
�CML: Migrating MultiMLton to the Cloud

KC Sivaramakrishnan
Purdue University

chandras@cs.purdue.edu

Lukasz Ziarek
SUNY Buffalo

lziarek@buffalo.edu

Suresh Jagannathan
Purdue University

suresh@cs.purdue.edu

Abstract
A functional programming discipline, combined with abstractions
like Concurrent ML’s first-class synchronous events, offers an at-
tractive programming model for shared-memory concurrency. In
particular, synchronous message-passing eases the burden of coor-
dinating and reasoning about concurrent threads by having a com-
munication action serve double-duty as a both a data transfer mech-
anism (sending or receiving data on a typed channel) as well as a
synchronization point (senders and receivers block until a match-
ing action is available). In high-latency distributed environments,
like the cloud, however, synchronous communication comes with a
high price in performance, given the significant cost of communi-
cating data from one node to another. While switching to an explic-
itly asynchronous communication model may reclaim some of the
performance lost in a synchronous world, by helping to mask com-
munication overheads, program structure and understanding also
becomes more complex. To ease the challenge of migrating concur-
rent applications to distributed cloud environments, we have built
an extension of the MultiMLton compiler and runtime suitable that
implements CML communication asynchronously, but guarantees
that the resulting execution is faithful to the synchronous semantics
of CML. We exploit MultiMLton’s support for lightweight check-
pointing and rollback to integrate a notion of speculation that al-
lows ill-formed executions to be re-executed, replacing offending
asynchronous executions with safe synchronous ones. Several re-
alistic case studies deployed on the Amazon EC2 demonstrate the
utility of our approach.

1. Introduction
Cloud computing offers a low-cost scalable execution environment
for parallel programs that naturally make use of message-passing.
However, the cost models that drive program construction aimed at
a tightly-coupled multicore machine are vastly different from the
ones that inform the construction of distributed programs written
for loosely-coupled environments such as the cloud. In particular,
communication latencies between nodes in a cloud ensemble are
orders of magnitude greater than those between different cores in a
shared-memory multicore machine. While rewriting concurrent ap-
plications from scratch to exploit the cloud’s computing resources
is certainly a possibility, albeit an unpleasant one, we consider a
more palatable alternative that exploits new compiler and runtime
techniques to mitigate this migration burden.

Our investigation takes place in the context of MultiMLton [2],
an extension of the MLton Standard ML compiler that targets
shared memory multicore architectures. Programs are modelled
as a collection of threads that primarily communicate using CML’s
first-class synchronous events [3]. In MultiMLton, concurrent pro-
grams enjoy strong guarantees on the ordering and visibility of
communicated data, simplifying program reasoning. However,
while arguably easier to reason about, synchronous execution is
an inefficient programming model for a high-latency cloud envi-
ronment. To bridge the gap between our desire for a simple easy-

to-understand programming model and the reality of a high-latency
communication model imposed by a geo-distributed cloud environ-
ment, we have extended MultiMLton to implement synchronous
operations asynchronously, with a transparent lightweight monitor-
ing and rollback mechanism intended to ensure that any speculative
behavior is observably equivalent to synchronous CML semantics.

2. Observable Equivalence
Because asynchrony is introduced only by the runtime, applica-
tions do not have to be restructured to explicitly account for new
behaviors introduced by this additional concurrency. Thus, we wish
to have the runtime enforce the equivalence: [[send (c, v)]]k ≡
[[asend (c, v)]]k where k is a continuation, send is a synchronous
send operation that communicates value v on channel c, and
asend is an asynchronous variant that buffers v on c and does
not synchronize on a matching receiver.

send (c1,v1)

f()

send(c2,v2)

recv(c2)

g()

recv(c1)

send(c2,v3)

h()

recv(c2)

T1 T2 T3A

B

C

asend (c1,v1)

f()

send(c2,v2)

recv(c2)

g()

recv(c1)

send(c2,v3)

T1 T2 T3A

B
C

✘
Buf

Unfortunately, naı̈vely replacing synchronous communication
with an asynchronous one is not usually meaning-preserving as the
example given above illustrates. The dashed edges reflect commu-
nication and synchronization dependencies among threads, while
solid edges capture thread-local control-flow. The communication
edges are bi-directional to capture the synchronization flow in ei-
ther direction between the end points. Assume that f , g , and h do
not perform any communications. Under a synchronous evaluation
protocol (shown on the left), thread T2 would necessarily commu-
nicate first with thread T3, receiving v3 on channel c2 . It is then
able to receive v1 from thread T1; finally, T1 can communicate v2

to T3.
If the send(c1,v1) operation by T1 were replaced by asend

(c1,v1) (shown on the right), v1 is simply added to the buffer
attached to c1 , and T1 can continue. Hence, the first receive on T2
has, in addition to the first send on T3, a new potential matching
opportunity – the send of v2 on channel c2 . If the receive by T2
matches with the send on T1, it is impossible to satisfy the send on
T3. This behavior could not be realized by a synchronous execution
since the receive on T2 would never match with send on T1. Thus,
the resulting behavior is not observably equivalent to the original
synchronous program.

3. Axiomatic Semantics
To understand the conditions under which our desired equivalence
holds, we have developed a relaxed execution model for Concurrent
ML (CML) [3] programs. In order to precisely specify the correct-

1 2013/6/17

bt1
po

po

po

po

po

po

po

po

po

po

po

po

po

po

ft1t2

ft1t3

st1c1, v2

pt11

et1

st1c2, v2

td

td

bt2

rt2c2

pt22

rt2c1

et2

co

co

co

bt3

st3c2, v3

pt33

rt2c2

et3

bt1
po

po

po

po

po

po

po

po

po

po

po
ft1t2

ft1t3

st1c1, v2

pt11

et1

st1c2, v2

td

td

bt2

rt2c2

pt22

rt2c1

et2

bt3

st3c2, v3

co

co

Figure 1: Axiomatic executions.

ness conditions, we have devised an axiomatic formulation of CML
executions that express equivalences in terms of causal dependen-
cies captured by a happens-before relation that relate communica-
tion actions performed by different threads. Informally, a happens-
before edge exists between statements (a) within a thread related by
program order (i.e. , sequential dependencies); (b) α and β where
α is a communication action performed by thread T with another
statement α′ found in thread T ′ and α′ precedes β in program or-
der; (c) α and β where β found in thread T precedes statement α′

and α′ performs a communication action that is paired with α.
More formally, the happens-before order of an execution is

the transitive closure of the union of program (po) order, thread
dependence (td) order (an order between a thread creation action
and the first statement executed by a thread), and actions related by
communication (co) and program order:

→hb = (→po ∪ →td ∪
{(α, β) | α→co α′ ∧ α′ →po β} ∪
{(β, α) | β →po α′ ∧ α′ →co α})+

To illustrate these definitions, Figure 1 shows the axiomatic ex-
ecutions of the example presented above. We assume thread T1

spawns T2 and T3 , and we replace calls to f , g , and h found in
the original program, with an observable action, like a print state-
ment. The execution on the left imposes no causal dependence be-
tween the observable actions in T2 or T3 ; thus, an interleaving
derived from this execution may permute the order in which these
statements execute. All interleavings derivable from this execution
correspond to valid CML behavior.

In contrast, the execution depicted on the right-hand side of
the figure, which corresponds to the erroneous execution discussed
in Section 2, exhibits a happens-before cycle between T1 and
T2 . Such cyclic dependences never manifest in any correct CML
execution. Thus, any axiomatic execution that contains a happens-
before cycle is considered to be ill-formed with respect to CML
behavior.

4. Implementation
Our implementation dynamically tracks happens-before depen-
dences by building a distributed dependence graph. If a cycle is
detected, we rollback the effects induced by the offending specu-
lative action, and re-execute it as a normal synchronous operation.
The context of our investigation is a distributed implementation of
CML called �CML(RELAXED CML)1.

There are several challenges in transplanting MultiMLton (and
more specifically, CML) to a distributed environment. (1) Absence
of coherent shared memory: In a shared-memory environment,
CML channels can be implemented as a lock-protected queues.
This enables communicating threads to atomically poll the chan-
nels for availability of a matching communication, and block on

1 http://multimlton.cs.purdue.edu/mML/rx-cml.html

0 10 20 30 40 50
Clients

20

40

60

80

S
p
e
e
d
u
p

Rx

Sync

(a) Scalability on OLTP bench-
mark.

2 3 4 5 6
Authors

0

10

20

30

40

50

60

R
e
m

o
te

 m
sg

s
/

S
e
c Rx

Sync

(b) Throughput on collaborative
editing benchmark.

Figure 2: Performance comparison of �CMLvs CML (synchronous).

the channel if none is available. In a distributed setting, it is nec-
essary to reason about multiple replicated, yet globally consistent,
versions of CML channels. (2) Serialization: CML channels al-
low typesafe communication of polymorphic values. Since CML
imposes no restriction on these values, which may be arbitrarily
complex data structures, a serialization mechanism that can com-
municate these values across different machines is necessary. (3)
Transport layer: CML channels allow multiple producers and
consumers to operate over the same channel. Supporting this func-
tionality in a distributed setting requires an intelligent transport
layer that supports efficient broadcast as a primitive operation. (4)
Speculative Execution: Central to �CML’s design is the speculative
execution of message sends that allows a synchronous send to be
transparently executed asynchronously. Because speculations can
be wrong, the implementation must provide a low-cost mechanism
to save application state, detect errors, and rollback to a globally
consistent state [5] without requiring a global barrier for error de-
tection or rollback.

5. Evaluation
We have evaluated the performance of �CMLon a number of paral-
lel and distributed applications executed on an Amazon EC2 cloud
infrastructure. We present the results of two of these applications
with respect to scalability and throughput in Fig. 2: the first is a dis-
tributed online transaction processing (OLTP) benchmark derived
from the vacation benchmark found in STAMP [1] benchmark
suite; the second is a collaborative editing benchmark that sim-
ulates concurrent editing of a document by multiple authors [4].
These programs are written in CML, designed assuming a syn-
chronous communication protocol; synchronous actions are trans-
parently turned into asynchronous ones by the runtime, with mon-
itoring and rollback functionality injected to ensure safe behavior.
We believe these results indicate that the transparent relaxation of
synchrony can lead to substantial performance improvement, while
preserving the ease of synchronous programming.
References
[1] C. Cao Minh, J. Chung, C. Kozyrakis, and K. Olukotun. STAMP:

Stanford transactional applications for multi-processing. In IISWC,
2008.

[2] MultiMLton. MLton for Scalable Multicore Architectures, 2013. URL
http://multimlton.cs.purdue.edu.

[3] J. Reppy. Concurrent Programming in ML. Cambridge University
Press, 2007.

[4] M. Suleiman, M. Cart, and J. Ferrié. Serialization of Concurrent
Operations in a Distributed Collaborative Environment. In GROUP,
pages 435–445, 1997.

[5] L. Ziarek and S. Jagannathan. Lightweight Checkpointing for Concur-
rent ML. Journal of Functional Programming, 20(2):137–173, 2010.

2 2013/6/17

http://multimlton.cs.purdue.edu/mML/rx-cml.html
http://multimlton.cs.purdue.edu

	Introduction
	Observable Equivalence
	Axiomatic Semantics
	Implementation
	Evaluation

