
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

FIDES: Hardware-assisted Compartments for Securing
Functional Programs

SAI VENKATA KRISHNAN, IIT Madras
ARJUN MENON, Incore Semiconductors
CHESTER REBEIRO, IIT Madras
KC SIVARAMAKRISHNAN, IIT Madras and Tarides

Two major causes for the rapidly increasing threat of cyber-attacks are unsafe languages like C and C++ and a
monolithic software architecture that combines code with varied security expectations without isolation. To
counter these critical issues, developers are migrating to memory-safe languages like OCaml and Rust and
employing software compartmentalization techniques that reduce the attack surface. Current compartment
schemes are designed specifically for C and C++, and do not accommodate language features found in high-
level programming languages, such as exceptions, higher-order functions, tail-call optimisation, and garbage
collection. Even with the advent of memory-safe languages, developers often rely on legacy third-party
libraries written in C and C++, and this is unlikely to change in the near future. This requires re-imagining
the compartment schemes to work seamlessly in the presence of both unsafe and safe language codes.

This paper proposes Fides, a novel hardware-enabled compartment scheme designed for high-level, memory-
safe, functional programming languages targeting resource-constrained embedded systems. Fides creates code
compartments with custom compiler and hardware extensions. It leverages the language-level safety guarantees
of a memory-safe language to enforce fine-grained data sharing across compartments. Fides’ compartment
scheme supports essential functional programming features like tail-call optimisation, higher-order functions
and exceptions. To permit mixed-language applications, Fides extends C with hardware-assisted fat pointers
to preserve the guarantees of the compartment scheme. Fides is realized by extending a RISC-V processor. We
illustrate our technique by implementing Fides to secure OCaml and C, mixed-language, MirageOS Unikernel
applications and demonstrate a prototype on FPGA. Our results show that Fides executes OCaml code with no
additional performance penalty while the C code is secure but pays a small penalty to preserve the guarantees
of the compartment scheme.

CCS Concepts: • Security and privacy → Embedded systems security; Software security engineering.

Additional Key Words and Phrases: Memory Isolation, Privilege Separation, LLVM, Compartmentalization,
OCaml, Unikernels, Fat pointers

1 Introduction
Cyber attacks have been rapidly increasing in recent years. While several factors contribute to this
growth, two prominent causes are the widespread use of C and C++ and the monolithic design
of applications. The lack of built-in memory safety in C and C++ can lead to critical security
vulnerabilities, making these programming languages one of the most insecure [20, 50]. Monolithic
software design that mixes code with different security guarantees in the same address space
makes every vulnerability dangerous, potentially compromising the entire system. For example, a
vulnerability in an image processing library like libpng (CVE-2020-35511 [39]) used by a banking
application might be exploited by an attacker to compromise the entire application, leading to the
loss of critical financial data. Even in a safe language, malicious third-party libraries from popular
package ecosystems may steal sensitive data such as passwords and private keys [7, 8].

Two approaches often adopted to address these security problems are memory-safe programming
languages and software compartments. Safe1 languages, such as OCaml, Rust, Java, JavaScript and
1We write “safe” and “unsafe” languages to mean “memory-safe” and “memory-unsafe” languages, respectively.

Authors’ Contact Information: Sai Venkata Krishnan, IIT Madras; Arjun Menon, Incore Semiconductors; Chester Rebeiro,
IIT Madras; KC Sivaramakrishnan, IIT Madras and Tarides.

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

2 Trovato and Tobin, et al.

Python, rely on the compiler to guarantee the absence of memory safety vulnerabilities. Major open
source projects, such as Linux [47] and Mozilla Firefox [36], are slowly transitioning towards safe
programming languages. The other approach is software compartments [9, 15, 16, 25, 29, 30, 45, 55],
which provide intra-process vulnerability isolation by partitioning software into isolated components
where each component has just the required privileges to execute [44]. Compartments permit
sensitive code to be isolated from the rest of the application, limiting the impact of a potential
vulnerability in an unsafe language or a malicious third-party library [7, 8]. In a typical compartment
scheme, each isolated component is defined by a code region called code compartment and a data
region called data compartment. Access policies limit the control flow between functions to only
those whitelisted and ensure that every memory access is within a predefined data compartment.
In practice, both methods encounter difficulties. The main obstacle in moving to a safer pro-

gramming language is that large amounts of C/C++ code have been in use and working well for
many years. An overnight transition to a safe language is, therefore, not practical. Organizations
approach the shift gradually, progressively integrating a safer language into the application’s
existing codebase. This leads to applications that have safe languages mixed with unsafe C/C++
code in the same codebase. For example, the Firefox browser has around 40% C/Assembly/C++
code, 11% Rust code, and the remaining primarily consists of HTML and Javascript [35]. These
mixed language codebases undermine the benefits of the safe language because of the memory
vulnerabilities still present in the unsafe code [33].

As for software compartments, most schemes are designed specifically for C and C++ software. A
key challenge is that the absence of memory safety in C/C++makes the design of data compartments
challenging. For example, sharing a data structure across two compartments can be done either
by (a) relaxing the compartment policy so that both compartments can access the shared data
or (b) copying the data from one compartment to the other. While the former results in larger
attack surfaces, the latter increases overheads and modifies program semantics (sharing references
versus copies). Furthermore, to share a data structure across two compartments and get the correct
semantics, we would require the programmers to have knowledge of the compartment scheme.
Hence, it is often impractical to modify legacy code to suit a bespoke compartmentalization scheme.
So far, the compartmentalization and the transition to safe programming languages have been

viewed in isolation. We observe that we can merge both approaches, complementing each other to
arrive at a more robust security model. We leverage the memory safety guarantees of safe language
to simplify the compartment design. Intra-process compartments hold the promise of (a) isolating
unsafe C/C++ code from safe code and (b) isolating untrusted third-party libraries from sensitive
parts of the program. Designing such a pragmatic compartment scheme for safe languages, however,
remains challenging due to the following reasons:

C1 Applications developed in safe languages often link with legacy C/C++ libraries. Vulnerabilities
in C/C++ compromise the safety of the entire application. Therefore, any compartment scheme
designed for safe languages should also accommodate the challenges of linking against C/C++.

C2 Higher-order functions (HoFs) and function closures are widely used in functional programming
languages like OCaml and are becoming mainstream in languages like Python and Java. Current
compartment schemes are too rigid and cannot handle them efficiently. For example, given that
function closures may be allocated in one compartment and executed in another, care needs to
be taken to accommodate both code and data compartmentalization of closures.

C3 High-level languages include language features (such as exceptions) and compilation tech-
niques (such as tail call optimisation) that have complex control-flow characteristics. Extant
compartmentalization techniques designed for C do not accommodate these features, making
them unsuitable for high-level languages.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Fides 3

We propose Fides, a fine-grained compartment scheme that provides isolation at function-
level granularity, designed for applications that use untrusted modules and mix safe and unsafe
languages. In this work, we use OCaml as the safe language and C as the unsafe language. In
addition to the source code, Fides requires a policy file that assigns functions to compartments,
defines inter-compartment access policies, and specifies distinguished functions as valid entry
points into compartments. All control flow within a compartment is unrestricted. However, any
control flow between functions belonging to different compartments is allowed only if the access
policy permits it and only through valid entry points. To efficiently enforce this at runtime, Fides
uses hardware assistance.

For data compartments, prior work [45, 53] supports coarse-grained compartmentalization (often
page granularity) due to reliance on OS. However, Fides achieves fine-grained data compartments
at byte-level granularity by building on top of memory safety guarantees of the safe language. A
type-safe OCaml program is memory-safe. Only data that is accessible to an OCaml function is
what is transitively reachable from its locals, function arguments and globals. To ensure that this
property is preserved for an application that mixes OCaml and C and to bring the same guarantees
to C (challenge C1), Fides uses spatial and temporal memory safe C with hardware-assisted fat
pointers [11, 37, 38, 54, 58].

To address C2, Fides introduces the notion of fluid compartments that facilitates flexible compart-
ment strategies to securely share closures between compartments without compromising security.
We design our compartment scheme to preserve tail-calls and support exceptions (challenge C3).

Our approach is developer-friendly. Apart from a few unsupported language features in the
unsafe language (§2.1), Fides neither requires code changes nor changes the semantics of parameter
passing for inter-compartment function calls. This allows us to readily use the large ecosystem of
available libraries, including the MirageOS [32] library operating system. Fides allows compartment
access policies to be defined separately from the source code. This permits an expert security
engineer to compartmentalize an application which may include untrusted third-party code. Since
our compartmentalization does not rely on OS or MMU, it is suitable for constrained embedded
systems that support neither. Fides compiles OCaml- and C-based applications to run baremetal
on a modified RISC-V [23] processor with two new instructions – (1) checkcap that enforces code
compartments, and (2) val that enforces data compartments in C.
Our contributions are as follows:

• We present Fides, a fine-grained compartment scheme designed for applications that mix safe
and unsafe language. Fides supports high-level language features such as HoFs, tail calls and
exceptions.

• We present a formal operational model of Fides, inspired by RISC-V, to prove that Fides
preserves the security guarantees provided by compartmentalization (§4).

• We present an implementation of Fides on amodified Shakti RISC-V processor [14] that executes
baremetal MirageOS [32] unikernels (§5). Fides builds upon Shakti-MS [11], which provides
spatial and temporal memory safety to C.

• We demonstrate the effectiveness of Fides with a security-critical electronic voting machine
(EVM) application (§3). Our evaluation of Fides on the Xilinx Artix-7 AC701 FPGA [56] shows
that Fides offers an attractive security-performance tradeoff (§6).

2 Threat model
In this section, we list the assumptions and limitations of Fides and describe the attack model.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

4 Trovato and Tobin, et al.

Table 1. Common Weakness Enumeration (CWE) [10] that Fides mitigates or significantly weaken the
damage

CWE C+OCaml Memory-safe C + OCaml FIDES
Memory error based CWEs

CWE-415: Double Free
CWE-416: Use after free
CWE-125: Out-of-bounds read
CWE-787: Out-of-bounds write
CWE-121: Stack-based buffer overflow
CWE-124: Buffer underwrite (buffer underflow)
CWE-123: Write-what-where condition
CWE-122: Heap-based buffer overflow
CWE-562: Return of stack variable address
FFI interactions

Privilige isolation based CWEs
CWE-653:Improper isolation or compartmentalization
CWE-250:Execution with unnecessary privileges
CWE-441:Unintended proxy or intermediary (confused deputy)
CWE-1125: Excessive attack surface
CWE-767: Access to critical private variable via public method
CWE-691: Insufficient control flow management

: not mitigated | : partially mitigated only in OCaml codebase | : Mitigated

2.1 Assumptions and limitations
Fides permits applications to be built with amix of safe (OCaml) and unsafe (C) code. The application
may contain malicious untrusted third-party libraries. The attacker has full knowledge of the
internals of Fides, the application’s source code and the compartment access policy. To support fat
pointers, on the C side, Fides does not support casting integers to pointers, unions with pointer and
variadic arguments. The application is compiled using the Fides OCaml and C compilers, which are
assumed to be correct. Fides supports hand-written assembly, but we trust this code to be correct.
We also assume correct any use of the Obj module in OCaml that permits unsafe access to the
OCaml heap. We assume that the Fides executable, a statically linked binary, cannot be tampered
with. Hardware- [26], fault- [5]and side-channel attacks [31] are beyond the scope of the model.

2.2 Attacks
Despite our assumptions and limitations, an application that mixes OCaml and C leaves open many
attack vectors. Table 1 lists the major vulnerability classes present in a C + OCaml codebase.

2.2.1 Memory vulnerability. Since C does not offer memory safety, the C code can read and write
to arbitrary parts of the OCaml heap and stack. Given that the attacker has full knowledge of the
application’s source code, they may craft an attack by writing to security-critical data in memory,
leading to leaking information [48].

1 let admin_flag = ref false

2 ...

3 if (admin_flag) (* do privileged operation *)

In the code above, the attacker may use a memory error-based CWE (Table 1), to update admin_flag
to true to perform privileged operations. Appendix A in the supplementary material presents the
source code for an attack that uses an out-of-bounds write to update the admin_flag. Making C

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Fides 5

memory safe helps thwart memory error-based CWEs. Fides thwarts this attack with the help of
hardware-assisted fat pointers for C. Our implementation of Fides builds upon Shakti-MS [11],
which provides spatial and temporal memory safety for C.

2.2.2 Isolation. Our aim is to build secure MirageOS unikernels [32] for embedded systems. Uniker-
nels combine application andOS code into a single-address-space executable. In particular, MirageOS
unikernels offer no privilege separation mechanisms such as user and kernel modes, process abstrac-
tions, etc. While OCaml provides strong abstraction boundaries through modules and signatures,
these may be defeated by C code, even with memory safety and the assumption that pointers
cannot be forged. One attack vector is function closures, which are represented as objects on the
heap that contain the code pointer and the environment. For example, consider the snippet below.

1 value *callback_sum = caml_named_value("sum");

2 value *callback_leak = caml_named_value("leak");

3 Store_field (* callback_sum , 0, Field(* callback_leak , 0));

Here, the C code accesses OCaml callbacks named sum and leak and overwrites the code pointer in
the sum closure with that of the leak function. Importantly, the write is within the bounds of the
sum closure, and hence, spatial memory safety is not enough to prevent this attack. Any subsequent
calls to sum, including on the OCaml side, will now be subverted to the leak function. Appendix B
in the supplementary material shows the entire working example. Fides provides the compartment
mechanism for specifying and restricting such unintended control flow in the program, helping
prevent control flow subversion. We shall discuss the details of the mechanisms in the next section.

3 Case study: An EVM with Fides
In this section, we illustrate the power of Fides by implementing an electronic voting machine
(EVM) application as a MirageOS unikernel.We also show how Fides addresses the challenges with
supporting compartments in expressive high-level languages.

3.1 Securing the EVM with Fides
Our EVM is an offline, embedded device that only runs the EVM application. The machine has an
electronic display that lists the candidates and uses physical buttons to accept inputs. For each
voter, the software validates the voter ID against a stored list of IDs and verifies that a vote has not
already been cast for that ID. The vote is then read, encrypted, and stored in the device. After all
the votes are cast, the election official locks the EVM application from accepting further votes. On
the counting day, the election official inputs their credentials to decrypt and count the votes. The
encryption is performed using an AES implementation in C.
Our goal is to prevent invalid votes, double voting, and leaking votes before the counting

day. We use Fides to secure the EVM application and achieve its security goals. Figure 1 shows
the high-level design of the EVM application. We compartmentalize the application based on
whether it requires an election official’s credential to access stored votes. The six compartments,
labelled CP1 to CP6, are described in Table 2. We use Fides to ensure that the untrusted helper
(CP5) compartment can neither access the votes table nor escalate to election official privilege.

-

votes-
handler
(CP4)

main-
menu
(CP1)

votes
table

helper
(CP5)

admin
(CP2)

ocaml-
stdlib
(CP6)

CP1

Access Matrix

Call edge

Read/write
access

Fluid compartmentCompartment

Inherits
policyAllowed Disallowed

crypto
(CP3)

CP2
CP3
CP4
CP5
CP6

-
CP1CP2CP3 CP4 CP5 CP6

-
-

-
-

Fig. 1. EVM application: The edges between compart-
ments depict the permitted control flow between com-
partments. Only CP4 has access to the votes table. The
access matrix lists all allowed compartment transitions.

To this end, the security engineer defines the
compartment access policy, represented as an
access matrix in Figure 1, that does not allow
helper (CP5) to call functions in any other
compartment except the OCaml standard li-
brary in CP6. During runtime, the hardware

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

6 Trovato and Tobin, et al.

Table 2. Compartments in EVM

ID Name Description
CP1 main-menu Handles main menu and drives the EVM application.
CP2 admin All the code which requires election official privilege.
CP3 crypto C implementation of cryptographic libraries with OCaml wrappers.
CP4 votes-handler Performs voter validation. Reads the plaintext vote from the user, encrypts using

the crypto library, and stores it in the memory-mapped votes table. Contains all
code handling unencrypted votes. Sensitive.

CP5 helper All code that neither deals with votes in plaintext nor requires election official
privilege, such as the code for the helper menu, time module. Contains third-party
libraries including C code. Untrusted.

CP6 ocaml-stdlib OCaml standard library and the OCaml runtime.

monitors the control flow, and traps when it
does not comply with the defined access policy.

3.1.1 Addressing challenge C1. Recall that
Fides does not have an explicit data compart-
ment but relies on the memory safety of the
OCaml language and hardware-accelerated fat
pointers for C code. In the EVM, the pointer to
the votes table is defined with a local scope of
CP4. To access the votes table, the attacker
either has to exploit some memory vulnerabil-
ity or should be able to invoke a function that
has access to the votes table. The former is
prevented by memory safety, and the latter by
preventing the untrusted CP5 from accessing
CP4, either directly or transitively, with the help of the compartment access policy.

3.1.2 Addressing challenge C2. Defining code and data compartment policies for higher-order
function closures is tricky. For example, consider the following code:

let res_tab = Array.make num_candidates 0 (* candidate_id -> num_votes *)

let count_votes votes_arr (* decrypted votes array *) =

let inc_vote candidate_id =

res_tab .(candidate_id) <- res_tab .(candidate_id) + 1

in

Array.iter inc_vote votes_arr

Listing 1. A partial listing of vote_counting.ml from EVM application

The code above belongs to the vote counting module in compartment CP4. The array res_tab

is a table that contains the results of the election, mapping candidate IDs to the number of votes
cast for this candidate. The counts are initialized to 0. Observe that the HoF inc_vote belongs
to CP4, closes over data (res_tab) that belongs to CP4, but is invoked for every array element
by Array.iter. The question is, which compartment should Array.iter be placed in so that (1)
the security guarantees are preserved and (2) the execution is efficient. There are three options:
(a) duplicate Array.iter in each compartment where it is used, (b) place Array.iter in the same

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Fides 7

compartment as inc_vote, i.e. CP4, or (c) place Array.iter in the CP6 compartment (with the rest
of the OCaml standard library functions) and allow CP6 to access CP4.
Standard library functions like Array.iter are pervasively used throughout the application.

Duplicating them in every compartment is simple but inefficient (due to larger binary sizes and
thus lowering instruction cache efficiency). Placing the Array.iter in CP4 is insecure since every
compartment that needs to access Array.iter will gain access to all of CP4. Placing Array.iter in
a separate compartment, say CP6, may seem like the better choice in terms of security, but it is
inefficient since every iteration of the array will need to switch from Array.iter’s compartmentCP6
to inc_vote’s compartment CP4. In addition, this scheme also opens up security issues since the
compartment CP6 is allowed access to CP4. All other compartments needing access to Array.iter

should be allowed to access CP6. An attacker can misuse this scheme to stage a confused deputy
attack [19] as shown on the left of Figure 2. The attacker in the untrusted CP5 compartment
can call Array.iter with inc_vote and a maliciously crafted votes_arr with forged votes, thereby
updating the results table res_tab. Thus, none of the three options can securely handle HoFs.

inc_vote

(CP4: votes-

handler)

attacker

(CP5:
helper)

Array.iter

(CP6: ocaml-
stdlib)

Normal compartment
CP1 CP2 CP3 CP4 CP6

-

Fluid compartment
CP5

-
CP1 CP2 CP3 CP4 CP5 CP6

-
CP1 CP2 CP3 CP4 CP5 CP6

inc_vote

(CP4: votes-

handler)

attacker

(CP5:
helper)

Array.iter

(CP6: ocaml-
stdlib)

-
CP1 CP2 CP3 CP4 CP5 CP6

Fig. 2. CP6 implemented as a normal compartment (Left)
vs. a fluid compartment (right).

To securely and efficiently compartmen-
talize HoFs, Fides introduces the notion
of fluid compartments. A fluid compart-
ment does not have a fixed compart-
ment policy of its own but inherits the
compartment access policy of its caller
compartment. The policy on the right of
Figure 2 shows CP6 marked as a fluid
compartment. When the attacker invokes
Array.iter with inc_vote and a malicious
votes_arr, Array.iter inherits the CP5’s
access policy. Since CP5 is not allowed to
access CP4, the call to inc_vote fails. This
prevents confused deputy attacks.

As we will see in later sections, switch-
ing compartments requires saving and restoring compartment-local context. Our results in §6 show
that the cost of switching to a fluid compartment is closer to an intra-compartment call and is much
cheaper than an inter-compartment call.

<process_action>:
 ...
 call <init_election>
 L1: ...

CP1: main-menu

CP2: admin

1

CP3: crypto

Tail Call

Normal Call

Return

2

3

<reseed_rng>:
 ..
 return

<init_election>:
 ...
 tailcall <reseed_rng>

Fig. 3. Fides support for tail-calls across compartments.
After the tail-call from CP2 to CP3, Fides ensures that
control returns to CP1 skipping CP2

3.1.3 Addressing challenge C3 with Fides. Ex-
isting code compartment schemes only sup-
port typical call and return sequences. OCaml
supports exceptions and tail-call optimisation,
whose control flow is more complex than the
typical function call and return sequence. Non-
local control flow makes the implementation
of code compartment schemes challenging.
Consider the example given in Figure 3. Be-

fore the machine is used for an election, its state
must be reset. The function init_election re-
sets the machine, preparing for the new elec-
tion. As part of the procedure, it reseeds the
random number generator (RNG). The func-
tion process_action in compartment CP1 calls

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

8 Trovato and Tobin, et al.

Word-sized integer𝑤
Fat pointer 𝑓 𝑝 ::= ⟨𝛼, 𝛽, 𝜅, 𝑝⟩
Base 𝛼 ::= 𝑤

Bound 𝛽 ::= 𝑤

Cookie 𝜅 ::= 𝑤

Pointer 𝑝 ::= 𝑤

Values 𝑣 ::= 𝑤 | 𝑓 𝑝
compartment ID 𝑐𝑖𝑑 ::= N

(a) Values

Integer registers 𝑟 ::= 𝑟0 . . . 𝑟31
Fat pointer register 𝑓 𝑟
Register 𝑅 ::= 𝑟𝑖 | 𝑓 𝑟
Instructions 𝑖 ::= call 𝑟 | tailcall 𝑟 | return

| extcall 𝑟 | callback 𝑟
| raise | pushtrap 𝑟 | poptrap
| val 𝑟 𝑓 𝑟 | load 𝑅 𝑟 | store 𝑟 𝑅
| fatmalloc 𝑓 𝑟 𝑟 | fatfree 𝑓 𝑟

| checkcap 𝑐𝑖𝑑 | push 𝑅 | pop 𝑅

(b) Registers and Instructions

Fig. 4. Syntax

init_election in CP2, which in turn tail calls the function reseed_rng in CP3 to reseed the RNG.
The function reseed_rng returns to process_action, skipping init_election in the return path. As
we will see in §4, whenever we switch compartments, the hardware saves and restores compart-
ment state in a separate security monitor (SM) stack that is inaccessible by the user code. Our key
observation is that, in the presence of tail calls, the hardware compartment scheme must be made
aware of the semantics of tail calls so that the SM stack is appropriately unwound and maintained
in sync with the program call stack. Otherwise, it would result in improper configuration of the
compartment state, crashing the program.
A trivial solution is to disable tail-call optimisation completely. In OCaml, iteration is often

written with tail recursion, with the guarantee that the tail recursion will be turned into a loop
by the compiler. Disabling tail-call optimisation breaks this fundamental guarantee, and every
tail recursive call will grow the stack, quickly leading to stack overflow. In our EVM application,
disabling tail-call optimization crashes the application due to stack overflow. Also, supporting
tail-call optimization allows Fides to support applications which were programmed explicitly with
the intent of utilizing tail-call optimization. As we will see in §4, the same holds for exceptions,
which unwinds the stack until the matching exception handler. Fides’ code compartment scheme
is extended to support tail calls and exceptions seamlessly.

4 Fides Formal Model
This section presents Fides’ design with the help of formal operational semantics for a core language
inspired by RISC-V. Using the model, we show how Fides’ security guarantees are preserved.

Notations. We use 𝑣∗ to represent an array of 𝑣 ’s indexed by an integer. We use 𝑣 for a list of
values 𝑣 , 𝑥 :: 𝑥𝑠 to represent a list with a head 𝑥 and a tail 𝑥𝑠 , 𝑙@𝑙 ′ to represent a list obtained by
appending lists 𝑙 and 𝑙 ′, and [] for the empty list. We define trunc(𝑙, 𝑛) to be 𝑙𝑠 , where 𝑙 = 𝑙𝑝@𝑙𝑠

and |𝑙𝑠 | = 𝑛. Intuitively, if the list 𝑙 is used as a stack, trunc(𝑙, 𝑛) pops the stack until the length of
the stack is 𝑛. We use ∅ for an empty map.

4.1 Syntax
Figure 4 presents the syntax of our core language. The values 𝑣 in our language are either word-sized
integers or pointers𝑤 or fat pointers 𝑓 𝑝 . Fat pointers are only used in C and consists of 4 word-sized
fields – base 𝛼 and bound 𝛽 used for spatial safety, a cookie 𝑘 for temporal safety, and the memory
pointer 𝑝 . The compartment ID, 𝑐𝑖𝑑 , a natural number, uniquely identifies a compartment.
The machine has 32 integer registers 𝑟𝑖 and a single fat pointer register 𝑓 𝑟 . We assume that

the Fides C and OCaml compilers target the instruction set 𝑖 . The language includes instructions

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Fides 9

Program 𝑃 ::= 𝑖∗

Program counter 𝑝𝑐 ::= 𝑤

Stack 𝜎 ::= 𝑣

Heap 𝐻 ::= 𝑤∗

Register map 𝜌 ::= ∅ | 𝜌 [𝑅 ↦→ 𝑣]
Access matrix A ::= 𝑐𝑖𝑑 × 𝑐𝑖𝑑

Current compartment ID 𝜙 ::= 𝑐𝑖𝑑

Fluid compartment 𝜙 𝑓 ::= 𝑐𝑖𝑑

Compartment Map 𝐶 ::= ∅ | 𝐶 [𝑐𝑖𝑑 ↦→ (𝑝𝑐, 𝑝𝑐)]
Security monitor (SM) S ::= {𝜙, 𝜎S,𝐶,A}
SM stack 𝜎S ::= (𝑝𝑐, 𝑐𝑖𝑑)
Length of program stack 𝑙𝑠𝑡 ::= 𝑤

Length of SM stack 𝑙𝑠𝑚𝑠𝑡 ::= 𝑤

Exception stack 𝜎𝑒𝑥𝑛 ::= (𝑝𝑐, 𝜙, 𝑙𝑠𝑡 , 𝑙𝑠𝑚𝑠𝑡)
Program State Π ::= ⌈𝑝𝑐, 𝐻, 𝜎, 𝜌, 𝜎𝑒𝑥𝑛⌉
Machine State

∑
::= ∥𝑃,S,Π∥

Fig. 5. Runtime structures

for indirect call and tailcall, and return. Instructions extcall and callback are part of the OCaml–
C foreign function interface (FFI) to invoke C code from OCaml and vice versa, respectively.
Instructions raise, pushtrap and poptrap are used for exceptions while load and store are used
to access memory. The data compartments in C are enforced with the help of the val instruction,
which validates the data access. The instructions fatmalloc and fatfree allocate and free memory in
C. The checkcap instruction enforces code compartments. Instructions push and pop operate on
the program stack. We assume but do not model the standard arithmetic and logical instructions.

4.2 Runtime structures
Figure 5 describes the runtime state of the machine. The program 𝑃 is an array of instructions
indexed by a word-sized program counter 𝑝𝑐 . The program stack 𝜎 is a list of values, and the heap
𝐻 is an array of words. The stack is primarily used for spilling registers. All the objects are allocated
on the heap. The register map 𝜌 maps the registers to values.
The machine state Σ is a triple with the program 𝑃 , the security monitor (SM) state S and

the program state Π. The program state consists of those parts of the state that can be directly
manipulated by the instructions. This includes the program counter 𝑝𝑐 , the heap 𝐻 , the stack 𝜎 ,
the register map 𝜌 and the exception stack 𝜎𝑒𝑥𝑛 . The SM S, which cannot be directly accessed by
user code, consists of the current compartment ID 𝜙 , the SM stack 𝜎S , the compartment map 𝐶
and the access matrix A. The compartment map 𝐶 maps the compartment IDs to non-overlapping
ranges of program counters. The access matrix A and the compartment map 𝐶 are defined by an
expert security engineer and does not change during the execution of the program.

Fides’ compiler assembles code such that functions mapped to the same compartment are placed
adjacent to each other in the program. This lets us quickly check whether a 𝑝𝑐 belongs to a given
compartment by performing range checks. The access matrixA is a binary relation on compartment
IDs. If (𝑐1, 𝑐2) ∈ A, then a function in 𝑐1 is allowed to call any function in 𝑐2. We assume that
there is a distinguished compartment ID 𝜙 𝑓 for the fluid compartment. We defer the details of the
exception stack 𝜎𝑒𝑥𝑛 and SM stack 𝜎S to the rules that manipulate them.

4.3 Calling convention
Our formal model uses a simple calling convention inspired by RISC-V ABI, which is extended to
support fat pointers. We assume that every function takes at most one integer and one pointer. The
arguments are passed in registers. Given that fat pointers cannot be stored in an integer register,
different language combinations use different argument registers. Table 3 presents the argument
registers used in different combinations of languages.

Table 3. Argument registers used in function calls.

Caller Callee 𝑟1 𝑟2 𝑓 𝑟

C C int – fat pointer
OCaml OCaml int pointer –
OCaml C int pointer fat pointer(𝑟2)

C OCaml int pointer(𝑓 𝑟) fat pointer

When calling between C functions, the inte-
ger argument is passed in 𝑟1 and the fat pointer
in 𝑓 𝑟 . OCaml does not use fat pointers, calls
between OCaml functions uses 𝑟1 for integer

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

10 Trovato and Tobin, et al.

argument and 𝑟2 for the pointer. When calling
C from OCaml, the pointer in 𝑟2 is promoted
to a fat pointer and passed in 𝑓 𝑟 to the callee.
Similarly, when calling from C to OCaml, the fat pointer in 𝑓 𝑟 is demoted to a word-sized pointer
and passed in 𝑟2.
Like OCaml, all registers are caller-saved registers. The registers 𝑟3 . . . 𝑟31 are temporaries. The

set of temporary registers is indicated by 𝑅𝑡𝑚𝑝 . During a call, the return address is saved in the 𝑟0
register. For return values, OCaml returns both integer and pointer results in 𝑟1, whereas C returns
integers in 𝑟1 and fat pointers in 𝑓 𝑟 .
Note that these simplifications to the calling convention have only been made to the formal

model. Fides implementation does not modify the C/OCaml ABI. We defer the details to later
sections.

4.4 Operational Semantics
In this section, we present a small-step operational semantics for our core language. Every reduction
step is of the form Σ → Σ′ where the machine takes one step from state Σ to Σ′.

4.4.1 Call and return instructions. Figure 6 shows the semantics of call and return instructions.
The rules with the prefix Comp in their names capture the semantics of inter-compartment control-
flow transition whereas the other rules correspond to intra-compartment transitions. We use an
auxiliary definition InCompto check whether a given 𝑝𝑐 value lies within a compartment boundary.

Definition 4.1 (Intra-compartment check). The intra-compartment check InComp is defined as
InComp(𝐶,𝜙, 𝑝𝑐) = (𝑝𝑐 >= fst(𝐶 [𝜙]) ∧ 𝑝𝑐 <= snd(𝐶 [𝜙])) ∨ (𝑝𝑐 >= fst(𝐶 [𝜙 𝑓]) ∧ 𝑝𝑐 <=

snd(𝐶 [𝜙 𝑓]))
Intuitively, InComp(𝐶,𝜙, 𝑝𝑐) holds when 𝑝𝑐 is either within the current compartment 𝜙 or is

within the fluid compartment 𝜙 𝑓 .
The rule Call shows the semantics of the call instruction for an intra-compartment call. The

target program counter 𝑝𝑐′ is in the current compartment or belongs to the fluid compartment.
If so, the program counter is updated to 𝑝𝑐′ and the return address register 𝑟0 is set to 𝑝𝑐 + 1. As
an aside, note that since all registers are caller-saved in the formal model, the compiler saves the
return address register 𝑟0 on the stack at the entry to a function and restores it before returning
using the push and pop instructions. Intra-compartment tail call (rule TailCall) is similar to
call, but it does not modify the return address register 𝑟0. On an intra-compartment return (rule
Return), we check that the return address is indeed in the current compartment or the fluid
compartment. Then the program counter is updated to the address in the 𝑟0 register.
The rule CompCall captures the semantics of inter-compartment call – the target program

counter 𝑝𝑐′ is not in the current compartment 𝜙 or in the fluid compartment 𝜙 𝑓 . We perform
a couple of integrity checks to see whether this inter-compartment call is allowed. First, we
check whether the instruction at the target program counter 𝑝𝑐′ is a checkcap 𝜙 ′ instruction,
where 𝜙 ′ is the target compartment ID. Fides compiler inserts the checkcap instruction with the
corresponding compartment ID at every compartment entry point. This serves the same purpose
as endbr instruction in Intel’s Control-flow Enforcement Technology (CET) [21], to protect against
attacks such as return-oriented programming (ROP) and jump-oriented programming (JOP). If
endbr is not found at the target of an indirect jump or call, then the processor traps, thwarting the
attempted control-flow hijack. We model a similar behaviour by expecting checkcap instruction at
the target of an inter-compartment call. Note that the checkcap instruction itself is a no-op (rule
Checkcap). Finally, we check that the transition is permitted by the access matrix (𝜙, 𝜙 ′) ∈ A.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Fides 11

Call
𝑃 [𝑝𝑐] = call 𝑟

𝑝𝑐′ = 𝜌 [𝑟] InComp(S.𝐶,S.𝜙, 𝑝𝑐′)

∥𝑃,S, ⌈𝑝𝑐, 𝐻, 𝜎, 𝜌, 𝜎𝑒𝑥𝑛⌉∥ →
∥𝑃,S, ⌈𝑝𝑐′, 𝐻, 𝜎, 𝜌 [𝑟0 ↦→ 𝑝𝑐 + 1], 𝜎𝑒𝑥𝑛⌉∥

Return
𝑃 [𝑝𝑐] = return

𝑝𝑐𝑟𝑒𝑡 = 𝜌 [𝑟0] InComp(S.𝐶,S.𝜙, 𝑝𝑐𝑟𝑒𝑡)

∥𝑃,S, ⌈𝑝𝑐, 𝐻, 𝜎, 𝜌, 𝜎𝑒𝑥𝑛⌉∥ →
∥𝑃,S, ⌈𝑝𝑐𝑟𝑒𝑡 , 𝐻, 𝜎, 𝜌, 𝜎𝑒𝑥𝑛⌉∥

Tailcall
𝑃 [𝑝𝑐] = tailcall 𝑟

𝑝𝑐′ = 𝜌 [𝑟] InComp(S.𝐶,S.𝜙, 𝑝𝑐′)

∥𝑃,S, ⌈𝑝𝑐, 𝐻, 𝜎, 𝜌, 𝜎𝑒𝑥𝑛⌉∥ →
∥𝑃,S, ⌈𝑝𝑐′, 𝐻, 𝜎, 𝜌, 𝜎𝑒𝑥𝑛⌉∥

Checkcap
𝑃 [𝑝𝑐] = checkcap 𝜙

∥𝑃,S, ⌈𝑝𝑐, 𝐻, 𝜎, 𝜌, 𝜎𝑒𝑥𝑛⌉∥ →
∥𝑃,S, ⌈𝑝𝑐 + 1, 𝐻, 𝜎, 𝜌, 𝜎𝑒𝑥𝑛⌉∥

CompCall
𝑃 [𝑝𝑐] = call 𝑟 𝑝𝑐′ = 𝜌 [𝑟] ¬ InComp(𝐶,𝜙, 𝑝𝑐′) 𝑃 [𝑝𝑐′] = checkcap 𝜙 ′ (𝜙, 𝜙 ′) ∈ A

∥𝑃, {𝜙, 𝜎S,𝐶,A}, ⌈𝑝𝑐, 𝐻, 𝜎, 𝜌, 𝜎𝑒𝑥𝑛⌉∥ →
∥𝑃, {𝜙 ′, (𝑝𝑐 + 1, 𝜙) :: 𝜎S,𝐶,A}, ⌈𝑝𝑐′, 𝐻, 𝜎, 𝜌 [𝑟0 ↦→ |𝑃 |] [𝑅𝑡𝑚𝑝 ↦→ 0], 𝜎𝑒𝑥𝑛⌉∥

CompReturn
𝑃 [𝑝𝑐] = return 𝜌 [𝑟0] = |𝑃 | (𝑝𝑐𝑟𝑒𝑡 , 𝜙 ′) :: 𝜎′S = 𝜎S

∥𝑃, {𝜙, 𝜎S,𝐶,A}, ⌈𝑝𝑐, 𝐻, 𝜎, 𝜌, 𝜎𝑒𝑥𝑛⌉∥ → ∥𝑃, {𝜙 ′, 𝜎′S,𝐶,A}, ⌈𝑝𝑐𝑟𝑒𝑡 , 𝐻, 𝜎, 𝜌 [𝑅𝑡𝑚𝑝 ↦→ 0], 𝜎𝑒𝑥𝑛⌉∥

CompTailcall1
𝑃 [𝑝𝑐] = tailcall 𝑟

𝜌 [𝑟0] ≠ |𝑃 | 𝑝𝑐′ = 𝜌 [𝑟] ¬ InComp(𝐶,𝜙, 𝑝𝑐′) 𝑃 [𝑝𝑐′] = checkcap 𝜙 ′ (𝜙, 𝜙 ′) ∈ A

∥𝑃, {𝜙, 𝜎S,𝐶,A}, ⌈𝑝𝑐, 𝐻, 𝜎, 𝜌, 𝜎𝑒𝑥𝑛⌉∥ →
∥𝑃, {𝜙 ′, (𝜌 [𝑟0], 𝜙) :: 𝜎S,𝐶,A}, ⌈𝑝𝑐′, 𝐻, 𝜎, 𝜌 [𝑟0 ↦→ |𝑃 |] [𝑅𝑡𝑚𝑝 ↦→ 0], 𝜎𝑒𝑥𝑛⌉∥

CompTailcall2
𝑃 [𝑝𝑐] = tailcall 𝑟

𝜌 [𝑟0] = |𝑃 | 𝑝𝑐′ = 𝜌 [𝑟] ¬ InComp(𝐶,𝜙, 𝑝𝑐′) 𝑃 [𝑝𝑐′] = checkcap 𝜙 ′ (𝜙, 𝜙 ′) ∈ A

∥𝑃, {𝜙, 𝜎S,𝐶,A}, ⌈𝑝𝑐, 𝐻, 𝜎, 𝜌, 𝜎𝑒𝑥𝑛⌉∥ → ∥𝑃, {𝜙 ′, 𝜎S,𝐶,A}, ⌈𝑝𝑐′, 𝐻, 𝜎, 𝜌 [𝑅𝑡𝑚𝑝 ↦→ 0], 𝜎𝑒𝑥𝑛⌉∥

Fig. 6. Semantics of calls and returns.

When the integrity checks hold, we transfer control to the target function in the new compartment.
We update the compartment ID in the SM state S to the target compartment 𝜙 ′. We push the return
address and the current compartment ID to the SM stack. The program counter is updated to the
target 𝑝𝑐′. The return address register 𝑟0 is set to a special program counter value |𝑃 | outside the
range of the program. Note that the program 𝑃 is an array of instructions indexed by the program
counter and hence the index |𝑃 | lies outside of the program 𝑃 . This special return address is used

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

12 Trovato and Tobin, et al.

to identify whether the control returns to another compartment on the return path. Saving the
return address on the SM’s private stack prevents an attacker-controlled callee compartment from
returning to any arbitrary instruction in the caller’s compartment. At most, an attacker can subvert
control flow to some location within the current or fluid compartment but cannot enter other
compartments. Finally, we also zero out all of the temporary registers 𝑅𝑡𝑚𝑝 = 𝑟3 . . . 𝑟31 to avoid
leaking any information from the caller to the callee compartment.
The rule CompReturn models inter-compartment return, which is identified by the return

address in 𝑟0 being |𝑃 |. In this case, the SM stack is popped to get the previous compartment ID 𝜙 ′

and the return address 𝑝𝑐𝑟𝑒𝑡 . The SM and program state are updated to the caller information. We
also zero out the temporary registers to avoid leaking information across compartments.
The interaction of tail calls and compartments are interesting. Let us use the notation 𝑓 : 𝜙 to

indicate that the function 𝑓 belongs to the compartment 𝜙 . The rule CompTailcall1 specifies the
semantics of an inter-compartment tail call preceded by an intra-compartment call. For example,
consider the calling sequence below:

𝑓 : 𝜙
𝑐𝑎𝑙𝑙−−−→ 𝑔 : 𝜙 ′ 𝑐𝑎𝑙𝑙−−−→ ℎ : 𝜙 ′ 𝑡𝑎𝑖𝑙𝑐𝑎𝑙𝑙−−−−−−→ 𝑖 : 𝜙 ′′

The rule specifies the behaviour of ℎ : 𝜙 ′ calling 𝑖 : 𝜙 ′′. Importantly, due to the tail call, 𝑖 must
return to 𝑔. In the premise, we identify that the tail call has been preceded by an intra-compartment
call since 𝜌 [𝑟0] ≠ |𝑃 |. The rest of the premises are the same as the inter-compartment call (rule
CompCall). The only difference in the conclusion compared to the rule CompCall is that rather
than 𝑝𝑐 + 1 being pushed onto the SM stack, since the call is a tail call, we push the return address
of the caller 𝜌 [𝑟0]. This ensures that control returns to the caller of the current function when the
callee returns.

The rule CompTailcall2 specifies the semantics of an inter-compartment tail call preceded by
an inter-compartment call, such as the calling sequence presented below:

𝑓 : 𝜙
𝑐𝑎𝑙𝑙−−−→ 𝑔 : 𝜙 ′ 𝑡𝑎𝑖𝑙𝑐𝑎𝑙𝑙−−−−−−→ 𝑖 : 𝜙 ′′

The rule specifies the behaviour of 𝑔 : 𝜙 ′ calling 𝑖 : 𝜙 ′′. Here, 𝑖 : 𝜙 ′′ must return to 𝑓 : 𝜙 , skipping
the function 𝑔 and the compartment 𝜙 ′. We know that the current function was entered through an
inter-compartment call since the return address 𝑟0 is |𝑃 |. The rest of the premises are the same as
rule CompTailcall1 . Importantly, in this case, we do not push an entry to the SM stack compared
to CompTailcall1 , which allows this compartment to be skipped on the return path. The rest of
the conclusion is the same as CompTailcall1 .

4.4.2 Exceptions. Similar to tail calls, OCaml exceptions also have interesting interactions with
code compartments. When an exception is raised, in addition to unwinding the program stack, the
machine also needs to unwind the SM stack. In the formal model, unlike OCaml, we assume that
there is a unique, unnamed exception. Hence, raise does not take any parameter and unwinds the
control to the closest matching handler. OCaml exception handlers are compiled to pushtrap and
poptrap instructions, which delimit the exception handler scope. Let J𝑂K represent the compilation
of the OCaml program 𝑂 to 𝑃 . Then J try e with E ->... K is defined as pushtrap 𝑟 ; J𝑒K; poptrap
where 𝑟 holds the program counter corresponding to the exception handler code J E ->... K.

The rule PushTrap shows the semantics of the push instruction. pushtrap 𝑟 takes the register
𝑟 that holds the program counter of the exception handler 𝑝𝑐𝑒𝑥𝑛 as an argument. We check that
the exception handler program counter 𝑝𝑐𝑒𝑥𝑛 is indeed within the current compartment. If so, a
new entry is pushed onto the exception handler stack 𝜎𝑒𝑥𝑛 , with the exception handler program

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Fides 13

PushTrap
𝑃 [𝑝𝑐] = pushtrap 𝑟

𝑝𝑐𝑒𝑥𝑛 = 𝜌 [𝑟] InComp(S.𝐶,S.𝜙, 𝑝𝑐𝑒𝑥𝑛)

∥𝑃,S, ⌈𝑝𝑐, 𝐻, 𝜎, 𝜌, 𝜎𝑒𝑥𝑛⌉∥ →
∥𝑃,S, ⌈𝑝𝑐 + 1, 𝐻, 𝜎, 𝜌, (𝑝𝑐𝑒𝑥𝑛,S.𝜙, |𝜎 |,S.|𝜎𝑠𝑚 |) :: 𝜎𝑒𝑥𝑛⌉∥

PopTrap
𝑃 [𝑝𝑐] = poptrap

_ :: 𝜎′𝑒𝑥𝑛 = 𝜎𝑒𝑥𝑛

∥𝑃,S, ⌈𝑝𝑐, 𝐻, 𝜎, 𝜌, 𝜎𝑒𝑥𝑛⌉∥ →
∥𝑃,S, ⌈𝑝𝑐 + 1, 𝐻, 𝜎, 𝜌, 𝜎′𝑒𝑥𝑛⌉∥

Raise
𝑃 [𝑝𝑐] = raise (𝑝𝑐𝑒𝑥𝑛, 𝜙 ′, 𝑙𝑠𝑡 , 𝑙𝑠𝑚𝑠𝑡) :: 𝜎′𝑒𝑥𝑛 = 𝜎𝑒𝑥𝑛 𝜎′ = trunc(𝜎, 𝑙𝑠𝑡) 𝜎′𝑠𝑚 = trunc(𝜎𝑠𝑚, 𝑙𝑠𝑚𝑠𝑡)

∥𝑃, {𝜙, 𝜎S,𝐶,A}, ⌈𝑝𝑐, 𝐻, 𝜎, 𝜌, 𝜎𝑒𝑥𝑛⌉∥ → ∥𝑃, {𝜙 ′, 𝜎′S,𝐶,A}, ⌈𝑝𝑐𝑒𝑥𝑛, 𝐻, 𝜎′, 𝜌 [𝑅𝑡𝑚𝑝 ↦→ 0], 𝜎′𝑒𝑥𝑛⌉∥

Fig. 7. Semantics of the exceptions

counter 𝑝𝑐𝑒𝑥𝑛 , the current compartment ID S.𝜙 , and the lengths of the current program and SM
stack. The latter two are used during raise to unwind the corresponding stacks.

The rule PopTrap simply pops the exception handler stack, thus removing the exception handler
from the scope. When an exception is raised (rule Raise), we find the most recent exception
handler information from the exception stack and truncate both the program stack and the SM stack
to the length that they were at the point of installing the exception handler. Recall that trunc(𝜎, 𝑛)
pops elements from the stack 𝜎 until the length of the stack is𝑛. Observe that raise permits throwing
exceptions within and across the compartments. In the case of a cross-compartment exception, we
had already validated that 𝑝𝑐𝑒𝑥𝑛 is within the compartment 𝜙 ′ when the exception handler was
installed (in pushtrap). On a raise, we also unconditionally reset all the temporary registers to 0 to
prevent the possibility of information leaking across compartments through temporaries.

4.4.3 Memory access. Figure 8 presents the semantics of the memory access instructions. Unlike
code compartments, Fides does not have explicit data compartments. Instead, it provides the
guarantee that a function can only access the data that is transitively accessible from its locals,
arguments and global data. This makes it easy to use HoFs which may close over data allocated
in other compartments without worrying about the data compartments where the environment
variables belong to. While OCaml ensures memory safety at the language level, C does not. Hence,
we utilise a hardware-based fat pointer scheme, Shakti-MS [11], to ensure memory safety in the
untrusted C dependencies. We extend the fat pointer scheme of Shakti-MS to accommodate mixed
safe-and-unsafe language applications.

Rule FatMalloc presents the semantics of an allocation in C. The instruction fatmalloc takes
the size of memory to allocate in words, and if successful, the resultant fat pointer is stored in
the 𝑓 𝑟 register. We assume a primitive malloc instruction that takes the size in words and returns
a pointer to this allocated memory. Every allocation in the C heap includes a header that has a
randomized cookie value for temporal safety. Note that in the antecedent, we request malloc to
allocate a memory region 1 word larger than the original request. We also assume a primitive
function rand that returns a random word. We use it to obtain a fresh cookie value 𝑘 . The pointer
returned 𝑝 points to the word after the header. We update the heap such that the header word is
set to the fresh cookie value and the rest of the fields in the newly allocated region are zero’ed out.
In the conclusion of the rule, we update the 𝑓 𝑟 register with the newly crafted fat pointer.

Rule Val presents the semantics of the val 𝑟 𝑓 𝑟 instruction which validates a fat pointer 𝑓 𝑟 , and
if successful, returns the pointer value in 𝑟 . The checks include the spatial checks to see whether

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

14 Trovato and Tobin, et al.

FatMalloc
𝑃 [𝑝𝑐] = fatmalloc 𝑓 𝑟 𝑟 𝑠𝑧 = 𝜌 [𝑟] 𝛼 = malloc(𝑠𝑧 + 1)

𝜅 = rand() 𝑝 = 𝛼 + 1 𝛽 = 𝛼 + 𝑠𝑧 + 1 𝐻 ′ = 𝐻 [𝛼 ↦→ 𝜅] [(𝛼 + 1) . . . (𝛼 + 𝑠𝑧) ↦→ 0]

∥𝑃,S, ⌈𝑝𝑐, 𝐻, 𝜎, 𝜌, 𝜎𝑒𝑥𝑛⌉∥ → ∥𝑃,S, ⌈𝑝𝑐 + 1, 𝐻 ′, 𝜎, 𝜌 [𝑓 𝑟 ↦→ ⟨𝛼, 𝛽, 𝜅, 𝑝⟩], 𝜎𝑒𝑥𝑛⌉∥

FatFree
𝑃 [𝑝𝑐] = fatfree 𝑓 𝑟

⟨𝛼, 𝛽, 𝜅, 𝑝⟩ = 𝜌 [𝑓 𝑟] free(𝛼) 𝜅′ = rand()

∥𝑃,S, ⌈𝑝𝑐, 𝐻, 𝜎, 𝜌, 𝜎𝑒𝑥𝑛⌉∥ →
∥𝑃,S, ⌈𝑝𝑐 + 1, 𝐻 [𝛼 ↦→ 𝜅′], 𝜎, 𝜌, 𝜎𝑒𝑥𝑛⌉∥

LoadW
𝑃 [𝑝𝑐] = load 𝑟𝑑 𝑟𝑎 𝑎 = 𝜌 [𝑟𝑎]

∥𝑃,S, ⌈𝑝𝑐, 𝐻, 𝜎, 𝜌, 𝜎𝑒𝑥𝑛⌉∥ →
∥𝑃,S, ⌈𝑝𝑐 + 1, 𝐻, 𝜎, 𝜌 [𝑟𝑑 ↦→ 𝐻 [𝑎]], 𝜎𝑒𝑥𝑛⌉∥

Val
𝑃 [𝑝𝑐] = val 𝑟 𝑓 𝑟 ⟨𝛼, 𝛽, 𝜅, 𝑝⟩ = 𝜌 [𝑓 𝑟]
𝑝 > 𝛼 𝑝 < 𝛽 (𝐻 [𝛼] = 𝜅 ∨ 𝜅 = 0)

∥𝑃,S, ⌈𝑝𝑐, 𝐻, 𝜎, 𝜌, 𝜎𝑒𝑥𝑛⌉∥ →
∥𝑃,S, ⌈𝑝𝑐 + 1, 𝐻, 𝜎, 𝜌 [𝑟 ↦→ 𝑝], 𝜎𝑒𝑥𝑛⌉∥

StoreW
𝑃 [𝑝𝑐] = store 𝑟𝑎 𝑟𝑣 𝑎 = 𝜌 [𝑟𝑎]

∥𝑃,S, ⌈𝑝𝑐, 𝐻, 𝜎, 𝜌, 𝜎𝑒𝑥𝑛⌉∥ →
∥𝑃,S, ⌈𝑝𝑐 + 1, 𝐻 [𝑎 ↦→ 𝜌 [𝑟𝑣]], 𝜎, 𝜌, 𝜎𝑒𝑥𝑛⌉∥

LoadFP
𝑃 [𝑝𝑐] = load 𝑓 𝑟 𝑟 𝑎 = 𝜌 [𝑟]

∥𝑃,S, ⌈𝑝𝑐, 𝐻, 𝜎, 𝜌, 𝜎𝑒𝑥𝑛⌉∥ →
∥𝑃,S, ⌈𝑝𝑐 + 1, 𝐻, 𝜎, 𝜌 [𝑓 𝑟 ↦→ ⟨𝐻 [𝑎], 𝐻 [𝑎 + 1], 𝐻 [𝑎 + 2], 𝐻 [𝑎 + 3]⟩], 𝜎𝑒𝑥𝑛⌉∥

StoreFP
𝑃 [𝑝𝑐] = store 𝑟 𝑓 𝑟 ⟨𝛼, 𝛽, 𝜅, 𝑝⟩ = 𝜌 [𝑓 𝑟] 𝑎 = 𝜌 [𝑟]

∥𝑃,S, ⌈𝑝𝑐, 𝐻, 𝜎, 𝜌, 𝜎𝑒𝑥𝑛⌉∥ →
∥𝑃,S, ⌈𝑝𝑐 + 1, 𝐻 [𝑎 ↦→ 𝛼] [𝑎 + 1 ↦→ 𝛽] [𝑎 + 1 ↦→ 𝜅] [𝑎 + 3 ↦→ 𝑝], 𝜎, 𝜌, 𝜎𝑒𝑥𝑛⌉∥

Fig. 8. Semantics of memory access intructions

the pointer is within the base and the bound, and the temporal check to see whether the cookie
𝑘 matches the cookie in the header of the memory region. We also permit the cookie in the fat
pointer to be 0. This allows C code to access objects on the OCaml heap. A fat pointer with zero
cookie is only crafted during an external call when pointers to OCaml objects are shared with C.
We defer the details of this to the semantics of the extcall instruction. If the validation is successful,
the register 𝑟 is updated to have the pointer value 𝑝 . Before loading from, storing to, freeing and
passing a fat pointer from C to OCaml, the compiler inserts val instruction to check its validity.

Rule FatFree describes the semantics of freeing memory in C. The fatfree instruction uses the
primitive free instruction to return memory back to the operating system. The header of the freed
memory region is set to a fresh cookie value to prevent use-after-free issues. As mentioned earlier,
since fatfree was preceded by the val instruction, double-free issues are impossible as the cookie
validation will fail for the second fatfree. Note that the OCaml allocator and the garbage collector
directly utilise the primitive malloc and free.
Rule LoadW describes the semantics of load 𝑟𝑑 𝑟𝑎 . The rule is straightforward, it updates the

destination register (𝑟𝑑) with the value from the heap address pointed by register 𝑟𝑎 . Note that

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Fides 15

Extcall
𝑃 [𝑝𝑐] = extcall 𝑟 𝑝 = 𝜌 [𝑟2]

𝑙𝑜𝑏 𝑗 = objlen(𝑝) ∥𝑃 [𝑝𝑐 ↦→ call 𝑟],S, ⌈𝑝𝑐, 𝐻, 𝜎, 𝜌, 𝜎𝑒𝑥𝑛⌉∥ → ∥𝑃 ′,S′, ⌈𝑝𝑐′, 𝐻, 𝜎, 𝜌′, 𝜎𝑒𝑥𝑛⌉∥

∥𝑃,S, ⌈𝑝𝑐, 𝐻, 𝜎, 𝜌, 𝜎𝑒𝑥𝑛⌉∥ → ∥𝑃,S′, ⌈𝑝𝑐′, 𝐻, 𝜎, 𝜌′ [𝑓 𝑟 ↦→ ⟨𝑝 − 1, 𝑝 + 𝑙𝑜𝑏 𝑗 , 0, 𝑝⟩] [𝑟2 ↦→ 0], 𝜎𝑒𝑥𝑛⌉∥

Callback
𝑃 [𝑝𝑐] = callback 𝑟

⟨𝛼, 𝛽, 𝜅, 𝑝⟩ = 𝜌 [𝑓 𝑟] 𝜅 = 0 ∥𝑃 [𝑝𝑐 ↦→ call 𝑟],S, ⌈𝑝𝑐, 𝐻, 𝜎, 𝜌, 𝜎𝑒𝑥𝑛⌉∥ → ∥𝑃 ′,S′, ⌈𝑝𝑐′, 𝐻, 𝜎, 𝜌′, 𝜎𝑒𝑥𝑛⌉∥

∥𝑃,S, ⌈𝑝𝑐, 𝐻, 𝜎, 𝜌, 𝜎𝑒𝑥𝑛⌉∥ → ∥𝑃,S′, ⌈𝑝𝑐′, 𝐻, 𝜎, 𝜌′ [𝑟2 ↦→ 𝑝] [𝑓 𝑟 ↦→ ⟨0, 0, 0, 0⟩], 𝜎𝑒𝑥𝑛⌉∥

Fig. 9. Semantics of the foreign function interface.

this instruction is used by OCaml for loading integers and pointers, but C only uses them to load
integers. For (fat) pointers in C, rule LoadFP applies. Here the destination register is the fat
pointer register 𝑓 𝑟 . load 𝑓 𝑟 𝑟 loads 4 consecutive words from the memory address pointed to by 𝑟
and loads that in 𝑓 𝑟 . The rules StoreW and StoreFP are duals of the load instruction.
It is useful to see how these instructions are used by the C compiler. Consider the following C

code: intptr_t *p; ...; v = *p. For *p, the Fides C compiler generates val 𝑟𝑥 𝑓 𝑟 ; load 𝑟𝑦 𝑟𝑥 . The
fat pointer corresponding to 𝑝 will be in the 𝑓 𝑟 register. Using the val instruction, we extract the
pointer in 𝑟𝑥 register. Since the data pointed by 𝑟𝑥 to is an integer, the destination register 𝑟𝑦 in the
load is an integer register. Now consider the following C code: intptr_t **p; ...; v = *p. For *p,
the Fides C compiler generates val 𝑟𝑥 𝑓 𝑟 ; load 𝑓 𝑟 𝑟𝑥 . Unlike the previous example, the data pointed
to by 𝑟𝑥 is a fat pointer. Hence, the destination of the load is the fat pointer register 𝑓 𝑟 . As shown
in rule LoadFP , this load instruction loads 4 consecutive words from the address pointed to by 𝑟𝑥 .

4.4.4 Foreign function interface. The rules in Figure 9 describe the semantics of the FFI between
OCaml and C. They broadly behave similarly to the call instruction. In fact, we use the reduction
step for the call instruction to describe the semantics of foreign function calls. The main challenge
here is the translation of pointer arguments when passed from OCaml to C and vice versa.

Rule Extcall describes the semantics of extcall instruction that calls a C function from OCaml.
As described in §4.3, OCaml functions pass the integers in 𝑟1 and pointers in 𝑟2. The pointer in
𝑟2 must be translated to a fat pointer to pass to the C function. We can do this thanks to the fact
that OCaml object headers encode the object length. We assume a primitive objlen function that
returns the object length. Using the pointer and the object length, we craft a fat pointer with the
cookie value 0 as described in §4.4.3.
Rule Callback describes the semantics of callback instruction that calls an OCaml function

from C. In this case, on the caller (C) side, 𝑟1 holds the integer argument, and 𝑓 𝑟 holds the pointer
argument. OCaml can only work with memory allocated in the OCaml heap and not the C heap.
Hence, the only valid pointer that can be passed from C to OCaml is a pointer to an object in the
OCaml heap. Fat pointers to OCaml objects will have 0 for the cookie field. As before, the reduction
step uses the reduction step for call instruction and then updates 𝑟2 to the pointer value 𝑝 and 𝑓 𝑟

to the NULL fat pointer.

4.4.5 Semantics of stack manipulation. Figure 10 presents the semantics of push and pop
instructions, whose semantics is straightforward.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

16 Trovato and Tobin, et al.

Push
𝑃 [𝑝𝑐] = push 𝑅

∥𝑃,S, ⌈𝑝𝑐, 𝐻, 𝜎, 𝜌, 𝜎𝑒𝑥𝑛⌉∥ →
∥𝑃,S, ⌈𝑝𝑐 + 1, 𝐻, 𝜌 [𝑅] :: 𝜎, 𝜌, 𝜎𝑒𝑥𝑛⌉∥

Pop
𝑃 [𝑝𝑐] = pop 𝑅 𝑣 :: 𝜎′ = 𝜎

∥𝑃,S, ⌈𝑝𝑐, 𝐻, 𝜎, 𝜌, 𝜎𝑒𝑥𝑛⌉∥ →
∥𝑃,S, ⌈𝑝𝑐 + 1, 𝐻, 𝜎′, 𝜌 [𝑅 ↦→ 𝑣], 𝜎𝑒𝑥𝑛⌉∥

Fig. 10. Semantics of push and pop instructions.

4.5 Safety
In this section, we show how the safety guarantees of the compartment scheme are preserved in
the operational semantics. Let us start with a few definitions.

Definition 4.2 (Well-formed compartment map). Given a program 𝑃 and a compartment map 𝐶 ,
we say that the compartment map is well-formed if the following conditions hold:
• ∀(𝑠, 𝑒) ∈ range(𝐶), 0 <= 𝑠 <= 𝑒 < |𝑃 |. The compartment ranges are bounded by the program
size, and the end of the compartment range does not precede the start.

• ∀(𝑠, 𝑒), (𝑠′, 𝑒′) ∈ range(𝐶), 𝑠 < 𝑠′ =⇒ 𝑒 < 𝑠′. That is, the compartment ranges are non-
overlapping.

• ∀(𝑠, 𝑒) ∈ range(𝐶), 𝑃 [𝑒] = return. The last instruction in a compartment is a return instruction.
Hence, functions do not span multiple compartments.

Definition 4.3 (Safe machine state). Given a machine state Σ = ∥𝑃,S,Π∥, we say that the machine
state is safe (written safe(Σ)) if InComp(S.𝐶,S.𝜙,Π.𝑝𝑐) holds.

Intuitively, we say that a machine is safe if the 𝑝𝑐 is within the current compartment boundary.

Definition 4.4 (Initial machine state). Given a program 𝑃 , a well-formed compartment info𝐶 , and
access matrix A, the starting program counter 𝑝𝑐 , the initial compartment 𝜙 , the initial machine
state is defined as follows Σ0 = ∥𝑃, {𝜙, [],𝐶,A}, ⌈𝑝𝑐, ∅, [], ∅, ∅⌉∥.

Theorem 4.5 (Compartment safety). Given a safe initial machine state Σ0, where safe(Σ0) holds,
if Σ0 →∗ Σ, then safe(Σ) holds.

Proof sketch. The proof is by induction on the length of the trace. The base case is safe by
definition. For the inductive case, the interesting instructions are those that change compartments.
• Inter-compartment call and tail call instructions (Figure 6) utilise the target compartment
information 𝜙 ′, which is inserted by the compiler and known to be safe.

• For returning across compartments (rule CompReturn in Figure 6), we need to show that 𝑝𝑐𝑟𝑒𝑡
is in 𝜙 ′. The return address 𝑝𝑐𝑟𝑒𝑡 was pushed onto the SM stack by the inter-compartment call
(rule CompCall). In rule CompCall , we know 𝑝𝑐+1 also belongs to the current compartment
𝜙 because call cannot be the last instruction; since the compartment map 𝐶 is well-formed, the
last instruction in the compartment is a return instruction.

• Raising an exception can change compartments (rule Raise in Figure 7). But the target 𝑝𝑐𝑒𝑥𝑛
is guaranteed to be in 𝜙 ′ since the validation was done in PushTrap when the exception
stack entry was pushed into the exception stack □.

5 Fides Implementation
We instantiate Fides in the Shakti open-source RISC-V processor [14]. Currently, Fides supports
OCaml and C and is designed to run Mirage unikernels[32]. MirageOS is a clean-slate unikernel

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Fides 17

containing a mix of OCaml and C, making it suitable for evaluating Fides on resource-constrained
embedded systems. We extend the MirageOS backend to execute on baremetal RISC-V [23] proces-
sors. This section explains the hardware and software stack of Fides.

5.1 Hardware changes
5.1.1 Code compartments. Currently, Fides supports 256 compartments. We add one custom
instruction, checkcap, to the RISC-V ISA. The processor expects this instruction to be present at all
valid compartment entry points.

Complete fluid compartment

CP1 CP2 CP3 CP4 CP5
-

CP6

reseed_rng

(CP3: crypto)

strcpy

(CP6:ocaml

stdlib)

update_display

(CP2: admin)

CP1 CP2 CP3 CP4 CP5 CP6
-

Restricted fluid compartment

CP1 CP2 CP3 CP4 CP5
-

CP6

reseed_rng

(CP3: crypto)

strcpy

(CP6:ocaml

stdlib)

update_display

(CP2: admin)

CP1 CP2 CP3 CP4 CP5 CP6
-

Fig. 11. Fluid compartment types

Restricted fluid compartment. As we have seen earlier (§3.1.2), Fides introduces a fluid
compartment to compartmentalize HoFs in an efficient and secure way. There are other first-order
functions, such as string manipulation functions (strcpy), which may presumably be placed in
a fluid compartment for all the compartments to access. Since the fluid compartment functions
inherit the caller compartment’s privileges, they can access all the compartments that the caller
compartment can access. However, this privilege is unnecessary; string manipulation functions are
typically self-contained and do not call other functions.
Worse, this can lead to exploits. Consider the case in the EVM application shown on the left of

Figure 11. The function update_display, mapped to admin compartment (CP2), shows the ballot
paper on the display. This invokes strcpy function to produce the output on the display. strcpy is
mapped toCP6 compartment. SinceCP6 is a fluid compartment, it can invoke crypto compartment
(CP3) via the access policy it inherited from CP2. Any vulnerability present within strcpy function
can be exploited by an attacker who can misuse this over-privilege to redirect control to the crypto
compartment and manipulate sensitive cryptographic states. By restricting the privilege of CP6
further, we can eliminate this attack vector.

To this end, Fides also supports a restricted fluid compartment that can only call functions in the
caller compartment. The choice to allow calls to the caller compartment is to permit higher-order
callbacks, which are pervasive in OCaml. The compartment scheme presented in the formal model
in §4 is termed as a complete fluid compartment. Observe that when CP6 is marked as a restricted
fluid compartment (RHS of Figure 11), strcpy can no longer access the crypto compartment.

Compartment checks. The current compartment and the 𝑝𝑐 ranges of the two fluid compart-
ments are maintained in RISC-V custom control and status registers (CSRs) [23] for fast access. All
these CSRs are protected and can be accessed only by the SM.
The processor pipeline is modified such that on every instruction, the 𝑝𝑐 is checked to see

whether it is within the boundary of the current or the fluid compartments. If not, the execution
traps to the SM. The SM validates the transition against the access matrix and, if allowed, updates
the compartment context and switches compartments. Note that this differs from the formal model,
which performs the checks only on control-flow instructions. By performing the checks on every

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

18 Trovato and Tobin, et al.

instruction, our hardware provides stronger guarantees. For example, we do not need to assume
that the compartments end with a return instruction; if it does not, the execution traps. Due to the
pipelined nature of the check, checking on every instruction does not affect the processor’s critical
path and the processor’s clock cycle count is not affected.

5.1.2 Data compartments. To support data compartments in C, hardware-assisted fat point-
ers [11] are used. The hardware and ISA are extended to support a new val instruction. The compiler
inserts val instruction before dereferencing a fat pointer to enforce fine-grained spatial and temporal
memory safety. Unlike the formal model, Fides does not extend the hardware with a fat pointer
register. Instead, use multiple integer registers to hold the fat pointer value in the register map.
Our implementation, being targeted at small embedded systems, assumes a 32-bit address space
but runs on 64-bit RISC-V hardware. This allows us to pack the 4 (32-bit) fields of the fat pointer
into 2 (64-bit) integer registers. The instructions fatmalloc and fatfree, present in the formal model,
are implemented as wrappers of malloc and free.

5.2 Software Changes
5.2.1 Code compartments. Maintaining a separate compartment mapping file is based on the
industry-best standard approach of offloading the security-critical task of assigning compartments
to a security engineer [9]. For every source code file in the application, Fides expects a .cap file
provided at compile time. For each function in a source code file, the corresponding .cap file
contains the compartment ID for the function and a flag indicating whether the function is a valid
entry point into the compartment. For example, in the code below,

<function >:< compartment ID >:<external >

count_votes : CP4 : ENTRY_POINT

inc_vote : CP4 : NO_ENTRY_POINT

inc_vote, mapped to CP4, is not a compartment entry point and can only be used within CP4
or the fluid compartments. The Fides compiler also accepts a default compartment ID to which
all the functions which have not been explicitly assigned a compartment ID is assigned to. Fides
OCaml and C compiler emits a checkcap instruction as the first instruction in each function that is
tagged as a valid compartment entry point. A custom linker script is used to place all functions
belonging to the same compartment in the same code section in the ELF generated. The SM derives
the compartment boundary information at boot time by inspecting the ELF code sections. The SM
code is placed in a reserved compartment.
The key task of the SM is to enforce the compartment access policy on all inter-compartment

calls and returns. The SM executes with interrupts disabled, saves and restores compartment
context on every compartment switch, and configures the CSRs on every compartment switch with
appropriate compartment context. In the formal model, we build upon a calling convention, where
it is assumed that all registers are caller-saved. However, the RISC-V C ABI includes callee-saved
registers (s0-s11). On an inter-compartment C call, the caller does not trust the callee to not tamper
with the callee-saved registers. Hence, the SM saves and restores callee-saved registers. OCaml
does not follow the RISC-V ABI and does not have callee-saved registers. Hence, the SM does not
save and restore registers on an inter-compartment OCaml call.

OCaml’s garbage collection (GC) procedure scans the stack at the start of a GC to find the roots.
OCaml uses the return address pushed onto the stack to identify GC roots in an activation frame.
However, as seen in the formal model, Fides changes the return address on an inter-compartment
call to a known constant canary value. This interferes with GC stack scanning. To get around this
issue, Fides uses a shadow stack into which a copy of the original return address is pushed during

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Fides 19

an inter-compartment call. When the GC stack scanning procedure encounters a canary value, it
consults the shadow stack to retrieve the original return address and continues scanning the stack.

5.2.2 Data compartments. To instrument C code with fat pointer checks, we modify the LLVM
RISC-V backend to introduce a fat pointer transformation pass similar to Shakti-MS [11]. The
fat pointer transformation pass (i) identifies all pointer allocations to stack, heap and global data
regions and transforms them into fat pointers, (ii) inserts instructions at allocation points so that
the fat pointer fields – base, bound and cookie – are populated, and (iii) inserts fat pointer validation
val instruction before every fat pointer dereference.

In the formal model, we assume that all allocations happen on the heap. However, local allocations
on the stack are standard in C. To ensure memory safety for stack allocations, we extend the fat
pointer instrumentation to the program stack. For spatial safety, the base and bound of pointers into
the stack are set to the base and bound of the stack frame. We admit that this is more coarse-grained
than the object-level spatial safety that we have for heap allocations. With a pointer to a value on
the stack memory location in that stack frame may be modified. However, this provides a good
balance between performance and security. For temporal safety, each stack frame also includes a
cookie value that is set to a fresh value when the function is entered and exited. This ensures that
pointers into the stack are only valid when the frame that the pointer points to is currently active.
The OCaml runtime, implemented in C, is part of the trusted computing base (TCB) and is not

compiled with the fat pointer instrumentation. The Fides C instrumentation does not handle inline
assembly automatically. We manually modify the inline assembly code to be aware of fat pointers
and insert checkcap instructions at the function entry when necessary. Notably, the cost to do this
is directly proportional to the size of the inline assembly code, which is expected to be small in
real-world C libraries.

6 Results
6.1 Engineering effort
Fides extends LLVM version 11.1 and OCaml version 4.11.1 to add support for code compartments
and memory safety in C. The changes to the OCaml compiler to support code compartments include
50 lines of code (LoC) in the RISC-V backend, 149 LoC in the frontend to handle .cap files, and 20
LoC in the GC to handle stack scanning using shadow stack. The changes to the LLVM backend
and frontend to support code compartments are 155 and 37 LoC, respectively. The compartment
description language allows a default compartment id to be specified for the functions in a given
module. We have also extended the OCaml and C compiler and the dune and ocamlbuild build
systems to support default compartment specification at the file and OCaml package level. The
Shakti-MS fat pointer instrumentation pass in LLVM, which we build upon, consists of 2165 LoC.
Observe that implementing Fides only requires minimal self-contained additions to the compilers.
Fides is realized on a Xilinx Artix-7 AC701 FPGA [56] with a default synthesis strategy. The

baseline RISC-V core [14] consumes 36.0K look-up tables (LUTs) and 16.4K registers on the FPGA.
The core with only support for fat pointers requires 36.3K LUTs and 16.5K registers, whereas the
one with both fat pointers and code compartments requires 38.2K LUTs (+6.1%) and 17.4K LUTs
(+6.0%). Importantly, the core’s operating frequency is not affected by any of the modifications
introduced by Fides.

6.2 Microbenchmark
To quantify the overheads of compartmentalizing higher-order functions, we pick a simple program:
let f i v = arr.(i) <- v + 1 in Array.iteri f arr, and evaluate 4 different compartmentaliza-
tion schemes: (i) f and Array.iteri are in the same compartment (baseline), (ii) Array.iteri is

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

20 Trovato and Tobin, et al.

fannkuch-
redux
(24K)

n-body
(120M)

spectral-
norm
(63K)

mandelbrot
(200)

fasta
(240)

binary-
tree
(4K)

qsort
(80M)

dijkstra
(774K)

crc32
(36K)

0

2

4

6

8

10

Cy
cle

 c
ou

nt
 (x

Ti
m

es
)

17
.3

9
19

.5
2

13
.4

9
14

.7
8

C
C+Code Comp
C+Fat

C+Fat+Code Comp
OCaml
OCaml+Code Comp

Fig. 12. Execution time (clock cycles) overhead w.r.t C baseline. Number of compartment transitions specified
in parentheses.

placed in a restricted fluid compartment, (iii) Array.iteri is placed in a complete fluid compartment,
and (iv) f and Array.iteri are placed in different compartments. The program is reminiscent of
the example discussed in §3.1.2. The array arr has 100,000 elements in our benchmark run. We
observe that placing f and Array.iteri in the same compartment takes 90M clock cycles. Whereas,
placing Array.iteri in one of the fluid compartments, the program takes the same clock cycles
as the baseline. This is because of the fact that the fluid compartment check is not in the critical
path of the execution and does not affect the clock cycle. However, when Array.iteri in a dif-
ferent compartment, we see a 5.4× increase in the clock cycle count compared to the baseline.
The overhead is high here since the work done by the HoF is far less than the overhead of saving
and restoring the compartment context. Given that HoFs such as Array.iteri are pervasive in
OCaml, fluid compartments prove to be essential to keep the performance overheads of code
compartment scheme low. Moreover, as discussed in §3.1.2, fluid compartments avoid the confused
deputy problem when Array.iteri is placed in a different compartment.

6.3 Larger benchmarks
In this section, we quantify the following: (a) What is the cost of supporting code compartments?
and (b) What is the cost of data compartments in OCaml compared to C hardened with fat pointers?
Figure 12 shows the clock cycle overhead of enabling code and data compartments with respect to
the C baseline. Columns marked C and OCaml denote the baseline executables with fat pointer
and compartment checks disabled. All the microbenchmarks are taken from the computer language
benchmarks game [49], except qsort, dijkstra and crc32, which were developed by us. mandelbrot
and fasta are I/O intensive benchmarks, with mandelbrot containing negligible pointer operations.

6.3.1 Cost of supporting code compartments. We placed commonly invoked functions in
different compartments to understand the overheads of enabling code compartments. For a fair
comparison, we ensured that the number of compartment transitions remained the same in the C and
OCaml programs for a given benchmark. In Figure 12, columns marked C + Code comp and OCaml
+ Code comp denote C and OCaml executables enabled with code compartments, respectively. We
can see that the overhead of compartments is low compared to the microbenchmark in the previous
section. On average, there is only a 10% increase in execution time when code compartments in
OCaml and C are enabled compared to when compartments are not enabled in the respective
languages. Overall, we can see that the overhead Fides code compartments is low.
The SM stack is used to save and restore the compartment metadata. For inter-compartment C

functions, we also save and restore the callee saved registers (as we do not trust the callee to preserve
the registers). This adds upto 160 bytes, including the metadata, saved for inter-compartment calls
from C. Since OCaml does not have callee saved registers, an inter-compartment call from OCaml
saves 64 bytes on the SM stack. OCaml maintains exception handlers as part of the program stack.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Fides 21

Unlike the formal model, FIDES also maintains OCaml exception handlers the same way OCaml
maintains them and does not use a separate exception stack.

6.3.2 Cost of supporting data compartments. Most of the performance overhead in Fides
is due to the data compartments. This is observed in columns marked C + Fat + Code comp and
OCaml + Code comp in Figure 12. In the C version of qsort and crc32, there is a 6× and 19×
slowdown (resp.) compared to the C baseline. Interestingly, the OCaml version with compartments
enabled is slower on qsort and faster on crc32 compared to the C version with compartments and
fat pointers. The choice to switch from an unsafe language like C to a safe language like OCaml is
a complex choice that balances many, often conflicting, requirements such as performance, cost of
transition, maintainability, richness of the library ecosystem, etc. The qsort result shows that, with
Fides, developers can retain certain parts of the program in C while gaining additional safety and
security guarantees, whereas the crc32 result shows that there is, in fact, a clear win in terms of
performance when switching to OCaml from C.

6.3.3 Code size impact. Fides instruments the program with two new instructions – checkcap
and val. We observed that the introduction of new instructions has a minimal impact on code size.
The code size increase is only 4% in C and 2% in OCaml on the benchmark programs in Figure 12.

6.4 Evaluating the EVM application
Table 4. EVM case study with different compartment
(comp) strategies. The baseline is the EVM application
without Fides.

Comp. Overhead Avg code size # Inter-comp
(cycles) / comp (KB) trans (×104)

6:NF 1.59× 132 5170
6:F 1.23× 132 5
23:NF 1.60× 47 5320
23:F 1.23× 47 8

Our technique scales to real-world applica-
tions with significant use of third-party li-
braries. The EVM application is constructed
using 20 existing third-party packages from
the MirageOS ecosystem, including mirage-
crypto, lwt, etc. In total, it has 68k lines of
code (LoC), out of which we wrote 5k lines of
new code. 48% of the codebase is in OCaml.
MirageOS itself depends on 29K LoC C code,
majority of which is the OCaml runtime (21K
LoC). We place the core OCaml runtime in a complete fluid compartment. Commonly used functions
like strcpy, are placed in a restricted fluid compartment, sandboxing them completely. Access to
device-specific functions like printf, are restricted to only the required compartments. For the 68k
LoC EVM application, the .cap files and flags in the build scripts specifying the access matrix is 70
LoC. In practice, these annotations specify compartment entry points and compartment IDs.
Some OCaml libraries do use unsafe_* functions. In the EVM application, seven libraries used

unsafe features. While the unsafe_* functions could be replaced by their safe counterparts, in our
EVM application, we did not restrict the use of these functions. Instead, we manually audited the
unsafe features for correctness. We are able to support vast majority of C code out of the box.
There were minor uses of inline assembly in the device drivers (30 LoC), which, required manual
instrumentation. We don’t support variadic arguments, and these were present in the nolibc library.
We evaluate the overheads of the EVM application with six compartments described in §3.

Additionally, we evaluate the same application with another strategy that has 23 compartments,
with each OCaml package placed in a different compartment. Further, each compartment strategy
is evaluated with (F) and without (NF) fluid compartments.
Table 4 presents the results. Compared to the insecure baseline, Fides EVM application has

23% overhead in the case of 6:F compartment. Without fluid compartments, the number of inter-
compartment transitions increases significantly, which has a corresponding performance drop.
When the application is compartmentalized in a fine-grained manner (23 compartments), we

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

22 Trovato and Tobin, et al.

observe that the average compartment code size reduces from 132KB to 47KB. This represents a
significantly smaller attack surface and, thus, a more secure application. Interestingly, with fine-
grained compartments, the number of transitions does not increase significantly, indicating that
logically separate parts of the program have been placed in separate compartments. As a result, the
performance remains almost the same. This illustrates that if a security engineer puts in the effort to
compartmentalize the application in a fine-grained fashion, then not only is the security improved
due to a smaller attack surface, but the performance impact also does not increase significantly
compared to coarse-grained compartmentalization. The results also show that fluid compartments
play a significant role in keeping the overheads low and providing better security by avoiding the
confused deputy attack.

7 Related work
Intra-process compartment techniques have been widely studied over the years. Table 5 compares
the recent solutions with respect to their support for safe languages, application in resource-
constrained environments, compartment granularity, and sharing data between compartments.

Enforcing compartments. Donky [45], Enclosures [15] tag pages with compartment IDs.
Enclosures uses Intel MPK [21]. Donky extends a similar scheme on RISC-V processors. SeCage [30]
uses Intel VT-x [52] to enforce isolation between compartments, by setting up separate page tables
for each compartment. CETIS [55] utilizes Intel CET [21] to support two compartments, while
Glamdring [29] and GOTEE [16] utilize Intel SGX [22] to achieve the same. All the works discussed
above require paging and MMU support. This restricts their applicability in resource-constrained
embedded systems which lack paging support. Fides does not rely on the OS/hypervisor to enforce
compartments, which makes it ideal for memory-constrained baremetal systems. Similar to Fides,
ACES [9] and MINION [25] do not rely on paging support, and use ARM MPU [4].

Capability-based approaches, such as CHERI [54], do not require paging support. They transform
every pointer into architectural capabilities to define compartment regions and enforce isolation
between them. Compared to Fides fat pointer scheme, CHERI capabilities are more expressive,
as they store extra permission bits (like rwx), apart from just base and bounds metadata. These
permission bits restrict the operations that can be performed using that capability. Contrary to
CHERI, our goal while developing Fides was to introduce minimal changes to the ISA without
affecting the function call and data passing semantics, leveraging the safe language guarantees,
thereby making it easier and more straightforward to port a mixed-language application to Fides.

Table 5. Summary of hardware-assisted compartment
solutions.
✗/✓: partial support. †: support multiple compart-
ments within C. F1: Max. number of compartments.
Support for F2: baremetal systems. F3: safe languages.
F4: fine-grained compartments. F5: direct access to
shared data.

Technique F1 F2 F3 F4 F5
Secage[30] 512 ✗ ✗ ✗ ✗

Glamdring[29] 2 ✗ ✗ ✗ ✗

GOTEE[16] 2 ✗ ✓ ✗ ✗

Donky[45] ∞ ✗ ✗ ✗ ✗

Enclosures[15] ∞ ✗ ✓ ✗ ✗

PKRU-Safe[27] 2 ✗ ✗/✓ ✗ ✗

Galeed[43] 2 ✗ ✗/✓ ✗ ✗

CHERI-JNI[6] 2† - ✗/✓ ✗/✓ ✓

ACES[9] ∞ ✓ ✗ ✗ ✗

MINION[25] ∞ ✓ ✗ ✗ ✗

CompartOS[3] 264 ✓ ✗ ✓ ✓

Fides 256 ✓ ✓ ✓ ✓

Support for safe languages. Galeed [43]
and PKRU-Safe [27] utilize Intel-MPK to secure
Rust from C/C++ by splitting the application
into two domains. They do not support com-
partments within Rust or C/C++ codebase. GO-
TEE [16] supports compartments in the Go lan-
guage using Intel SGX. Enclosures [15] provides
package-based isolation in Go and Python. All
these techniques rely on paging support, re-
stricting their applicability to embedded sys-
tems. CHERI-JNI [6] utilizes CHERI capabilities
to secure the Java Native Interface [41] but does
not support compartments within the Java code.
CHERI supports the Rust [46] language but is yet
to be ported to garbage-collected languages like

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Fides 23

OCaml. Fides extensions to the OCaml compiler
are lightweight §6.1 and do not require extensive
changes to the compiler backend.

Support for fine-grained compartments.
The compartment granularity defines the attack
surface reduction. Intel-MPK supports 16 com-
partments and, requires software multiplexing to support more compartments, which incurs
overheads [17, 42]. ACES [9] does not support fine-grained compartments, as the number of regions
a compartment can access is limited based on the MPU register count (currently 16) and alignment
constraints. This makes MPU-based techniques unsuitable for protecting multiple separated regions.
Fides supports fine-grained compartments, which reduces attack surface significantly.

Support for direct access to shared data across compartments. Supporting secure direct
data sharing between compartments is critical for performance. Paging-based solutions require OS
intervention to tag pages with the same domain ID for sharing between compartments. MPU-based
techniques support a limited number of shared regions, restricted by the number of isolated memory
regions that can be defined. GOTEE [16] and Glamdring [29] require deep copying to share data
between compartments, changing the semantics of the inter-compartment function calls. Fides
utilizes safe language guarantees and hardware-assisted fat pointers to enforce secure direct data
sharing between compartments.

Support for memory safety in C. Fides builds upon Shakti-MS [11] to enforce memory safety.
Fides does not aim to optimise Shakti-MS or propose new memory safety techniques in C. Such
optimisations are orthogonal to Fides. Unlike Shakti-MS, we present a formal model of the fat
pointer scheme in this paper. There are many extant works that aim to enforce spatial and temporal
memory safety. CCured [38] enforces spatial memory safety by introducing a fat pointer into
the language’s type system. Delta Pointers [28] and Low-Fat [12] ensure the same by encoding
the bounds metadata within the pointer using compact encoding schemes. SoftboundCETS [37]
achieves spatial and temporal memory safety by associating every pointer with disjoint bounds
and liveness metadata. Checked-C [13, 58] achieves both spatial and temporal memory safety
with the same fat pointer size as CCured has. MarkUs [1] and Dieharder [40] enforce temporal
memory safety by ensuring that a freed memory region is not immediately reallocated, resulting in
significant memory overheads, making them impractical for resource-constrained environments.

Formal semantics of compartments. In §4, we formalise the semantics of compartments in
the presence of tail-calls, HoFs and exceptions, and memory safety in a multi-language setting with
the help of fat pointers. MSWasm [34] extends the WebAssembly [18] with custom memory safety
instructions. They introduce a colour-based memory-safety monitor and show it is memory-safe.
In addition, they formalise a compilation scheme from a minimal idealised subset of C to MSWasm
and prove that the compiler enforces memory safety. In this work, we do not formalise memory
safety but observe that MSWasm’s colour-based memory safety can be directly applied to Fides.

SECOMP [24, 51] introduces secure compartmentalizing compilation and extends the CompCert-
verified C compiler with support for compartments that target the CHERI capability machine.
Unlike Fides, SECOMP does not support tail calls and exceptions, and provides no special support
for HoFs. We do not formalise the compilation of C to Fides. We leave this to future work. Recent
work [57] has also mechanised the formal semantics of CHERI dialect of C, clarifying the behaviour
of capabilities and undefined behaviours. In this work, we do not focus on the source language but
formalise the semantics of the hardware and the ABI.

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

24 Trovato and Tobin, et al.

8 Conclusion
In this work, we have presented Fides, an intra-process compartmentalization scheme for ap-
plications that mix safe and unsafe languages and deploy untrusted third-party libraries. Fides
specifically handles language features commonly found in high-level safe languages, such as HoFs,
tail calls and exceptions. Given the increasing awareness of the threats of unsafe languages [2, 20]
and the impossibility of a wholesale move of large legacy codebases to a safe language, we believe
that Fides will provide an important stepping stone that will ease such a move.

Data-Availability Statement
We will submit a docker container with detailed instructions on compiling and executing the
benchmarks discussed in the paper.

References
[1] Sam Ainsworth and Timothy M. Jones. 2020. MarkUs: Drop-in use-after-free prevention for low-level languages. In

2020 IEEE Symposium on Security and Privacy (SP). 578–591. https://doi.org/10.1109/SP40000.2020.00058
[2] Alex Rebert, Security Foundations, and Chandler Carruth, Jen Engel, Andy Qin, Core Developers. 2022. Safer

with Google: Advancing Memory Safety. https://security.googleblog.com/2024/10/safer-with-google-advancing-
memory.html.

[3] Hesham Almatary. 2022. CHERI compartmentalisation for embedded systems. Technical Report.
[4] Ying Bai. 2016. ARM® Memory Protection Unit (MPU). 951–974. https://doi.org/10.1002/9781119058397.ch12
[5] Olivier Benot. 2011. Fault Attack. Springer US, Boston, MA, 452–453. https://doi.org/10.1007/978-1-4419-5906-5_505
[6] David Chisnall, Brooks Davis, Khilan Gudka, David Brazdil, Alexandre Joannou, Jonathan Woodruff, A. Theodore

Markettos, J. Edward Maste, Robert Norton, Stacey Son, Michael Roe, Simon W. Moore, Peter G. Neumann, Ben Laurie,
and Robert N.M. Watson. 2017. CHERI JNI: Sinking the Java Security Model into the C. SIGARCH Comput. Archit.
News 45, 1 (apr 2017), 569–583. https://doi.org/10.1145/3093337.3037725

[7] Catalin Cimpanu. 2018. Twelve malicious Python libraries found and removed from PyPI. https://www.zdnet.com/
article/twelve-malicious-python-libraries-found-and-removed-from-pypi/

[8] Catalin Cimpanu. 2019. Two malicious Python libraries found and removed from PyPI. https://www.zdnet.com/article/
two-malicious-python-libraries-removed-from-pypi/

[9] Abraham A Clements, Naif Saleh Almakhdhub, Saurabh Bagchi, and Mathias Payer. 2018. ACES: Automatic Com-
partments for Embedded Systems. In 27th USENIX Security Symposium (USENIX Security 18). USENIX Association,
Baltimore, MD, 65–82. https://www.usenix.org/conference/usenixsecurity18/presentation/clements

[10] Mitre Corporation. 2023. Common Weakness Enumeration, A Community-Developed List of Software and Hardware
Weakness Types. https://cwe.mitre.org/

[11] Sourav Das, R. Harikrishnan Unnithan, Arjun Menon, Chester Rebeiro, and Kamakoti Veezhinathan. 2019. SHAKTI-MS:
A RISC-V Processor for Memory Safety in C. In Proceedings of the 20th ACM SIGPLAN/SIGBED International Conference
on Languages, Compilers, and Tools for Embedded Systems (Phoenix, AZ, USA) (LCTES 2019). Association for Computing
Machinery, New York, NY, USA, 19–32. https://doi.org/10.1145/3316482.3326356

[12] Gregory J. Duck and Roland H. C. Yap. 2016. Heap bounds protection with low fat pointers. Proceedings of the 25th
International Conference on Compiler Construction (2016). https://api.semanticscholar.org/CorpusID:15649474

[13] Archibald Samuel Elliott, Andrew Ruef, Michael Hicks, and David Tarditi. 2018. Checked C: Making C Safe by
Extension. In 2018 IEEE Cybersecurity Development (SecDev). 53–60. https://doi.org/10.1109/SecDev.2018.00015

[14] Neel Gala, Arjun Menon, Rahul Bodduna, G. S. Madhusudan, and V. Kamakoti. 2016. SHAKTI Processors: An Open-
Source Hardware Initiative. In 2016 29th International Conference on VLSI Design and 2016 15th International Conference
on Embedded Systems (VLSID). 7–8. https://doi.org/10.1109/VLSID.2016.130

[15] Adrien Ghosn, Marios Kogias, Mathias Payer, James R. Larus, and Edouard Bugnion. 2021. Enclosure: Language-Based
Restriction of Untrusted Libraries. In Proceedings of the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (Virtual, USA) (ASPLOS ’21). Association for Computing Machinery,
New York, NY, USA, 255–267. https://doi.org/10.1145/3445814.3446728

[16] Adrien Ghosn, James R. Larus, and Edouard Bugnion. 2019. Secured Routines: Language-Based Construction of
Trusted Execution Environments. In Proceedings of the 2019 USENIX Conference on Usenix Annual Technical Conference
(Renton, WA, USA) (USENIX ATC ’19). USENIX Association, USA, 571–585.

[17] Jinyu Gu, Hao Li, Wentai Li, Yubin Xia, and Haibo Chen. 2022. EPK: Scalable and Efficient Memory Protection
Keys. In 2022 USENIX Annual Technical Conference (USENIX ATC 22). USENIX Association, Carlsbad, CA, 609–624.

https://doi.org/10.1109/SP40000.2020.00058
https://security.googleblog.com/2024/10/safer-with-google-advancing-memory.html
https://security.googleblog.com/2024/10/safer-with-google-advancing-memory.html
https://doi.org/10.1002/9781119058397.ch12
https://doi.org/10.1007/978-1-4419-5906-5_505
https://doi.org/10.1145/3093337.3037725
https://www.zdnet.com/article/twelve-malicious-python-libraries-found-and-removed-from-pypi/
https://www.zdnet.com/article/twelve-malicious-python-libraries-found-and-removed-from-pypi/
https://www.zdnet.com/article/two-malicious-python-libraries-removed-from-pypi/
https://www.zdnet.com/article/two-malicious-python-libraries-removed-from-pypi/
https://www.usenix.org/conference/usenixsecurity18/presentation/clements
https://cwe.mitre.org/
https://doi.org/10.1145/3316482.3326356
https://api.semanticscholar.org/CorpusID:15649474
https://doi.org/10.1109/SecDev.2018.00015
https://doi.org/10.1109/VLSID.2016.130
https://doi.org/10.1145/3445814.3446728

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

Fides 25

https://www.usenix.org/conference/atc22/presentation/gu-jinyu
[18] Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael Holman, Dan Gohman, Luke Wagner, Alon

Zakai, and JF Bastien. 2017. Bringing the web up to speed with WebAssembly. In Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation (Barcelona, Spain) (PLDI 2017). Association for
Computing Machinery, New York, NY, USA, 185–200. https://doi.org/10.1145/3062341.3062363

[19] Norm Hardy. 1988. The Confused Deputy: (Or Why Capabilities Might Have Been Invented). SIGOPS Oper. Syst. Rev.
22, 4 (oct 1988), 36–38. https://doi.org/10.1145/54289.871709

[20] White House. 2024. Back to the building blocks: A path toward secure and measurable software. https://www.whitehouse.
gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf

[21] Intel. [n. d.]. Intel® 64 and IA-32 Architectures Software Developer Manuals. https://www.intel.com/content/www/us/
en/developer/articles/technical/intel-sdm.html

[22] Intel. 2014. Intel Software Guard Extensions Programming Reference. https://www.intel.com/content/dam/develop/
external/us/en/documents/329298-002-629101.pdf

[23] RISC-V International. 2021. RISC-V International. https://riscv.org/
[24] Roberto Blanco Aïna Linn Georges Cătălin Hritcu Andrew Tolmach Jérémy Thibault, Arthur Azevedo de Amorim.

2023. SECOMP2CHERI: Securely Compiling Compartments from CompCert C to a Capability Machine. https://catalin-
hritcu.github.io/publications/SECOMP2CHERI-PriSC23.pdf

[25] Chung Hwan Kim, Taegyu Kim, Hongjun Choi, Zhongshu Gu, Byoungyoung Lee, X. Zhang, and Dongyan Xu. 2018.
Securing Real-Time Microcontroller Systems through Customized Memory View Switching. In Network and Distributed
System Security Symposium.

[26] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur
Mutlu. 2014. Flipping Bits in Memory without Accessing Them: An Experimental Study of DRAM Disturbance Errors.
In Proceeding of the 41st Annual International Symposium on Computer Architecuture (Minneapolis, Minnesota, USA)
(ISCA ’14). IEEE Press, 361–372.

[27] Paul Kirth, Mitchel Dickerson, Stephen Crane, Per Larsen, Adrian Dabrowski, David Gens, Yeoul Na, Stijn Volckaert,
and Michael Franz. 2022. PKRU-Safe: Automatically Locking down the Heap between Safe and Unsafe Languages. In
Proceedings of the Seventeenth European Conference on Computer Systems (Rennes, France) (EuroSys ’22). Association
for Computing Machinery, New York, NY, USA, 132–148. https://doi.org/10.1145/3492321.3519582

[28] Taddeus Kroes, Koen Koning, Erik van der Kouwe, Herbert Bos, and Cristiano Giuffrida. 2018. Delta pointers: buffer
overflow checks without the checks. In Proceedings of the Thirteenth EuroSys Conference (Porto, Portugal) (EuroSys ’18).
Association for Computing Machinery, New York, NY, USA, Article 22, 14 pages. https://doi.org/10.1145/3190508.
3190553

[29] Joshua Lind, Christian Priebe, Divya Muthukumaran, Dan O’Keeffe, Pierre-Louis Aublin, Florian Kelbert, Tobias Reiher,
David Goltzsche, David Eyers, Rüdiger Kapitza, Christof Fetzer, and Peter Pietzuch. 2017. Glamdring: Automatic
Application Partitioning for Intel SGX. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical
Conference (Santa Clara, CA, USA) (USENIX ATC ’17). USENIX Association, USA, 285–298.

[30] Yutao Liu, Tianyu Zhou, Kexin Chen, Haibo Chen, and Yubin Xia. 2015. Thwarting Memory Disclosure with Efficient
Hypervisor-enforced Intra-domain Isolation. Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security (2015).

[31] Xiaoxuan Lou, Tianwei Zhang, Jun Jiang, and Yinqian Zhang. 2021. A Survey of Microarchitectural Side-Channel
Vulnerabilities, Attacks, and Defenses in Cryptography. ACM Comput. Surv. 54, 6, Article 122 (jul 2021), 37 pages.
https://doi.org/10.1145/3456629

[32] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David Scott, Balraj Singh, Thomas Gazagnaire, Steven
Smith, Steven Hand, and Jon Crowcroft. 2013. Unikernels: Library Operating Systems for the Cloud. In Proceedings of
the Eighteenth International Conference on Architectural Support for Programming Languages and Operating Systems
(Houston, Texas, USA) (ASPLOS ’13). Association for Computing Machinery, New York, NY, USA, 461–472. https:
//doi.org/10.1145/2451116.2451167

[33] Samuel Mergendahl, Nathan Burow, and Hamed Okhravi. 2022. Cross-Language Attacks. In 29th Annual Network and
Distributed System Security Symposium, NDSS 2022, San Diego, California, USA, April 24-28, 2022. The Internet Society.
https://www.ndss-symposium.org/ndss-paper/auto-draft-259/

[34] Alexandra E. Michael, Anitha Gollamudi, Jay Bosamiya, Evan Johnson, Aidan Denlinger, Craig Disselkoen, Conrad
Watt, Bryan Parno, Marco Patrignani, Marco Vassena, and Deian Stefan. 2023. MSWasm: Soundly Enforcing Memory-
Safe Execution of Unsafe Code. Proc. ACM Program. Lang. 7, POPL, Article 15 (jan 2023), 30 pages. https://doi.org/10.
1145/3571208

[35] Mozilla. 2024. How much Rust in Firefox? https://4e6.github.io/firefox-lang-stats/?2022-03
[36] MozillaWiki. 2020. Oxidation. https://wiki.mozilla.org/Oxidation

https://www.usenix.org/conference/atc22/presentation/gu-jinyu
https://doi.org/10.1145/3062341.3062363
https://doi.org/10.1145/54289.871709
https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf
https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/dam/develop/external/us/en/documents/329298-002-629101.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/329298-002-629101.pdf
https://riscv.org/
https://catalin-hritcu.github.io/publications/SECOMP2CHERI-PriSC23.pdf
https://catalin-hritcu.github.io/publications/SECOMP2CHERI-PriSC23.pdf
https://doi.org/10.1145/3492321.3519582
https://doi.org/10.1145/3190508.3190553
https://doi.org/10.1145/3190508.3190553
https://doi.org/10.1145/3456629
https://doi.org/10.1145/2451116.2451167
https://doi.org/10.1145/2451116.2451167
https://www.ndss-symposium.org/ndss-paper/auto-draft-259/
https://doi.org/10.1145/3571208
https://doi.org/10.1145/3571208
https://4e6.github.io/firefox-lang-stats/?2022-03
https://wiki.mozilla.org/Oxidation

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

26 Trovato and Tobin, et al.

[37] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve Zdancewic. 2009. SoftBound: Highly Compatible
and Complete Spatial Memory Safety for c. In Proceedings of the 30th ACM SIGPLAN Conference on Programming
Language Design and Implementation (Dublin, Ireland) (PLDI ’09). Association for Computing Machinery, New York,
NY, USA, 245–258. https://doi.org/10.1145/1542476.1542504

[38] George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe
retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (may 2005), 477–526. https://doi.org/10.1145/
1065887.1065892

[39] NIST. 2020. CVE-2020-35511. https://nvd.nist.gov/vuln/detail/CVE-2020-35511
[40] Gene Novark and Emery D. Berger. 2010. DieHarder: securing the heap. In Proceedings of the 17th ACM Conference on

Computer and Communications Security (Chicago, Illinois, USA) (CCS ’10). Association for Computing Machinery,
New York, NY, USA, 573–584. https://doi.org/10.1145/1866307.1866371

[41] Oracle. 2023. Oracle Java Native Interface. https://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/intro.
html#java_native_interface_overview

[42] Soyeon Park, Sangho Lee, Wen Xu, Hyungon Moon, and Taesoo Kim. 2019. Libmpk: software abstraction for intel
memory protection keys (intel MPK). In Proceedings of the 2019 USENIX Conference on Usenix Annual Technical
Conference (Renton, WA, USA) (USENIX ATC ’19). USENIX Association, USA, 241–254.

[43] Elijah Rivera, Samuel Mergendahl, Howard Shrobe, Hamed Okhravi, and Nathan Burow. 2021. Keeping Safe Rust Safe
with Galeed. In Annual Computer Security Applications Conference (Virtual Event, USA) (ACSAC ’21). Association for
Computing Machinery, New York, NY, USA, 824–836. https://doi.org/10.1145/3485832.3485903

[44] J.H. Saltzer and M.D. Schroeder. 1975. The protection of information in computer systems. Proc. IEEE 63, 9 (1975),
1278–1308. https://doi.org/10.1109/PROC.1975.9939

[45] David Schrammel, Samuel Weiser, Stefan Steinegger, Martin Schwarzl, Michael Schwarz, Stefan Mangard, and Daniel
Gruss. 2020. Donky: Domain Keys – Efficient in-Process Isolation for RISC-V and X86. In Proceedings of the 29th
USENIX Conference on Security Symposium (SEC’20). USENIX Association, USA, Article 95, 18 pages.

[46] Nicholas Wei Sheng Sim. 2020. Strengthening memory safety in Rust: exploring CHERI capabilities for a safe language.
Master’s thesis. https://nw0.github.io/cheri-rust.pdf

[47] Sergio De Simone. 2022. Linux 6.1 Officially Adds Support for Rust in the Kernel. https://www.infoq.com/news/2022/
12/linux-6-1-rust/

[48] László Szekeres, Mathias Payer, Tao Wei, and Dawn Song. 2013. SoK: Eternal War in Memory. In 2013 IEEE Symposium
on Security and Privacy. 48–62. https://doi.org/10.1109/SP.2013.13

[49] Benchmarksgame Team. 2023. The Computer Language 23.03 Benchmarks Game: Which programming language is
fastest? https://benchmarksgame-team.pages.debian.net/benchmarksgame/

[50] MSRC Team. 2019. A proactive approach to more secure code. https://msrc.microsoft.com/blog/2019/07/16/a-proactive-
approach-to-more-secure-code/

[51] Jérémy Thibault, Roberto Blanco, Dongjae Lee, Sven Argo, Arthur Azevedo de Amorim, Aïna Linn Georges, Catalin
Hritcu, and Andrew Tolmach. 2024. SECOMP: Formally Secure Compilation of Compartmentalized C Programs.
arXiv:2401.16277 [cs.PL] https://arxiv.org/abs/2401.16277

[52] R. Uhlig, G. Neiger, D. Rodgers, A.L. Santoni, F.C.M. Martins, A.V. Anderson, S.M. Bennett, A. Kagi, F.H. Leung, and L.
Smith. 2005. Intel virtualization technology. Computer 38, 5 (2005), 48–56. https://doi.org/10.1109/MC.2005.163

[53] Lluïs Vilanova, Muli Ben-Yehuda, Nacho Navarro, Yoav Etsion, and Mateo Valero. 2014. CODOMs: Protecting
Software with Code-Centric Memory Domains. In Proceeding of the 41st Annual International Symposium on Computer
Architecuture (Minneapolis, Minnesota, USA) (ISCA ’14). IEEE Press, 469–480.

[54] Robert N.M. Watson, Jonathan Woodruff, Peter G. Neumann, Simon W. Moore, Jonathan Anderson, David Chisnall,
Nirav Dave, Brooks Davis, Khilan Gudka, Ben Laurie, Steven J. Murdoch, Robert Norton, Michael Roe, Stacey Son, and
Munraj Vadera. 2015. CHERI: A Hybrid Capability-System Architecture for Scalable Software Compartmentalization.
In 2015 IEEE Symposium on Security and Privacy. 20–37. https://doi.org/10.1109/SP.2015.9

[55] Mengyao Xie, Chenggang Wu, Yinqian Zhang, Jiali Xu, Yuanming Lai, Yan Kang, Wei Wang, and Zhe Wang. 2022.
CETIS: Retrofitting Intel CET for Generic and Efficient Intra-Process Memory Isolation. In Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications Security (Los Angeles, CA, USA) (CCS ’22). Association for
Computing Machinery, New York, NY, USA, 2989–3002. https://doi.org/10.1145/3548606.3559344

[56] Xilinx. 2022. AMD Artix 7 FPGA AC701 Evaluation Kit. https://www.xilinx.com/products/boards-and-kits/ek-a7-
ac701-g.html#overview

[57] Vadim Zaliva, KayvanMemarian, Ricardo Almeida, Jessica Clarke, Brooks Davis, Alexander Richardson, David Chisnall,
Brian Campbell, Ian Stark, Robert N. M. Watson, and Peter Sewell. 2024. Formal Mechanised Semantics of CHERI
C: Capabilities, Undefined Behaviour, and Provenance. In Proceedings of the 29th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, Volume 1 (La Jolla, CA, USA) (ASPLOS ’24).
Association for Computing Machinery, New York, NY, USA, 181–196. https://doi.org/10.1145/3617232.3624859

https://doi.org/10.1145/1542476.1542504
https://doi.org/10.1145/1065887.1065892
https://doi.org/10.1145/1065887.1065892
https://nvd.nist.gov/vuln/detail/CVE-2020-35511
https://doi.org/10.1145/1866307.1866371
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/intro.html#java_native_interface_overview
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/intro.html#java_native_interface_overview
https://doi.org/10.1145/3485832.3485903
https://doi.org/10.1109/PROC.1975.9939
https://nw0.github.io/cheri-rust.pdf
https://www.infoq.com/news/2022/12/linux-6-1-rust/
https://www.infoq.com/news/2022/12/linux-6-1-rust/
https://doi.org/10.1109/SP.2013.13
https://benchmarksgame-team.pages.debian.net/benchmarksgame/
https://msrc.microsoft.com/blog/2019/07/16/a-proactive-approach-to-more-secure-code/
https://msrc.microsoft.com/blog/2019/07/16/a-proactive-approach-to-more-secure-code/
https://arxiv.org/abs/2401.16277
https://arxiv.org/abs/2401.16277
https://doi.org/10.1109/MC.2005.163
https://doi.org/10.1109/SP.2015.9
https://doi.org/10.1145/3548606.3559344
https://www.xilinx.com/products/boards-and-kits/ek-a7-ac701-g.html#overview
https://www.xilinx.com/products/boards-and-kits/ek-a7-ac701-g.html#overview
https://doi.org/10.1145/3617232.3624859

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

Fides 27

[58] Jie Zhou, John Criswell, and Michael Hicks. 2023. Fat Pointers for Temporal Memory Safety of C. Proc. ACM Program.
Lang. 7, OOPSLA1, Article 86 (apr 2023), 32 pages. https://doi.org/10.1145/3586038

https://doi.org/10.1145/3586038

	Abstract
	1 Introduction
	2 Threat model
	2.1 Assumptions and limitations
	2.2 Attacks

	3 Case study: An EVM with Fides
	3.1 Securing the EVM with Fides

	4 Fides Formal Model
	4.1 Syntax
	4.2 Runtime structures
	4.3 Calling convention
	4.4 Operational Semantics
	4.5 Safety

	5 Fides Implementation
	5.1 Hardware changes
	5.2 Software Changes

	6 Results
	6.1 Engineering effort
	6.2 Microbenchmark
	6.3 Larger benchmarks
	6.4 Evaluating the EVM application

	7 Related work
	8 Conclusion
	References

