
Eio 1.0 – Effects-based IO for OCaml 5

Thomas Leonard Patrick Ferris Christiano Haesbaert Lucas Pluvinage
Vesa Karvonen Sudha Parimala KC Sivaramakrishnan Vincent Balat

Anil Madhavapeddy

May 31, 2023

Abstract

Eio1 provides an effects-based direct-style IO stack
for OCaml 5. This talk introduces Eio’s main fea-
tures, such as use of effects, multi-core support and
lock-free data-structures, support for modular pro-
gramming, interoperability with other concurrency
libraries such as Lwt, Async and Domainslib, and
interactive monitoring support enabled by the cus-
tom runtime events in OCaml 5.1. We will report
on our experiences porting existing applications to
Eio.

Motivation

OCaml 5 added support for progamming with ef-
fects, which has many advantages over using call-
backs or monadic style: it is faster, because no
heap allocations are needed to simulate a stack;
concurrent code can be written in the same style
as plain non-concurrent code; exception backtraces
work; and other features of the language (such as
try/with, match, while, etc) can be used in con-
current code. OCaml 5 also added support for
running on multiple cores, allowing much improved
performance.

Given the benefits of these new features, there is
a lot of interest in moving existing OCaml code to a
new IO library. This is a good opportunity to bring
the community together around a single IO API, as
well as upgrading our IO support with modern fea-
tures, such as optimised backends (e.g. io_uring),
structured concurrency, improved security, testing
and tracing.

1https://github.com/ocaml-multicore/eio

Structure of Eio

Eio is made up of several packages. The eio pack-
age itself is similar in scope to lwt: it provides
primitives for spawning and coordinating fibers,
cancelling them, and managing resource lifetimes.

To use Eio, you also require a backend to run a
suitable event loop for your platform (lwt.unix is
roughly equivalent to an Eio backend). The event
loop must implement the three effects defined by
the eio package:

Suspend suspends the calling fiber, switching to
the scheduler’s context and providing access
to the fiber context.

Fork runs a new fiber (with its own stack).

Get_context gets the fiber context (used for can-
cellation and fiber-local storage).

The eio_mock backend performs no IO and is
around 50 lines of code. It is intended for running
tests that don’t interact with the outside world, but
it also provides a good starting point to learn how
to write a backend.

Other backends include eio_posix (which
uses the poll system call to wait for IO),
eio_linux (using Linux’s io_uring system2),
eio_windows, eio_js (running inside a browser
with js_of_ocaml3), and eio_solo5 (for Mirage
unikernels4).

Each backend provides a “low-level” API that
mimicks the platform’s native API, but uses effects
so that operations don’t block the whole domain.
For example, Eio_posix.Low_level provides:

2https://github.com/axboe/liburing
3https://ocsigen.org/js_of_ocaml/
4https://mirage.io/

1

https://github.com/ocaml-multicore/eio
https://github.com/axboe/liburing
https://ocsigen.org/js_of_ocaml/
https://mirage.io/


val read : fd → bytes → int → int → int
val write : fd → bytes → int → int → int

These two functions have the same signatures
as their counterparts in OCaml’s Unix module
(except that fd wraps Unix.file_descr to pre-
vent use-after-close bugs). Internally, these calls
use backend-specific effects to switch to the next
runnable fiber while they wait.

Eio then defines a cross-platform API, and each
backend implements some or all of this API using
its low-level functions. It is expected that users
will normally program against this cross-platform
API, for portability. The eio_main package selects
an appropriate backend for the current platform
automatically.

Modularity

Eio has a number of design features intended to
support modularity:

Every OS resource (e.g. an open file handle)
must be attached to an active switch, and will be
closed when the switch is turned off. This helps to
prevent resource leaks, especially when errors oc-
cur.

It uses structured concurrency, so that fibers have
well defined lifetimes. This also uses the switch
mechanism, treating fibers as resources.

Eio has built-in support for cancellation. This
is essential when using structured concurrency, be-
cause if one fiber fails then the others must finish
before the error can be reported to the parent con-
text.

Eio wraps file descriptors using a (lock-free) ref-
counting scheme. This ensures that one module
in a program cannot corrupt another module’s re-
sources by using a file descriptor after it has been
closed.

Finally, instead of representing the initially-
available OS resources (such as the filesystem and
network) as globals, Eio passes them as arguments
to the application when the main event loop is
started. This makes it easy to get a bound on how
the program, or any part of it, can interact with
the outside world.

Integrations

The Lwt_eio5 package provides a Lwt engine that
simply delegates to Eio’s event loop. The run_lwt

function runs a Lwt function, blocking the Eio fiber
until the result is ready, while run_eio allows Lwt
code to run Eio code, getting a promise for its re-
sult. This allows Lwt and Eio code to be mixed
freely, which allows existing code to be migrated to
Eio in stages. For example, tls-eio was created
by starting from tls-lwt and converting the code
line by line, testing it along the way.

Similarly, Async_eio6 allows Async and Eio to
be used together in a single domain. It is even
possible to use Async, Eio and Lwt all at the same
time!

Lwt and Async code can only run in a single do-
main, and their tasks are scheduled cooperatively
with any Eio fibers running in the same domain.
Integration with Domainslib7 is slightly different,
as it manages a set of domains. Here, we provide
a bridge allowing Domainslib jobs to be run from
Eio and the results collected. This bridge is possi-
ble because Domainslib.Task.async is able to run
from an Eio domain, and Eio.Promise.resolve is
able to run from a Domainslib one.

Finally, kcas8 provides software transactional
memory based on an atomic lock-free multi-word
compare-and-set (MCAS) algorithm. Eio and Do-
mainslib both implement the domain-local-await
interface9, allowing kcas operations to span do-
mains controlled by both systems.

Tracing

Eio can output trace data to a ring buffer, which
can be viewed using mirage-trace-viewer. With
OCaml 5.1, this has been updated to work with
the new custom events support, so that e.g. GC
events are included too. The Meio10 (Monitoring
for Eio) project provides a console-based tool for
inspecting a running Eio process, showing the tree
of fibers along with profiling information.

5https://github.com/ocaml-multicore/lwt_eio
6https://github.com/talex5/async_eio
7https://github.com/ocaml-multicore/domainslib
8https://github.com/ocaml-multicore/kcas
9https://github.com/ocaml-multicore/

domain-local-await
10https://github.com/tarides/meio

2

https://github.com/ocaml-multicore/lwt_eio
https://github.com/talex5/async_eio
https://github.com/ocaml-multicore/domainslib
https://github.com/ocaml-multicore/kcas
https://github.com/ocaml-multicore/domain-local-await
https://github.com/ocaml-multicore/domain-local-await
https://github.com/tarides/meio

