughput vs. Latency

Figure 5.13. Bank account performance.

using YCSB benchmark [112]. The benchmark uniformly chose from 100,000 keys,

where the operation spread was 25% withdraw, 25% deposit and 50% getBalance,

which corresponds to the default 50:50 read:write mix in YCSB. We increased the

number of clients from 128 to 1024, and each experiment ran for 180 seconds.

The lines marked EC and CC correspond to all operations being assigned EC and

CC consistency levels. These levels compromise correctness as withdraw has to be and

SC operation. The line SC corresponds to a configuration where all operations are

strongly consistent; this ensures application correctness. Quelea corresponds to our

implementation, which classifies operations based on their contracts. Both Quelea

and SC ensure correctness. However, with 512 clients, Quelea implementation was

160

within 41% of latency and 18% of throughput of EC, whereas SC operations had

162% higher latency and 52% lower throughput than EC operations. Observe that

in the Figure 5.13(c) which compares throughput vs. latency, there is a point in each

case after which the latency increases while the throughput decreases. This indicates

a point after which the store becomes saturated with client requests.

In 2DC configuration (not-shown), the average latency of SC operations with 512

clients increased by 9.4⇥ due to the cost of geo-distributed coordination, whereas

Quelea operations were only 2.2⇥ slower, mainly due to the increased cost of

withdraw operations. Importantly, the latency of getBalance and deposit re-

mained almost the same. This illustrates the benefit of fine-grained contract classifi-

cation in Quelea.

We compare the performance of di↵erent transaction isolation level choices in Fig-

ure 5.14 using the LWW register. The numbers were obtained under 1DC config-

uration. The YCSB workload was modified to issue 10 operations per transaction,

with the default 50:50 read:write mix. Each operation is assumed to have eventual

consistency. NoTxn corresponds to a configuration that does not use transactions.

Compared to this RC is only 12% shower in terms of latency with 512 clients, where

as RR is 2.3X slower. The di↵erence between RC and NoTxn is due to the meta-data

overhead of recording transaction information in the object state. For RR transac-

tion, the cost of capturing and maintaining the snapshot in an RR transaction is the

biggest source of overhead.

We also compared (not shown) the performance of EC LWW operations directly

against Cassandra (our backing store), which uses last-writer-wins as the only con-

vergence semantics. While Cassandra provides no stronger-than-eventual consistency

properties, Quelea was within 30%(20%) of latency(throughput) of Cassandra with

512 clients, illustrating that the programmers only have to pay a minimal overhead

for the expressive and stronger Quelea programming model.

Figure 5.15 compares the Quelea implementation of RUBiS in 1DC configuration

against a single replica (NoRep) and strongly replicated (StrongRep) 1DC deploy-

161

0 128 256 384 512 640 768 896 1024
Clients

0

40

80

120

160

200

La
te

n
cy

 (
m

s)

NoTxn

RC

MAV

RR

(a) Latency

0 128 256 384 512 640 768 896 1024
Clients

1

2

3

4

5

6

7

8

9

T
h

ro
u

g
h

p
u

t
(X

1
0

0
0

 o
p

s/
s) NoTxn

RC

MAV

RR

(b) Throughput

0 1 2 3 4 5 6 7 8 9
Throughput (X 1000 ops/s)

0

20

40

60

80

100

120

140

160

180

La
te

n
cy

 (
m

s)

NoTxn

RC

MAV

RR

(c) Throughput vs. Latency

Figure 5.14. LWW register transaction performance.

ment. The benchmark was RUBiS bidding mix, which has 15% read-write interac-

tions, which is representative of the auction workload. Without replication, NoRep

trivially provides strong consistency. However, this deployment does not scale beyond

1750 operations per second. Strong replication o↵ers better throughput at the cost

of greater latency due to inter-replica coordination. Quelea deployment o↵ers the

benefit of replication, while only paying the cost of coordination when necessary.

Finally, we study the impact of summarization in Figure 5.16. We utilize 128

clients and a single Quelea replica, with all the clients operating on the same LWW

register to stress test the summarization mechanism. The shim layer cache (mem) of

operations is summarized every 64 updates, while the updates in the backing store

162

0 128 256 384 512 640 768 896 1024
Clients

0

40

80

120

160

200

La
te

n
cy

 (
m

s)

Quelea

NoRep

StrongRep

(a) Latency

0 128 256 384 512 640 768 896 1024
Clients

0

1

2

3

4

5

6

7

T
h

ro
u

g
h

p
u

t
(X

1
0

0
0

 o
p

s/
s) Quelea

NoRep

StrongRep

(b) Throughput

0 1 2 3 4 5 6 7
Throughput (X 1000 ops/s)

0

20

40

60

80

100

120

140

160

180

La
te

n
cy

 (
m

s)

Quelea

NoRep

StrongRep

(c) Throughput vs. Latency

Figure 5.15. Rubis bidding mix performance.

(disk) are summarized every 4096 updates. Each point in the graph represents the

average latency of the previous 1000 operations. Each experiment is run for 60s.

The results show that without summarization, the average latency of operations

increase exponentially to almost 1 second, and only 13K operations were performed in

a minute. Since every operation has to reduce over the set of all previous operations,

with a ever growing set, the operations take increasingly more time to complete.

With summarization only in memory, the performance still degrades due to the cost

of fetching all previous updates from the backing store into the shim layer. Fetching

the latest updates is essential for SC operations. With both summarizations enabled,

we see that the latency does not increase over time, and we were able to perform 67K

163

0 1 2 3 4 5 6 7
Operations (X 10,000)

0

2

4

6

8

10

La
te

n
cy

 (
X

 1
0

0
 m

s)

No Sum

Mem Only

Mem & Disk

Figure 5.16. Impact of summarization.

operations. This graph illustrates the importance and e↵ectiveness of summarization

in Quelea.

5.8 Related Work

Operation-based RDTs have been widely studied in terms of their algorithmic prop-

erties [53, 54], and several systems utilize this model to construct distributed data

structures [10,113,114]. These systems typically propose to implement the datatypes

directly over a cluster of nodes, and only focus on basic eventual consistency. Hence,

these systems implement custom solutions for durability and fault-tolerance. Quelea

realizes RDTs stronger consistency models on top of o↵-the-shelf eventually consistent

distributed stores. In this respect,Quelea is similar to [109] where causal consistency

is achieved through a shim layer on Cassandra, which explicitly tracks and enforces

dependencies between updates. However, [109] does not support user-defined RDTs,

automatic contract classification and transactions.

Since eventual consistency alone is insu�cient to build correct applications, several

systems [104,113,115] propose a lattice of stronger consistency levels. Similarly, tra-

ditional database processing systems [107] and their replicated variants [105] propose

164

weaker isolation levels for performance. In these systems, the onus is on the developer

to choose the correct consistency(isolation) level for operations(transactions). Que-

lea relieves the developer of this burden, and instead expects contracts expressing

declarative visibility requirements.

Our contract language is inspired by the axiomatic description of RDT semantics

proposed by [54]. While they use axioms for formal verification of correctness of

an RDT implementation, we utilize them as a means for the user to express the

desired consistency guarantees in the application. Similar to their work, our contract

language does not incorporate real (i.e., wall-clock) time. Hence, it cannot describe

store semantics such as recency or bounded-staleness guarantees o↵ered by certain

stores [104].

Several conditions have been proposed to judge whether an operation on a repli-

cated data object needs coordination or not. [116] defines logical monotonicity as a

su�cient condition for coordination freedom, and proposes a consistency analysis that

marks code regions performing non-monotonic reasoning (eg: aggregations, such as

COUNT) as potential coordination points. [117] and [118] define invariant confluence

and invariant safety, respectively, as conditions for safely executing an operation

without coordination. [118] also proposes a program analysis that conservatively

marks operations as blue (coordination not required), while marking the remaining

as red (coordination required). UnlikeQuelea, these works focus on a coarse-grained

classification of consistency as eventual or strong, and do not focus on transaction

isolation levels. However, program analyses they propose relieve programmers of the

burden to tag operations with consistency levels. Indeed, we do consider automatic

inference of consistency contracts from application-specific integrity constraints as

the next step for Quelea.

165

5.9 Concluding Remarks

In this chapter, we have presented Quelea a shallow Haskell extension for declar-

ative programming over eventually consistent data stores. The key idea of Quelea

is the automatic classification of fine-grained consistency contracts on operations and

distributed transactions with respect to the consistency and isolation levels o↵ered

by the store. Our contract language is carefully crafted from a decidable subset

of first-order logic, enabling the use of automatic theorem prover to discharge the

proof obligations associated with contract classification. We realize an instantiation

of Quelea on top of o↵-the-shelf distributed store, Cassandra, and illustrate the

benefit of fine-grained contract classification by implementing and evaluating several

scalable applications.

166

6 CONCLUDING REMARKS AND FUTURE WORK

A strongly consistent view of data, which enables the programmer to treat parallel

and distributed architectures as a centralized system, is at odds with practical con-

cerns such as availability, coherence, latency, and partial failures. Hence, modern

multicore and distributed systems only provide weak consistency guarantees, belying

the semblance of a centralized system, which complicates concurrent programming.

In this dissertation, we presented three novel techniques for programming under weak

consistency. Aneris provides a coherent and managed shared memory for program-

mers on the non-cache coherent Intel SCC processor. �CML enables synchronous com-

munication to be utilized as an abstraction over asynchronous distributed systems.

Quelea permits declarative reasoning about consistency guarantees for programs

over eventually consistent data stores.

In this chapter, we present the future work. This discussion is split based on the

three contributions.

6.1 Aneris

The main hindrance to scalability of our Aneris collector is the stop-the-world

nature of the shared heap collection. While shared heap collections are infrequent

when compared to local collections, the pause time for shared heap collections reaches

almost one second due to (1) the uncached nature of the collection and (2) the cost of

synchronizing all the cores on a barrier. A natural extension to address this issue is to

make the shared heap collection concurrent similar to the design by Doligez et al. [67].

In a concurrent shared heap collection, the cores no longer need to synchronize on a

167

global barrier, and we could envision allocating a few of the available cores specifically

for concurrent shared heap collection.

Our globalization strategy lifts the entire transitive closure of the globalized ob-

ject to the shared heap. We have observed that this strategy although simple to

implement, globalizes far more memory than is actually shared between the cores.

This phenomenon has also been observed by Marlow et al. [46] in their local collector

design for Haskell. We can envision a strategy where only portions of the transi-

tive closure are globalized, with further globalization on demand. In this design, we

will have pointers from shared heap into local heaps (breaking the heap invariant).

We can treat such pointers similar to remembered stacks (Section 3.2.4), adding the

pointers into the local heap into a remembered set, so that they can be traced during

local GCs. Moreover, the abundance of concurrency in our programming model can

mask the latency associated with on-demand globalization, which involves cross-core

communication.

Finally, while our GC design is geared for circumventing the absence of cache coher-

ence, we get the added benefit of reduced pause times since each local heap is collected

independently. However, our local heap collections are indeed optimized for through-

put and optimal memory utilization. If latency is indeed the desired metric, we can

envision concurrent and incremental collection for the local heaps. In particular, the

independence of collection in the local heaps in Aneris allows the same execution to

utilize latency sensitive GC in a collection of cores with throughput optimized GC

in others. Thus, Aneris design is well-suited for mixed mode applications such as

web-browsers, where both latency and throughput are important for distinct parts of

the same program.

6.2 �CML

While �CML provides composable synchronous reasoning for asynchronous distributed

systems, the implementation does not address the challenge of partial failures in such

168

a setting. The key observation we make is that the dependence graph used for mon-

itoring the correctness of speculative execution can be persisted to create a check-

point [85] to recover from failures in a crash-restart mode. Such an implementation is

especially useful in the context of long running data analytics jobs or stateful stream

processing applications.

Currently, �CML treats references as side-e↵ecting operations. However, the tech-

niques used for speculative execution can naturally be extended to references [84]. In

particular, we will treat the reference write as an e↵ect, and record the old value of the

reference written as a node in the dependence graph. If the execution mis-speculates,

apart from restoring the thread state with saved continuations, we will restore the

state of the references as well.

The �CML model can also provide an alternative strategy for enforcing application-

level consistency guarantees for programs on top of eventually consistent distributed

stores. Indeed, distributed stores such as Bayou [113] and Google’s App Engine

datastore utilize speculative execution to recover stronger consistency guarantees.

Equipped with Quelea style contracts, �CML can bring speculative execution for

user-defined replicated data types.

6.3 Quelea

Contracts in Quelea are written by the programmer by mentally translating the

application level consistency specification into visibility constraints on e↵ects. Ideally,

we would like to automatically perform the translation from database integrity con-

straints to contracts capturing visibility obligations. For example, one might wish to

express that the balance in a replicated bank account never drops below zero, which

entails the visibility constraint that withdraw operations must be totally ordered.

The task would then be to discover the weakest contract that preserves the invari-

ants. An attractive approach to solving this problem is to utilize counter-example

guided invariant synthesis [119] to infer the contracts.

169

The summarization function for most data types turn out to be straight-forward.

Conway et al. [120] describe a program analysis technique to analyze Bloom pro-

grams to automatically derive the garbage collection procedure for message-passing

programs. It would be interesting to explore the applicability of a similar tech-

nique for deriving the summarization function for the RDTs. The combination of

these techniques allow programs for eventually consistent distributed stores to be ex-

pressed in the same way as traditional database manipulating programs such as SQL

or LINQ [121].

In our current work, we have utilized Cassandra as our backing store. However,

Quelea itself is an abstract model and can be mapped to a variety of backends. A

particularly attractive scenario is utilize Quelea to write programs on top of non-

cache coherent multicore processors like the Intel SCC. Since Quelea programming

model is built for eventually consistent loosely coupled setting, it can naturally express

programs for architectures like SCC. In particular, each core can operate completely

locally, and there is no need for the shared heap. The same Quelea program can be

compiled to a variety of backends depending upon the deployment platform.

REFERENCES

170

REFERENCES

[1] Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakantan, Arild Skjolsvold,
Sam McKelvie, Yikang Xu, Shashwat Srivastav, Jiesheng Wu, Huseyin Sim-
itci, Jaidev Haridas, Chakravarthy Uddaraju, Hemal Khatri, Andrew Edwards,
Vaman Bedekar, Shane Mainali, Rafay Abbasi, Arpit Agarwal, Mian Fahim ul
Haq, Muhammad Ikram ul Haq, Deepali Bhardwaj, Sowmya Dayanand, Anitha
Adusumilli, Marvin McNett, Sriram Sankaran, Kavitha Manivannan, and
Leonidas Rigas. Windows Azure Storage: A Highly Available Cloud Storage
Service with Strong Consistency. In Proceedings of the 23rd ACM Symposium
on Operating Systems Principles, SOSP ’11, pages 143–157. ACM, New York,
NY, USA, 2011.

[2] Amazon Elastic Compute Cloud, 2014. http://aws.amazon.com/ec2/.

[3] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. Learning from Mis-
takes: A Comprehensive Study on Real World Concurrency Bug Character-
istics. In Proceedings of the 13th International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS XIII,
pages 329–339. ACM, New York, NY, USA, 2008.

[4] Aaron Turon. Understanding and Expressing Scalable Concurrency. PhD thesis,
Northeastern University, Boston, Boston, MA, USA, 2013. AAI3558728.

[5] Hugh C. Lauer and Roger M. Needham. On the Duality of Operating System
Structures. SIGOPS Opererating Systetms Review, 13(2):3–19, April 1979.

[6] Tim Harris, Simon Marlow, and Simon Peyton Jones. Haskell on a Shared-
memory Multiprocessor. In Proceedings of the 2005 ACM SIGPLAN Workshop
on Haskell, Haskell ’05, pages 49–61. ACM, New York, NY, USA, 2005.

[7] John H. Reppy. Concurrent Programming in ML. Cambridge University Press,
New York, NY, USA, 1999.

[8] Matthew Fluet, Mike Rainey, John Reppy, Adam Shaw, and Yingqi Xiao. Man-
ticore: A Heterogeneous Parallel Language. In Proceedings of the 2007 Work-
shop on Declarative Aspects of Multicore Programming, DAMP ’07, pages 37–44.
ACM, New York, NY, USA, 2007.

[9] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakula-
pati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter
Vosshall, and Werner Vogels. Dynamo: Amazon’s Highly Available Key-value
Store. In Proceedings of 21st ACM SIGOPS Symposium on Operating Systems
Principles, SOSP ’07, pages 205–220. ACM, New York, NY, USA, 2007.

171

[10] Avinash Lakshman and Prashant Malik. Cassandra: A Decentralized Struc-
tured Storage System. SIGOPS Operating Systems Review, 44(2):35–40, April
2010.

[11] Basho Riak, 2014. http://basho.com/riak/.

[12] Milo M. K. Martin, Mark D. Hill, and Daniel J. Sorin. Why On-chip Cache
Coherence is Here to Stay. Communications of the ACM, 55(7):78–89, July
2012.

[13] Xavier Défago, André Schiper, and Péter Urbán. Total Order Broadcast
and Multicast Algorithms: Taxonomy and Survey. ACM Computing Surveys,
36(4):372–421, December 2004.

[14] Leslie Lamport. The Part-time Parliament. ACM Transactions on Computer
Systems, 16(2):133–169, May 1998.

[15] Irving L. Traiger, Jim Gray, Cesare A. Galtieri, and Bruce G. Lindsay. Trans-
actions and Consistency in Distributed Database Systems. ACM Transactions
on Database Systems, 7(3):323–342, September 1982.

[16] Mike Burrows. The Chubby Lock Service for Loosely-coupled Distributed Sys-
tems. In Proceedings of the 7th Symposium on Operating Systems Design and
Implementation, OSDI ’06, pages 335–350. USENIX Association, Berkeley, CA,
USA, 2006.

[17] L. Lamport. How to Make a Multiprocessor Computer That Correctly Exe-
cutes Multiprocess Programs. IEEE Transactions on Computers, 28(9):690–
691, September 1979.

[18] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A Correctness Con-
dition for Concurrent Objects. ACM Transactions on Programming Languages
and Systems, 12(3):463–492, July 1990.

[19] Christos H. Papadimitriou. The Serializability of Concurrent Database Updates.
Journal of the ACM, 26(4):631–653, October 1979.

[20] Delphine Demange, Vincent Laporte, Lei Zhao, Suresh Jagannathan, David
Pichardie, and Jan Vitek. Plan B: A Bu↵ered Memory Model for Java. In
Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL ’13, pages 329–342. ACM, New York,
NY, USA, 2013.

[21] Sewell, Peter and Sarkar, Susmit and Owens, Scott and Nardelli, Francesco
Zappa and Myreen, Magnus O. X86-TSO: A Rigorous and Usable Programmer’s
Model for x86 Multiprocessors. Communications of the ACM, 53(7):89–97, July
2010.

[22] Susmit Sarkar, Peter Sewell, Jade Alglave, Luc Maranget, and Derek Williams.
Understanding POWER Multiprocessors. In Proceedings of the 32nd ACM
SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’11, pages 175–186. ACM, New York, NY, USA, 2011.

172

[23] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber.
Mathematizing C++ Concurrency. In Proceedings of the 38th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’11, pages 55–66. ACM, New York, NY, USA, 2011.

[24] Stamatis G. Kavadias, Manolis G.H. Katevenis, Michail Zampetakis, and Dim-
itrios S. Nikolopoulos. On-chip Communication and Synchronization Mech-
anisms with Cache-integrated Network Interfaces. In Proceedings of the 7th
ACM International Conference on Computing Frontiers, CF ’10, pages 217–
226. ACM, New York, NY, USA, 2010.

[25] David Luebke, Mark Harris, Jens Krüger, Tim Purcell, Naga Govindaraju,
Ian Buck, Cli↵ Woolley, and Aaron Lefohn. GPGPU: General Purpose Com-
putation on Graphics Hardware. In ACM SIGGRAPH 2004 Course Notes,
SIGGRAPH ’04. ACM, New York, NY, USA, 2004.

[26] Timothy G. Mattson, Michael Riepen, Thomas Lehnig, Paul Brett, Werner
Haas, Patrick Kennedy, Jason Howard, Sriram Vangal, Nitin Borkar, Greg Ruhl,
and Saurabh Dighe. The 48-core SCC Processor: The Programmer’s View. In
Proceedings of the 2010 ACM/IEEE International Conference for High Per-
formance Computing, Networking, Storage and Analysis, SC ’10, pages 1–11.
IEEE Computer Society, Washington, DC, USA, 2010.

[27] Jim Kahle. The Cell Processor Architecture. In Proceedings of the 38th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO 38, pages
3–3. IEEE Computer Society, Washington, DC, USA, 2005.

[28] Nicholas P. Carter, Aditya Agrawal, Shekhar Borkar, Romain Cledat, Howard
David, Dave Dunning, Joshua Fryman, Ivan Ganev, Roger A. Golliver, Rob
Knauerhase, Richard Lethin, Benoit Meister, Asit K. Mishra, Wilfred R. Pin-
fold, Justin Teller, Josep Torrellas, Nicolas Vasilache, Ganesh Venkatesh, and
Jianping Xu. Runnemede: An Architecture for Ubiquitous High-Performance
Computing. In Proceedings of the 2013 IEEE 19th International Symposium on
High Performance Computer Architecture (HPCA), HPCA ’13, pages 198–209.
IEEE Computer Society, Washington, DC, USA, 2013.

[29] Eric Brewer. Towards Robust Distributed Systems (Invited Talk), 2000.

[30] Eric Brewer. CAP Twelve Years Later: How the ”Rules” Have Changed. IEEE
Computer, 45(2):23–29, February 2012.

[31] Seth Gilbert and Nancy Lynch. Brewer’s Conjecture and the Feasibility of Con-
sistent, Available, Partition-tolerant Web Services. SIGACT News, 33(2):51–59,
June 2002.

[32] D. B. Terry, M. M. Theimer, Karin Petersen, A. J. Demers, M. J. Spreitzer,
and C. H. Hauser. Managing Update Conflicts in Bayou, a Weakly Connected
Replicated Storage System. In Proceedings of the 15th ACM Symposium on
Operating Systems Principles, SOSP ’95, pages 172–182. ACM, New York, NY,
USA, 1995.

[33] Peter Bailis and Ali Ghodsi. Eventual Consistency Today: Limitations, Exten-
sions, and Beyond. Queue, 11(3):20:20–20:32, March 2013.

173

[34] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen.
Don’t Settle for Eventual: Scalable Causal Consistency for Wide-area Storage
with COPS. In Proceedings of the 23rd ACM Symposium on Operating Systems
Principles, SOSP ’11, pages 401–416. ACM, New York, NY, USA, 2011.

[35] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen.
Stronger Semantics for Low-latency Geo-replicated Storage. In Proceedings of
the 10th USENIX Conference on Networked Systems Design and Implementa-
tion, NSDI’13, pages 313–328. USENIX Association, Berkeley, CA, USA, 2013.

[36] Yair Sovran, Russell Power, Marcos K. Aguilera, and Jinyang Li. Transactional
Storage for Geo-replicated Systems. In Proceedings of the 23rd ACM Symposium
on Operating Systems Principles, SOSP ’11, pages 385–400. ACM, New York,
NY, USA, 2011.

[37] Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno Preguiça, and
Rodrigo Rodrigues. Making Geo-replicated Systems Fast As Possible, Consis-
tent when Necessary. In Proceedings of the 10th USENIX Conference on Oper-
ating Systems Design and Implementation, OSDI’12, pages 265–278. USENIX
Association, Berkeley, CA, USA, 2012.

[38] Peter Bailis, Aaron Davidson, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein,
and Ion Stoica. Highly available transactions: Virtues and limitations. PVLDB,
7(3):181–192, 2013.

[39] KC Sivaramakrishnan, Lukasz Ziarek, and Suresh Jagannathan. MultiMLton:
A Multicore-aware Runtime for Standard ML. Journal of Functional Program-
ming, 2014.

[40] Kevin O’Brien, Kathryn O’Brien, Zehra Sura, Tong Chen, and Tao Zhang.
Supporting OpenMP on Cell. International Journal of Parallel Programming,
36(3):289–311, June 2008.

[41] Jaejin Lee, Sangmin Seo, Chihun Kim, Junghyun Kim, Posung Chun, Zehra
Sura, Jungwon Kim, and SangYong Han. COMIC: A Coherent Shared Memory
Interface for Cell Be. In Proceedings of the 17th International Conference on
Parallel Architectures and Compilation Techniques, PACT ’08, pages 303–314.
ACM, New York, NY, USA, 2008.

[42] Mike Houston, Ji-Young Park, Manman Ren, Timothy Knight, Kayvon Fa-
tahalian, Alex Aiken, William Dally, and Pat Hanrahan. A Portable Run-
time Interface for Multi-level Memory Hierarchies. In Proceedings of the 13th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming, PPoPP ’08, pages 143–152. ACM, New York, NY, USA, 2008.

[43] Pieter Bellens, Josep M. Perez, Rosa M. Badia, and Jesus Labarta. CellSs:
A Programming Model for the Cell BE Architecture. In Proceedings of the
2006 ACM/IEEE Conference on Supercomputing, SC ’06. ACM, New York,
NY, USA, 2006.

[44] Keith Chapman, Ahmed Hussein, and Antony L. Hosking. X10 on the Single-
chip Cloud Computer: Porting and Preliminary Performance. In Proceedings of
the 2011 ACM SIGPLAN X10 Workshop, X10 ’11, pages 7:1–7:8. ACM, New
York, NY, USA, 2011.

174

[45] Stefan Lankes, Pablo Reble, Oliver Sinnen, and Carsten Clauss. Revisiting
Shared Virtual Memory Systems for Non-coherent Memory-coupled Cores. In
Proceedings of the 2012 International Workshop on Programming Models and
Applications for Multicores and Manycores, PMAM ’12, pages 45–54. ACM,
New York, NY, USA, 2012.

[46] Simon Marlow and Simon Peyton Jones. Multicore Garbage Collection with
Local Heaps. In Proceedings of the 2011 International Symposium on Memory
Management, ISMM ’11, pages 21–32. ACM, New York, NY, USA, 2011.

[47] Sven Auhagen, Lars Bergstrom, Matthew Fluet, and John Reppy. Garbage
Collection for Multicore NUMA Machines. In Proceedings of the 2011 ACM
SIGPLAN Workshop on Memory Systems Performance and Correctness, MSPC
’11, pages 51–57. ACM, New York, NY, USA, 2011.

[48] Todd A. Anderson. Optimizations in a Private Nursery-based Garbage Collec-
tor. In Proceedings of the 2010 International Symposium on Memory Manage-
ment, ISMM ’10, pages 21–30. ACM, New York, NY, USA, 2010.

[49] KC Sivaramakrishnan, Lukasz Ziarek, and Suresh Jagannathan. Eliminating
Read Barriers through Procrastination and Cleanliness. In Proceedings of the
2012 International Symposium on Memory Management, ISMM ’12, pages 49–
60. ACM, New York, NY, USA, 2012.

[50] KC Sivaramakrishnan, Lukasz Ziarek, and Suresh Jagannathan. A Coherent
and Managed Runtime for ML on the SCC. In Many-core Applications Research
Community (MARC) Symposium at RWTH Aachen University, November 29th-
30th 2012, Aachen, Germany, pages 20–35, 2012.

[51] KC Sivaramakrishnan, Lukasz Ziarek, and Suresh Jagannathan. RxCML: A
Prescription for Safely Relaxing Synchrony. In Proceedings of the 16th Inter-
national Symposium on Practical Aspects of Declarative Languages, PADL ’14,
pages 1–16. Springer-Verlag, Berlin, Heidelberg, 2014.

[52] Swaminathan Sivasubramanian. Amazon DynamoDB: A Seamlessly Scalable
Non-relational Database Service. In Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’12, pages 729–
730. ACM, New York, NY, USA, 2012.

[53] Marc Shapiro, Nuno Preguia, Carlos Baquero, and Marek Zawirski. Conflict-
Free Replicated Data Types. In Stabilization, Safety, and Security of Distributed
Systems, volume 6976 of Lecture Notes in Computer Science, pages 386–400.
Springer-Verlarg, Berlin, Heidelberg, 2011.

[54] Sebastian Burckhardt, Alexey Gotsman, Hongseok Yang, and Marek Zawirski.
Replicated Data Types: Specification, Verification, Optimality. In Proceedings
of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’14, pages 271–284. ACM, New York, NY, USA, 2014.

[55] The MLton Compiler and Runtime System, 2012. http://www.mlton.org.

[56] Lukasz Ziarek, KC Sivaramakrishnan, and Suresh Jagannathan. Composable
Asynchronous Events. In Proceedings of the 32nd ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’11, pages 628–
639. ACM, New York, NY, USA, 2011.

175

[57] Robin Milner, Mads Tofte, and David Macqueen. The Definition of Standard
ML. MIT Press, Cambridge, MA, USA, 1997.

[58] Martin Elsman. Program Modules, Separate Compilation, and Intermodule Op-
timisation. PhD thesis, University of Copenhagen, 1999.

[59] John C. Reynolds. Definitional Interpreters for Higher-order Programming Lan-
guages. In Proceedings of the ACM Annual Conference - Volume 2, ACM ’72,
pages 717–740. ACM, New York, NY, USA, 1972.

[60] Gianfranco Bilardi and Keshav Pingali. Algorithms for Computing the Static
Single Assignment Form. Journal of the ACM, 50(3):375–425, May 2003.

[61] Carl Bruggeman, Oscar Waddell, and R. Kent Dybvig. Representing Control in
the Presence of One-shot Continuations. In Proceedings of the ACM SIGPLAN
1996 Conference on Programming Language Design and Implementation, PLDI
’96, pages 99–107. ACM, New York, NY, USA, 1996.

[62] Mitchell Wand. Continuation-based Multiprocessing. In Proceedings of the 1980
ACM Conference on LISP and Functional Programming, LFP ’80, pages 19–28.
ACM, New York, NY, USA, 1980.

[63] Glasgow Haskell Compiler, 2014. http://www.haskell.org/ghc.

[64] Patrick M. Sansom. Dual-Mode Garbage Collection. In Proceedings of the
Workshop on the Parallel Implementation of Functional Languages, pages 283–
310. Springer-Verlag, Berlin, Heidelberg, 1991.

[65] A. W. Appel. Simple Generational Garbage Collection and Fast Allocation.
Software: Practice and Experience, 19:171–183, February 1989.

[66] Guy L. Steele, Jr. Multiprocessing Compactifying Garbage Collection. Com-
munications of the ACM, 18(9):495–508, September 1975.

[67] Damien Doligez and Xavier Leroy. A Concurrent, Generational Garbage Col-
lector For A Multithreaded Implementation of ML. In Proceedings of the
20th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’93, pages 113–123. ACM, New York, NY, USA, 1993.

[68] Bjarne Steensgaard. Thread-Specific Heaps for Multi-Threaded Programs. In
Proceedings of the 2000 International Symposium on Memory Management,
ISMM ’00, pages 18–24. ACM, New York, NY, USA, 2000.

[69] Software-Managed Cache Coherence for SCC Revision 1.5, 2012.
https://communities.intel.com/message/175008.

[70] Isáıas A. Comprés Ureña, Michael Riepen, and Michael Konow. RCKMPI
– Lightweight MPI Implementation for Intel’s Single-chip Cloud Computer
(SCC). In Proceedings of the 18th European MPI Users’ Group Conference
on Recent Advances in the Message Passing Interface, EuroMPI’11, pages 208–
217. Springer-Verlag, Berlin, Heidelberg, 2011.

[71] Stephen M. Blackburn and Antony L. Hosking. Barriers: Friend or Foe? In Pro-
ceedings of the 4th International Symposium on Memory Management, ISMM
’04, pages 143–151. ACM, New York, NY, USA, 2004.

176

[72] Henry G. Baker, Jr. List Processing in Real Time on a Serial Computer. Com-
munications of the ACM, 21:280–294, April 1978.

[73] Rodney A. Brooks. Trading Data Space For Reduced Time and Code Space
in Real-time Garbage Collection on Stock Hardware. In Proceedings of the
1984 ACM Symposium on LISP and Functional Programming, LFP ’84, pages
256–262. ACM, New York, NY, USA, 1984.

[74] David F. Bacon, Perry Cheng, and V. T. Rajan. A Real-time Garbage Col-
lector with Low Overhead and Consistent Utilization. In Proceedings of the
30th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’03, pages 285–298. ACM, New York, NY, USA, 2003.

[75] P.H. Hartel, M. Feeley, M. Alt, and L. Augustsson. Benchmarking Imple-
mentations of Functional Languages with “Pseudoknot”, a Float-Intensive
Benchmark. Journal of Functional Programming, 6(4):621–655, 1996.
http://doc.utwente.nl/55704/.

[76] Simon Peter, Adrian Schüpbach, Dominik Menzi, and Timothy Roscoe. Early
Experience with the Barrelfish OS and the Single-chip Cloud Computer. In
MARC Symposium, pages 35–39, 2011.

[77] Darko Petrović, Omid Shahmirzadi, Thomas Ropars, and André Schiper. Asyn-
chronous Broadcast on the Intel SCC using Interrupts. In MARC Symposium,
pages 24–29, 2012.

[78] Richard Jones and Andy C. King. A Fast Analysis for Thread-Local Garbage
Collection with Dynamic Class Loading. In Proceedings of the 5th IEEE Inter-
national Workshop on Source Code Analysis and Manipulation, pages 129–138.
IEEE Computer Society, Washington, DC, USA, 2005.

[79] Thomas Prescher, Randolf Rotta and Jörg Nolte. Flexible Sharing and Repli-
cation Mechanisms for Hybrid Memory Architectures. In MARC Symposium,
2011.

[80] Thomas Rauber Andreas Prell. Go’s Concurrency Constructs on the SCC. In
MARC Symposium, pages 2–6, 2012.

[81] J.H. Reppy. Concurrent Programming in ML. Cambridge University Press,
New York, NY, USA, 2007.

[82] Kenneth P. Birman and Thomas A. Joseph. Reliable Communication in the
Presence of Failures. ACM Transactions on Computer Systems, 5(1):47–76,
1987.

[83] ZeroMQ: The Intelligent Transport Layer, 2013. http://www.zeromq.org.

[84] Lukasz Ziarek and Suresh Jagannathan. Lightweight Checkpointing for Con-
current ML. Journal of Functional Programming, 20(2):137–173, 2010.

[85] E. N. (Mootaz) Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David B. Johnson.
A Survey of Rollback-recovery Protocols in Message-passing Systems. ACM
Computing Surveys, 34(3):375–408, September 2002.

177

[86] Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, and Kunle Olukotun.
STAMP: Stanford Transactional Applications for Multi-Processing. In Pro-
ceedings of the IEEE International Symposium on Workload Characterization,
IISWC’08, 2008.

[87] Maher Suleiman, Michèle Cart, and Jean Ferrié. Serialization of Concurrent
Operations in a Distributed Collaborative Environment. In Proceedings of the
International ACM SIGGROUP Conference on Supporting Group Work: The
Integration Challenge, GROUP ’97, pages 435–445. ACM, New York, NY, USA,
1997.

[88] David A. Nichols, Pavel Curtis, Michael Dixon, and John Lamping. High-
latency, Low-bandwidth Windowing in the Jupiter Collaboration System. In
Proceedings of the 8th Annual ACM Symposium on User Interface and Software
Technology, UIST ’95, pages 111–120. ACM, New York, NY, USA, 1995.

[89] David Wang, Alex Mah, and Soren Lassen. Google Wave: Operational
Transformation, 2010. http://www.waveprotocol.org/whitepapers/operational-
transform.

[90] Stéphane Martin, Mehdi Ahmed-Nacer, and Pascal Urso. Controlled Conflict
Resolution for Replicated Documents. In CollaborateCom, pages 471–480, 2012.

[91] Bernadette Charron-Bost, Friedemann Mattern, and Gerard Tel. Synchronous,
Asynchronous, and Causally Ordered Communication. Distributed Computing,
9(4):173–191, February 1996.

[92] Edmund B. Nightingale, Peter M. Chen, and Jason Flinn. Speculative Execu-
tion in a Distributed File System. In Proceedings of the 20th ACM Symposium
on Operating Systems Principles, SOSP ’05, pages 191–205. ACM, New York,
NY, USA, 2005.

[93] Brendan Cully, Geo↵rey Lefebvre, Dutch Meyer, Mike Feeley, Norm Hutchin-
son, and Andrew Warfield. Remus: High Availability via Asynchronous Virtual
Machine Replication. In Proceedings of the 5th USENIX Symposium on Net-
worked Systems Design and Implementation, NSDI’08, pages 161–174. USENIX
Association, Berkeley, CA, USA, 2008.

[94] Benjamin Wester, James Cowling, Edmund B. Nightingale, Peter M. Chen, Ja-
son Flinn, and Barbara Liskov. Tolerating Latency in Replicated State Machines
Through Client Speculation. In Proceedings of the 6th USENIX Symposium
on Networked Systems Design and Implementation, NSDI’09, pages 245–260.
USENIX Association, Berkeley, CA, USA, 2009.

[95] Tong Li, Carla S. Ellis, Alvin R. Lebeck, and Daniel J. Sorin. Pulse: A Dynamic
Deadlock Detection Mechanism Using Speculative Execution. In Proceedings of
the Annual Conference on USENIX Annual Technical Conference, ATEC ’05,
pages 3–3. USENIX Association, Berkeley, CA, USA, 2005.

[96] Joe Armstrong, Robert Virding, Claes Wikstrom, and Mike Williams. Concur-
rent Programming in Erlang. Prentice-Hall, 2nd edition, New Jersy, NJ, USA,
1996.

178

[97] Ken Wakita, Takashi Asano, and Masataka Sassa. D’Caml: Native Support for
Distributed ML Programming in Heterogeneous Environment. In Proceedings
of the 5th International Euro-Par Conference on Parallel Processing, Euro-Par
’99, pages 914–924. Springer-Verlag, London, UK, UK, 1999.

[98] Peter Sewell, James J. Leifer, Keith Wansbrough, Francesco Zappa Nardelli,
Mair Allen-Williams, Pierre Habouzit, and Viktor Vafeiadis. Acute: High-
level Programming Language Design for Distributed Computation. Journal of
Functional Programming, 17(4-5):547–612, July 2007.

[99] Je↵ Epstein, Andrew P. Black, and Simon Peyton-Jones. Towards Haskell in
the Cloud. In Proceedings of the 4th ACM Symposium on Haskell, Haskell ’11,
pages 118–129. ACM, New York, NY, USA, 2011.

[100] Hans-J. Boehm and Sarita V. Adve. Foundations of the C++ Concurrency
Memory Model. In Proceedings of the 2008 ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’08, pages 68–78.
ACM, New York, NY, USA, 2008.

[101] Kevin Donnelly and Matthew Fluet. Transactional Events. In Proceedings of
the 11th ACM SIGPLAN International Conference on Functional Programming,
ICFP ’06, pages 124–135. ACM, New York, NY, USA, 2006.

[102] Laura E�nger-Dean, Matthew Kehrt, and Dan Grossman. Transactional
Events for ML. In Proceedings of the 13th ACM SIGPLAN International Con-
ference on Functional Programming, ICFP ’08, pages 103–114. ACM, New York,
NY, USA, 2008.

[103] Mohsen Lesani and Jens Palsberg. Communicating Memory Transactions. In
Proceedings of the 16th ACM Symposium on Principles and Practice of Parallel
Programming, PPoPP ’11, pages 157–168. ACM, New York, NY, USA, 2011.

[104] Douglas B. Terry, Vijayan Prabhakaran, Ramakrishna Kotla, Mahesh Balakr-
ishnan, Marcos K. Aguilera, and Hussam Abu-Libdeh. Consistency-based Ser-
vice Level Agreements for Cloud Storage. In Proceedings of the 24th ACM
Symposium on Operating Systems Principles, SOSP ’13, pages 309–324. ACM,
New York, NY, USA, 2013.

[105] Peter Bailis, Aaron Davidson, Alan Fekete, Ali Ghodsi, Joseph M. Heller-
stein, and Ion Stoica. Highly Available Transactions: Virtues and Limitations.
PVLDB, 7(3):181–192, 2013.

[106] Sebastian Burckhardt, Daan Leijen, Manuel Fähndrich, and Mooly Sagiv. Even-
tually Consistent Transactions. In Proceedings of the 21st European Conference
on Programming Languages and Systems, ESOP’12, pages 67–86. Springer-
Verlag, Berlin, Heidelberg, 2012.

[107] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and
Patrick O’Neil. A Critique of ANSI SQL Isolation Levels. In Proceedings of
the 1995 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’95, pages 1–10. ACM, New York, NY, USA, 1995.

[108] Z3: High-performance Theorem Prover, 2014. http://z3.codeplex.com/.

179

[109] Peter Bailis, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica. Bolt-on Causal
Consistency. In Proceedings of the 2013 ACM SIGMOD International Confer-
ence on Management of Data, SIGMOD ’13, pages 761–772. ACM, New York,
NY, USA, 2013.

[110] RUBiS: Rice University Bidding System, 2014. http://rubis.ow2.org/.

[111] Twissandra: Twitter clone on Cassandra, 2014. http://twissandra.com/.

[112] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and
Russell Sears. Benchmarking Cloud Serving Systems with YCSB. In Proceedings
of the 1st ACM Symposium on Cloud Computing, SoCC ’10, pages 143–154.
ACM, New York, NY, USA, 2010.

[113] Karin Petersen, Mike J. Spreitzer, Douglas B. Terry, Marvin M. Theimer, and
Alan J. Demers. Flexible Update Propagation for Weakly Consistent Replica-
tion. In Proceedings of the 16th ACM Symposium on Operating Systems Prin-
ciples, SOSP ’97, pages 288–301. ACM, New York, NY, USA, 1997.

[114] Mahesh Balakrishnan, Dahlia Malkhi, Ted Wobber, Ming Wu, Vijayan Prab-
hakaran, Michael Wei, John D. Davis, Sriram Rao, Tao Zou, and Aviad Zuck.
Tango: Distributed Data Structures over a Shared Log. In Proceedings of the
24th ACM Symposium on Operating Systems Principles, SOSP ’13, pages 325–
340. ACM, New York, NY, USA, 2013.

[115] Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno Preguiça, and
Rodrigo Rodrigues. Making Geo-replicated Systems Fast As Possible, Consis-
tent when Necessary. In Proceedings of the 10th USENIX Conference on Oper-
ating Systems Design and Implementation, OSDI’12, pages 265–278. USENIX
Association, Berkeley, CA, USA, 2012.

[116] Peter Alvaro, Neil Conway, Joe Hellerstein, and William R. Marczak. Consis-
tency Analysis in Bloom: a CALM and Collected Approach. In CIDR 2011,
5th Biennial Conference on Innovative Data Systems Research, Asilomar, CA,
USA, January 9-12, 2011, Online Proceedings, pages 249–260, 2011.

[117] Peter Bailis, Alan Fekete, Michael J. Franklin, Ali Ghodsi, Joseph M. Heller-
stein, and Ion Stoica. Coordination-Avoiding Database Systems. CoRR,
abs/1402.2237, 2014.

[118] Cheng Li, João Leitão, Allen Clement, Nuno Preguiça, Rodrigo Rodrigues, and
Viktor Vafeiadis. Automating the Choice of Consistency Levels in Replicated
Systems. In Proceedings of the 2014 USENIX Conference on USENIX Annual
Technical Conference, USENIX ATC’14, pages 281–292. USENIX Association,
Berkeley, CA, USA, 2014.

[119] Armando Solar-Lezama. Program Synthesis by Sketching. PhD thesis, Univer-
sity of California at Berkeley, Berkeley, CA, USA, 2008.

[120] Neil Conway, Peter Alvaro, Emily Andrews, and Joseph M. Hellerstein. Edel-
weiss: Automatic Storage Reclamation for Distributed Programming. PVLDB,
7(6):481–492, 2014.

[121] Erik Meijer. The World According to LINQ. Communication of the ACM,
54(10):45–51, October 2011.

VITA

180

VITA

KC Sivaramakrishnan was born and brought up in the holy city of Srirangam,

India. He obtained a B.Eng. in computer science and engineering from PSG College

of Technology, Anna University, Coimbatore, India in May 2008. He obtained an

M.S. and a Ph.D. from the Department of Computer Science at Purdue University in

May 2011 and December 2014, respectively. His research interests include functional

programming languages, concurrent programming, multicore runtime systems and

distributed systems. During his Ph.D. studies, he interned with Samsung Research,

San Jose, California (May 2010 – Aug 2010) and Microsoft Research, Cambridge, UK

(Feb 2012 – May 2012).

