
Eliminating Read Barriers through
Procrastination and Cleanliness

KC Sivaramakrishnan Lukasz Ziarek Suresh Jagannathan
Purdue University

{chandras, lziarek, suresh}@cs.purdue.edu

Abstract
Managed languages typically use read barriers to interpret forward-
ing pointers introduced to keep track of copied objects. For ex-
ample, in a multicore environment with thread-local heaps and a
global, shared heap, an object initially allocated on a local heap
may be copied to a shared heap if it becomes the source of a store
operation whose target location resides on the shared heap. As part
of the copy operation, a forwarding pointer may be established in
the original object to point to the copied object. This level of indi-
rection avoids the need to update all of the references to the object
that has been copied.

In this paper, we consider the design of a managed runtime that
eliminates read barriers. Our design is premised on the availability
of a sufficient degree of concurrency to stall operations that would
otherwise necessitate the copy. Stalled actions are deferred until the
next local collection, avoiding exposing forwarding pointers to the
mutator. In certain important cases, procrastination is unnecessary
– lightweight runtime techniques can sometimes be used to allow
objects to be eagerly copied when their set of incoming references
is known, or when it can be determined that having multiple copies
would not violate program semantics.

We evaluate our techniques on 3 platforms: a 16-core AMD64
machine, a 48-core Intel SCC, and an 864-core Azul Vega 3. Ex-
perimental results over a range of parallel benchmarks indicate that
our approach leads to notable performance gains (20 - 32% on av-
erage) without incurring any additional complexity.

Categories and Subject Descriptors D.4.2 [Operating Systems]:
Storage Management – Allocation/Deallocation strategies, Garbage
collection; D.3.3 [Programming Languages]: Language Con-
structs and Features – Concurrent programming structures

General Terms Algorithms, Design, Experimentation, Manage-
ment, Measurement, Performance

Keywords barrier elimination, private heaps, parallel and concur-
rent collection, cleanliness, concurrent programming, functional
languages

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ISMM’12, June 15–16, 2012, Beijing, China.
Copyright c© 2012 ACM 978-1-4503-1350-6/12/06. . . $10.00

1. Introduction
Splitting a program heap among a set of cores is a useful technique
to exploit available parallelism on scalable multicore platforms:
each core can allocate, collect, and access data locally, moving
objects to a global, shared heap only when they are accessed by
threads executing on different cores. This design allows local heaps
to be collected independently, with coordination required only for
global heap collection. In contrast, stop-the-world collectors need
a global synchronization for every collection. In order to ensure
that cores cannot directly or indirectly access objects on other local
heaps, which would complicate the ability to perform independent
local heap collection, the following invariants need to be preserved:

• No pointers are allowed from one core’s local heap to another.
• No pointers are permitted from the shared heap to the local

heap.

Both invariants are necessary to perform independent local collec-
tions. The reason for the first is obvious. The second invariant pro-
hibits a local heap from transitively accessing another local heap
object via the shared heap. In order to preserve these invariants,
the mutator typically executes a write barrier on every store oper-
ation. The write barrier ensures that before assigning a local object
reference (source) to a shared heap object (target), the local object
along with its transitive closure is lifted to the shared heap. We call
such writes exporting writes as they export information out of local
heaps. The execution of the write barrier creates forwarding point-
ers in the original location of the lifted objects in the local heap.
These point to the new locations of the lifted objects in the shared
heap. Since objects can be lifted to the shared heap on potentially
any write, the mutator needs to execute a read barrier on poten-
tially every read. The read barrier checks whether the object being
read is the actual object or a forwarding pointer, and in the latter
case, indirects to the object found on the shared heap. Forwarding
pointers are eventually eliminated during local collection.

Because the number of reads are likely to far outweigh the
number of writes, the aggregate cost of read barriers can be both
substantial and vary dramatically based on underlying architec-
ture characteristics [6]. Eliminating read barriers, however, is non-
trivial. Abstractly, one can avoid read barriers by eagerly fixing all
references that point to forwarded objects at the time the object is
lifted to the shared heap, ensuring the mutator will never encounter
a forwarded object. Unfortunately, this requires being able to enu-
merate all the references that point to the lifted object; in general,
gathering this information is very expensive as the references to an
object might originate from any object in the local heap.

In this paper, we consider an alternative design that completely
eliminates the need for read barriers without requiring a full scan
of the local heap whenever an object is lifted to the shared heap.
The design is based on two observations. First, read barriers can

be clearly eliminated if forwarding pointers are never introduced.
One way to avoid introducing forwarding pointers is to delay oper-
ations that create them until a local garbage collection is triggered.
In other words, rather than executing a store operation that would
trigger lifting a thread local object to the shared heap, we can sim-
ply procrastinate, thereby stalling the thread that needs to perform
the store. The garbage collector must simply be informed of the
need to lift the object’s closure during its next local collection. Af-
ter collection is complete, the store can take place with the source
object lifted, and all extant heap references properly adjusted. As
long as there is sufficient concurrency to utilize existing computa-
tional resources, in the form of available runnable threads to run
other computations, the cost of procrastination is just proportional
to the cost of a context switch.

Second, it is not necessary to always stall an operation that in-
volves lifting an object to the shared heap. We consider a new prop-
erty for objects (and their transitive closures) called cleanliness. A
clean object is one that can be safely lifted to the shared heap with-
out introducing forwarding pointers that might be subsequently en-
countered by the mutator: objects that are immutable, whose ele-
ments are only referenced from the stack, or whose set of incom-
ing heap references is known, are obvious examples. The runtime
analysis for cleanliness is combined with a specialized write bar-
rier to amortize its cost. Thus, procrastination provides a general
technique to eliminate read barriers, while cleanliness serves as an
important optimization that avoids stalling threads unnecessarily.

The effectiveness of our approach depends on a programming
model in which (a) most objects are clean, (b) the transitive clo-
sure of the object being lifted rarely has pointers to it from other
heap allocated objects, and (c) there is a sufficient degree of concur-
rency in the form of runnable threads; this avoids idling available
cores whenever a thread is stalled performing an exporting write
that involves an unclean object. In this paper, we consider an im-
plementation of these ideas in the context of MultiMLton [17], a
scalable, whole-program optimizing compiler and multicore-aware
runtime system for Standard ML [15], a mostly functional language
whose concurrent programs typically enjoy these properties. Our
technique does not rely on programmer annotations, static analy-
sis or compiler optimizations to eliminate read barriers, and can be
completely implemented as a lightweight runtime technique.

This paper provides the following contributions:

• A garbage collector design that has been tuned for mostly
functional languages in which there is typically a surfeit of
concurrency (in the form of programmer-specified lightweight
threads) available on each core, to realize a memory manage-
ment system that does not require read barriers.

• A new object property called cleanliness that enables a certain
(albeit broad) class of objects to be safely lifted to the shared
heap without requiring a full traversal of the local heap to fix
existing references to them, reducing the frequency of thread
stalls as a result of procrastination.

• An extensive evaluation of the collector performance on three
multicore platforms; a 16 core AMD Operton server, Intel’s 48
core Single-chip Cloud Computer (SCC), and Azul System’s
864 core Vega 3 processor. The results reveal that eliminating
read barriers on these platforms can lead to significant perfor-
mance improvements.

The paper is organized as follows. In the next section, we
present additional motivation that quantifies the cost and benefit
of read barriers in our system. The overall design and implemen-
tation of the collector is provided in Section 3. Section 4 describes
our treatment of cleanliness. The modifications to our write barrier
to support cleanliness analysis and delayed writes are presented in

1 pointer readBarrier (pointer p) {
2 if (! isPointer(p)) return p;
3 if (getHeader(p) == FORWARDED)
4 return *(pointer *)p;
5 return p;
6 }

Figure 1: Read barrier.

Section 5. Details about the target platforms we use in our experi-
ments is given in Section 6. Experimental results are presented in
Section 7. A comparison to related work is given in Section 8, and
Section 9 presents conclusions.

2. Motivation
In this section, we quantify the cost/benefit of read barriers in
our system. The context of our investigation is a programming
model that is mostly functional (our benchmarks are written in
the asynchronous extension [24] of Concurrent ML [18]), and that
naturally supports large numbers of lightweight user-level threads.
We have implemented our garbage collector for MultiMLton [17],
a parallel extension to MLton [16], that targets scalable, many-core
platforms.

In our implementation, lightweight threads are multiplexed over
kernel threads, with one kernel thread pinned to every core. Each
core has a local heap, and a single shared heap is shared among
all of the cores; the runtime system enforces the necessary heap
invariants described earlier. In our experiments, we fixed the heap
size to 3X the minimum heap size under which the programs would
run.

MultiMLton performs a series of optimizations to minimize
heap allocation, thus reducing the set of read barriers actually gen-
erated. For example, references and arrays that do not escape out
of a function are flattened. Combined with aggressive inlining and
simplification optimizations enabled by whole-program compila-
tion, object allocation on the heap can be substantially reduced.

The compiler and runtime system ensure that entries on thread
stacks never point to a forwarded object. Whenever an object
pointer is stored into a register or the stack, a read barrier is ex-
ecuted on the object pointer to get the current location of the ob-
ject. Immediately after an exporting write or a context switch, the
current stack is walked and references to forwarded objects are up-
dated to point to the new location of lifted objects in the shared
heap. Additionally, before performing an exporting write, register
values are saved on the stack, and reloaded after exit. Thus, as a
part of fixing references to forwarding pointers from the stack, ref-
erences from registers are also fixed. This ensures that the registers
never point to forwarded objects either. Hence, no read barriers are
required for dereferencing object pointers from the stack or reg-
isters. This optimization is analogous to “eager” read barriers as
described in [4]. Eager read barrier elimination has marked perfor-
mance benefits for repeated object accesses, such as array element
traversals in a loop, where the read barrier is executed once when
the array location is loaded into a register, but all further accesses
can elide executing the barrier.

Whenever an object is lifted to the shared heap, the original
object’s header is set to FORWARDED and the first word of the object
is overwritten with the new location of the object in the shared heap.
Before an object is read, the mutator checks whether the object has
been forwarded, and if it is, returns the new location of the object.
Hence, our read barriers are conditional [5, 6].

Figure 1 shows the pseudo-C code for our read barrier. MLton
represents non-value carrying constructors of (sum) datatypes us-

AllP
ai
rs

Bar
ne

sH
ut

Cou
nt

gr
ap

hs

Gam
eO

fL
ife

Kc
lu

st
er

in
g

M
an

de
lb

ro
t

Nuc
le
ic

Ray
tra

ce
0

5

10

15

20

25

30

35

O
v
e
rh

e
a
d
 (

%
)

AMD
SCC
AZUL

Figure 2: Read barrier overhead as a percentage of mutator time.

!"
#$
%&

'(
)

!"
"#
$%&
'

($
&)
*'
+,
-

./
,)
-0
&$
12
'

3$
4
*5
67%
6*

89
",
'-*

&%)
0

:
$)
;*
"<
&/
-

=,
9"*
%9

>$
?-
&$
9*

*%"$)+,-.,/012 @ABCD EAFGH EACFH HAFCF DABFI EA@FI EAFFB EAEJB
34(5'(6"6 JED CEBIE I EJHD JIJ ED DEF I

Figure 3: Effectiveness of read barrier checks: Checks represents
the number of read barrier invocations and forwarded represents the
number of instances when the read barrier encountered a forwarded
object.

ing non-pointer values. If such a type additionally happens to have
value-carrying constructors that reference heap-allocated objects,
the non-pointer value representing the empty constructor will be
stored in the object pointer field. Hence, the read barrier must first
check whether the presumed pointer does in fact point to a heap ob-
ject. Otherwise, the original value is returned (line 2). If the given
pointer points to a forwarded object, the current location of the ob-
ject stored is returned. Otherwise, the original value is returned.

We evaluated a set of 8 benchmarks (described in Section 7.1)
running on a 16 core AMD64, a 48 core Intel SCC and an 864
core Azul Vega 3 machine to measure read barrier overheads.
Figure 2 shows these overheads as a percentage of mutator time.
Our experiments reveal that, on average, the mutator spends 20.1%,
15.3% and 21.3% of time executing read barriers on the AMD64,
SCC and Azul architectures, respectively, for our benchmarks.

Although a Brooks-style unconditional read barrier would have
avoided the cost of the second branch in our read barrier imple-
mentation, it would necessitate having an additional address length
field in the object header for an indirection pointer. Most objects
in our system tend to be small. In our benchmarks, we observed
that 95% of the objects allocated were less than 3 words in size,
including a word-sized header. The addition of an extra word in
the object header for an indirection pointer would lead to substan-
tial memory overheads, which in turn leads to additional garbage
collection costs. Hence, we choose to encode read barriers condi-
tionally rather than unconditionally.

But, does the utility of the read barrier justify its cost? We mea-
sure the number of instances the read barrier is invoked and the
number of instances the barrier finds a forwarded object (see Fig-
ure 3). We see that read barriers find forwarded objects in less than

one thousands of a percent of the number of instances they are in-
voked. Thus, in our system, the cost of read barriers is substantial,
but only rarely do they have to perform the task of forwarding refer-
ences. These results motivate our interest in a memory management
design that eliminates read barriers altogether.

3. GC Design and Implementation
In this section, we describe the design and implementation of the
runtime system and garbage collector.

3.1 Threading system
Our programming model separates program-level concurrency
from the physical parallelism available in the underlying ma-
chine through the use of lightweight, user-level threads. These
lightweight threads are multiplexed over system-level threads. One
system-level thread is created for every core and is pinned to it.
Thus, the runtime system effectively treats a system-level thread
as a virtual processor. Load distribution is through work sharing,
where threads are eagerly spawned on different cores in a round-
robin fashion. Once created on a core, lightweight threads never
migrate to another core.

Lightweight threads are preemptively scheduled on every core.
On a timer interrupt, the threading system is informed that an in-
terrupt has occurred by setting a flag at a known location. At every
garbage collector safe-point, the current thread checks whether the
timer interrupt flag has been set, and if it is, resets the flag and
yields control to another thread.

3.2 Baseline collector (Stop-the-world)
The baseline heap design uses a single, contiguous heap, shared
among all cores. In order to allow local allocation, each core re-
quests a page-sized chunk from the heap. While a single lock pro-
tects the chunk allocation, objects are allocated within chunks by
bumping a core-local heap frontier.

In order to perform garbage collection, all the cores synchro-
nize on a barrier, with one core responsible for collecting the en-
tire heap. The garbage collection algorithm is inspired from San-
som’s [19] collector, which combines Cheney’s two-space copying
collector and Jonker’s single-space sliding compaction collector.
Cheney’s copying collector walks the live objects in the heap just
once per collection, while Jonker’s mark-compact collector per-
forms two walks. But Cheney’s collector can only utilize half of
memory allocated for the heap. Sansom’s collector combines the
best of both worlds. Copying collection is performed when heap
requirements are less than half of the available memory. The run-
time system dynamically switches to mark-compact collection if
the heap utilization increases beyond half of the available space.

Since ML programs tend to have a high rate of allocation,
and most objects are short-lived temporaries, it is beneficial to
perform generational collection. The garbage collector supports
Appel-style generational collection [2] for collecting temporaries.
The generational collector has two generations, and all objects that
survive a generational collection are copied to the older generation.
Generational collection can work with both copying and mark-
compact major collection schemes. The runtime system chooses
to perform generational collection if the ratio of live objects to the
total objects falls below a tunable threshold.

Our choice of a stop-the-world baseline collector was to enable
better understanding of mutator overheads among various local col-
lector designs, as opposed to illustrating absolute performance im-
provement of the local collectors over the baseline. Although a par-
allel collector would have improved overall baseline performance,
we would expect poorer scalability due to frequent global synchro-
nizations [10, 14, 20].

3.3 Local collector (Split-heap)
As mentioned earlier, the local collector operates over a single
shared (global) heap and a local heap for each core. The allocation
of the shared heap is performed similar to allocations in the stop-
the-world collector, where each core allocates a page-sized chunk
in the shared heap and performs object allocation by bumping its
core-local shared heap frontier. Allocations in the local heaps do
not require any synchronization. Garbage collection in the local
heaps is similar to the baseline collector, except that it does not
require global synchronization.

Objects are allocated in the shared heap only if they are to
be shared between two or more cores. Objects are allocated in
the shared heap because of exporting writes and remote spawns
(Section 5.3). Apart from these, all globals are allocated in the
shared heap, since globals are visible to all cores by definition. For a
shared heap collection, all of the cores synchronize on a barrier and
then a single core collects the heap. Moreover, along with globals,
all the references from local heaps are considered to be roots for a
shared heap collection. In order to eliminate roots from dead local
heap objects, before a shared heap collection, local collections are
performed on each core to eliminate such references.

The shared heap is also collected using Sansom’s dual-mode
garbage collector. However, we do not perform generational col-
lection on the shared heap. This is because shared heap collection
is expected to be relatively infrequent when compared to the fre-
quency of local heap collections, and objects that are shared be-
tween cores, in general, live longer than a typical object collected
during a generational collection.

3.3.1 Remembered stacks
In our system, threads can synchronously communicate with each
other over first-class message-passing communication channels. If
a receiver is not available, a sender thread can block on a channel.
If the channel resides in the shared heap, the thread object, its
associated stack and the transitive closure of all objects reachable
from it on the heap would be lifted to the shared heap as part of
the blocking action. Since channel communication is the primary
mode of thread interaction in our system, we would quickly find
that most local heap objects end up being lifted to the shared heap.
This would be highly undesirable.

Hence, we choose never to move stacks to the shared heap. We
add an exception to our heap invariants to allow thread → stack
pointers, where the thread resides on the shared heap, and refer-
ences a stack object found on the local heap. Whenever a thread
object is lifted to the shared heap, a reference to the corresponding
stack object is added to the set of remembered stacks. This remem-
bered set is considered as a root for a local collection to enable
tracing of remembered stacks.

Before a shared heap collection, the remembered set is cleared;
only those stacks that are reachable from other GC roots survive
the shared heap collection. After a shared heap collection, the
remembered set of each core is recalculated such that it contains
only those stacks, whose corresponding thread objects reside in the
shared heap, and have survived the shared heap collection.

4. Cleanliness Analysis
In this section, we describe our cleanliness analysis. We first
present auxiliary definitions that will be utilized by cleanliness
checks.

4.1 Heap session
Objects are allocated in the local heap by bumping the local heap
frontier. In addition, associated with each local heap is a pointer
called sessionStart that always points to a location between the

1 Val writeBarrier (Ref r, Val v) {
2 if (isObjptr(v)) {
3 // Lift if clean or procrastinate
4 if (isInSharedHeap(r) &&
5 isInLocalHeap(v)) {
6 needsFixup = false;
7 if (isClean(v, &needsFixup))
8 v = lift(v, needsFixup);
9 else

10 v = suspendTillGCAndLift(v);
11 }
12 // Tracking cleanliness
13 if (isInLocalHeap (r) &&
14 isInLocalHeap(v)) {
15 n = getRefCount(v);
16 if (! isInCurrentSession (r))
17 setNumRefs(v, GLOBAL);
18 else if (n == ZERO)
19 setNumRefs(v, ONE);
20 else if (n < GLOBAL)
21 setNumRefs(v, LOCAL_MANY);
22 }
23 }
24 return v;
25 }

Figure 4: Write barrier implementation.

start of the heap and the frontier. We introduce the idea of a heap
session, to capture the notion of recently allocated objects. Every
local heap has exactly two sessions: a current session between the
sessionStart and the heap frontier and a previous session be-
tween the start of the heap and sessionStart . Heap sessions are
used by the cleanliness analysis to limit the range of heap loca-
tions that need to be scanned to test an object closure1 for cleanli-
ness. A new session can be started by setting the sessionStart
to the current local heap frontier. We start a new session on a con-
text switch, a local garbage collection and after an object has been
lifted to the shared heap.

4.2 Reference count
We introduce a limited reference counting mechanism for local
heap objects that counts the number of references from other local
heap objects. Importantly, we do not consider references from ML
thread stacks. The reference count is meaningful only for objects
reachable in the current session. For such objects, the number of
references to an object can be one of four values: ZERO , ONE ,
LOCAL MANY , and GLOBAL . We steal 2 bits from the object header
to record this information. A reference count of ZERO indicates
that the object only has references from registers or stacks, while an
object with a count of ONE has exactly one pointer from the current
session. A count of LOCAL MANY indicates that this object has more
than one reference, but that all of these references originate from
the current session. GLOBAL indicates that the object has at least
one reference that originates from outside the current session.

The reference counting mechanism is implemented as a part of
the write barrier. Lines 13–22 in Figure 4 illustrate the implementa-
tion of the reference counting mechanism, and Figure 5 illustrates
the state transition diagram for the reference counting mechanism.
Observe that reference counts are non-decreasing. Hence, the ref-

1 In the following, we write closure (in the absence of any qualification)
to mean the set of objects reachable from some root on the heap; to avoid
confusion, we write function closure to mean the representation of an SML
function as a pair of function code pointer and static environment.

GLOBAL LOCAL
MANY

ZERO ONE

r := x

Pr : isInCurrentSession (r)

Pr

~Pr Pr
~Pr

~Pr

Pr

Figure 5: State transition diagram detailing the behavior of the ref-
erence counting mechanism with respect to object x involved in an
assignment, r := x , where P r = isInCurrentSession(r) .

1 bool isClean (Val v, bool* needsFixup) {
2 clean = true;
3 foreach o in reachable(v) {
4 if (! isMutable(o) || isInSharedHeap(o))
5 continue;
6 nv = getRefCount(o);
7 if (nv == ZERO)
8 clean &= true;
9 else if (nv == ONE)

10 clean &= (o != v);
11 else if (nv == LOCAL_MANY) {
12 clean &= (isInCurrentSession(o));
13 *needsFixup = true;
14 }
15 else
16 clean = false;
17 }
18 return clean;
19 }

Figure 6: Cleanliness check.

erence count of any object represents the maximum number of ref-
erences that pointed to the object at any point in its lifetime.

4.3 Cleanliness
An object closure is said to be clean, if for each object reachable
from the root of the closure,

• the object is immutable or in the shared heap. Or,
• the object is the root, and has ZERO references. Or,
• the object is not the root, and has ONE reference. Or,
• the object is not the root, has LOCAL MANY references, and is in

the current session.

Otherwise, the object closure is not clean. Figure 6 shows an im-
plementation of an object closure cleanliness check.

If the source of an exporting assignment is immutable, we can
make a copy of the immutable object in the shared heap, and avoid
introducing references to forwarded objects. Unlike languages like
Java or C#, Standard ML does not allow the programmer to test the
referential equality of immutable objects. Equality of immutable
objects is always computed by structure. Hence, it is safe to repli-

x (0)
z (1)

y (1)

Current Stack

r

r := x

x
z

y

Current Stack

r

Shared Heap Shared Heap

Local Heap Local Heap

(a) Tree-structured object closure

p (0)

s (1)

Current
Session

Previous
Session

q (LM)

a

Shared Heap

r

r := p

Local Heap

Shared Heap

r p

s

q

Current
Session

Previous
Session

a

Local Heap

(b) Session-based cleanliness

Figure 7: Utilizing closure cleanliness information for exporting
writes to avoid references to forwarded objects.

cate immutable objects. If the object is already in the shared heap,
there is no need to move this object.

If the object closure of the source of a exporting write is clean,
we can move the closure to the shared heap and quickly fix all of the
forwarding pointers that might be generated. For example, consider
an object that defines a tree structure; such an object is clean if
the root has ZERO references and all of its internal nodes have
ONE reference from their parent. A root having ZERO references
means it is accessed only via the stack; if it had a count of ONE , the
outstanding reference may emanate from the heap. Internal nodes
having a reference count of ONE implies they are reachable only
via other nodes in the object being traced. Figure 7a shows such a
closure. In this example, we assume that all objects in the closure
are mutable. The reference count of relevant nodes is given in the
brackets. Both the root and internal nodes can have pointers from
the current stack not tracked by the reference count. After lifting
the closure, the references originating from the current stack are
fixed by walking the stack.

But, object closures need not just be trees and can be arbitrary
graphs, with multiple incoming edges to a particular object in the
closure. How do we determine if the incoming edges to an object
originate from the closure or from outside the closure (from the
local heap)? We cannot answer this question without walking the
local heap. Hence, we simplify the question to asking whether all
the pointers to an object originate from the current session. This
question is answered in the affirmative if an object has a reference
count of LOCAL MANY (lines 11–13 in Figure 6).

Figure 7b shows an example of a closure whose objects have at
most LOCAL MANY references. Again, we assume that all objects in
the closure are mutable. In the transitive closure rooted at p , ob-
ject q has locally many references. These references might origi-
nate from the closure itself (edges p → q and s → q) or from
outside the closure (edge a → q). After lifting such closures to
the shared heap, only the current session is walked to fix all of the
references to forwarded objects created during the copy. In prac-
tice (Section 7.5), current session sizes are much smaller than heap
sizes, and hence exporting writes can be performed quickly.

5. Write barrier
In this section, we present the modifications to the write barrier
to eliminate the possibility of creating references from reachable
objects in the local heap to a forwarded object. The implementation
of our write barrier is presented in Figure 4. A write barrier is
invoked prior to a write and returns a new value for the source of
the write. The check isObjptr at line 2 returns true only for heap
allocated objects, and is a compile time check. Hence, for primitive
valued writes, there is no write barrier. Lines 4 and 5 check whether
the write is exporting. If the source of the object is clean, we lift
the transitive object closure to the shared heap and return the new
location of the object in the shared heap.

5.1 Delaying writes
If the source of an exporting write is not clean, we suspend the
current thread and switch to another thread in our scheduler. The
source of the write is added to a queue of objects that are waiting to
be lifted. Since the write is not performed, no forwarded pointers
are created. If programs have ample amounts of concurrency, there
will be other threads that are waiting to be run. However, if all
threads on a given core are blocked on a write, we move all of
the object closures that are waiting to be lifted to the shared heap.
We then force a local garbage collection, which will, as a part of
the collection, fix all of the references to point to the new (lifted)
location on the shared heap. Thus, the mutator never encounters a
reference to a forwarded object.

5.2 Lifting objects to the shared heap
Figure 8 shows the pseudo-C code for lifting object closures to
the shared heap. The function lift takes as input the root of a
clean object closure and a Boolean representing whether the closure
has any object that has LOCAL MANY references. For simplicity of
presentation, we assume that the shared heap has enough space
reserved for the transitive closure of the object being lifted. In
practice, the lifting process requests additional shared heap chunks
to be reserved for the current processor, or triggers a shared heap
collection if there is no additional space in the shared heap.

Objects are transitively lifted to the shared heap, starting from
the root, in the obvious way (Lines 22–24). As a part of lifting,
mutable objects are lifted and a forwarding pointer is created in
their original location, while immutable objects are copied and their
location added to imSet (Lines 10–15). After lifting the transitive
closure of the object to the shared heap, the shared heap frontier is
updated to the new location.

After object lifting, the current stack is walked to fix any refer-
ences to forwarding pointers (Line 27–28). Since we do not track
references from the stack for reference counting, there might be
references to forwarded objects from stacks other than the current
stack. We fix such references lazily. Before a context switch, the tar-
get stack is walked to fix any references to forwarded objects. Since
immutable objects are copied and mutable objects lifted, a copied
immutable object might point to a forwarded object. We walk all
the shared heap copies of immutable objects lifted from the local

1 Set imSet;
2 void liftHelper (pointer* op,
3 pointer* frontierP) {
4 frontier = *frontierP;
5 o = *op;
6 if (isInSharedHeap(o)) return;
7 copyObject (o, frontier);
8 *op = frontier + headerSize(o);
9 *frontierP = frontier + objectSize(o);

10 if (isMutable(o)) {
11 setHeader(o, FORWARDED);
12 *o = *op;
13 }
14 else
15 imSet += o;
16 }
17

18 pointer lift (pointer op, bool needsFixup) {
19 start = frontier = getSharedHeapFrontier ();
20 imSet = {};
21 // Lift transitive closure
22 liftHelper (&op, &frontier);
23 foreachObjptrInRange
24 (start , &frontier , liftHelper);
25 setSharedHeapFrontier(frontier);
26 // Fix forwarding pointers
27 foreachObjptrInObject
28 (getCurrentStack (), fixFwdPtr);
29 foreach o in imSet
30 foreachObjptrInObject(o, fixFwdPtr);
31 frontier = getLocalHeapFrontier ();
32 if (needsFixup)
33 foreachObjptrInRange(getSessionStart (),
34 &frontier , fixFwdPtr);
35 setSessionStart(frontier);
36 return op;
37 }

Figure 8: Lifting an object closure to the shared heap.

1 ThreadID spawn (pointer closure , int target) {
2 ThreadID tid = newThreadID ();
3 Thread t = newThread(closure , tid);
4 needsFixup = false;
5 if (isClean(t, &needsFixup)) {
6 t = lift(t, needsFixup);
7 enqueThread(t, target);
8 }
9 else

10 liftAndReadyBeforeGC(t, target);
11 return tid;
12 }

Figure 9: Spawning a thread.

heap to fix any references to forwarded objects (Lines 29–30). If
there were LOCAL MANY references to any object in the lifted clo-
sure, the local session is walked to fix the references to forwarding
pointers. Finally, session start is moved to the current frontier.

5.3 Remote spawns
Apart from exporting writes, function closures can also escape local
heaps when threads are spawned on other cores. For spawning on
other cores, the environment of the function closure is lifted to the
shared heap and then, the function closure is added to the target

core’s scheduler. This might introduce references to forwarding
pointers in the spawning core’s heap. We utilize the techniques
developed for exporting writes to handle remote spawns in a similar
fashion.

Figure 9 shows the new implementation of thread spawn. If the
function closure is clean, we lift the function closure to the shared
heap, and enqueue the thread on the target scheduler. Otherwise,
we add it to the list of threads that need to be lifted to the shared
heap. Before the next garbage collection, these function closures
are lifted to the shared heap, enqueued to target schedulers, and the
references to forwarded objects are fixed as a part of the collection.
When the target scheduler finds this new thread (as opposed to
other preempted threads), it allocates a new stack in the local heap.
Hence, except for the environment of the remotely spawned thread,
all data allocated by the thread is placed in the local heap.

5.4 Barrier implementation
For our evaluation, we have implemented two local collector de-
signs; one with read barriers (RB+ GC) and the other without read
barriers incorporating the proposed techniques (RB- GC). Read
barriers are generated as part of RSSA, one of the backend inter-
mediate passes in our compiler. RSSA is similar to Static Single
Assignment (SSA), but exposes data representations decisions. In
RSSA, we are able to distinguish heap allocated objects from non-
heap values such as constants, values on the stack and registers,
globals, etc. This allows us to generate barriers only when neces-
sary.

Although the code for tracking cleanliness is implemented as
an RSSA pass (Lines 13–24 in Figure 4), the code for avoiding
creation of references to forwarded objects (Lines 4–11 in Figure 4)
is implemented in the primitive library, which has access to the
lightweight thread scheduler. suspendTillGCAndLift (line 11
in Figure 4) is carefully implemented to not contain an exporting
write, which would cause non-terminating recursive calls to the
write barrier.

6. Target Architectures
We have implemented our GC design on three different architec-
tures; a 16-core AMD64 running Linux (AMD), a 48-core Intel
Single-chip Cloud Computer (SCC), and an 864-core Azul’s Vega
3 machine. Our choice of architectures is primarily to study the ro-
bustness of our techniques across various architectures rather than
exploiting the fine-grained architectural characteristics for our de-
sign.

The AMD machine has 8 dual core AMD Opteron processors,
with each core running at 1.8 GHz. Each core has 64 KB of 2-
way associative L1 data and instruction caches, and 1 MB of ex-
clusive 16-way associative L2 cache with 32 GB of main memory.
The peak memory bandwidth for serial access is 1.5 GB/s and 680
MB/s for all cores accessing the memory in parallel. These mem-
ory bandwidth numbers were measured using the STREAM [23]
benchmark.

The Azul machine used in our experiments has 16 Vega 3 pro-
cessors, each with 54-cores per chip; each core exhibits roughly 1/3
the performance of an Intel Core2-Duo. Out of the 864 cores, 846
are application usable while the rest of the cores are reserved for the
kernel. The machine has 384 GB of cache coherent memory split
across 192 memory modules. Uniform memory access is provided
through a passive, non-blocking interconnect mesh. The machine
has 205 GB/s aggregate memory bandwidth and 544 GB/s aggre-
gate interconnect bandwidth. Each core has a 16KB, 4-way L1 data
and instruction caches.

Intel’s Single-chip Cloud Computer (SCC)[12] is an experimen-
tal platform from Intel labs with 48 P54C Pentium cores. The most
interesting aspect of SCC is the complete lack of cache coherence

and a focus on inter-core interactions through a high speed mesh in-
terconnect. The cores are grouped into 24 tiles, connected via a fast
on-die mesh network. The tiles are split into 4 quadrants with each
quadrant connected to a memory module. Each core has 16KB L1
data and instruction caches and 256KB L2 cache. Each core also
has a small message passing buffer (MPB) of 8KB used for mes-
sage passing between the cores.

Since the SCC does not provide cache coherence, coherence
must be implemented in software if required. From the program-
mer’s perspective, each core has a private memory that is cached
and not visible to other cores. The cores also have access to a shared
memory, which is by default not cached to avoid coherence issues.
The cost of accessing data from the cached local memory is sub-
stantially less when compared to accessing shared memory. It takes
18 core cycles to read from the L2 cache; on the other hand, it
takes 40 core cycles to request data from the memory controller, 4
mesh cycles for the mesh to forward the request and 46 memory
cycles for the memory controller to complete the operation. Hence,
in total, the delay between a core requesting data from the memory
controller is 40 kcore + 4 ∗ 2 ∗ n kmesh + 46 kram cycles,
where kcore, kmesh and kram are the cycles of core, mesh net-
work and memory respectively. In our experimental setup, where 6
tiles share a memory controller, the number of hops n to the mem-
ory controller could be 0 < n < 5. Hence, shared heap accesses are
much more expensive than local heap accesses.

6.1 Local collector on SCC
We briefly describe our runtime system design for the SCC. On the
SCC, each core runs a Linux operating system and from the pro-
grammer’s point-of-view, SCC is exposed as a cluster of machines.
Thus, we believe that our local collector design is a must for cir-
cumventing coherence and segmentation restrictions, and making
effective use of the memory hierarchy. Pointers to local memory
are sensible only to the owning core. From the perspective of other
cores, pointers might fall outside the segmentation boundary. If we
were to utilize a single-shared heap design, where any object can
point to any other object in the heap, the heap would have to be
placed in the non-cached shared memory because of the lack of
coherence.

Instead of spawning threads to represent virtual processors, we
spawn one process on each core. Local heaps are placed in the
cached private memory while the shared heap is placed in the non-
cached shared memory. Since our local collector design only ex-
ports objects to the shared heap if they are to be shared between
cores, most access are from the local heap and are cached. We mod-
ify the memory manager such that the shared heap is created at the
same virtual address on each core. This avoids address translation
overheads (and hence, read barriers) for shared heap reads.

Shared heap collection is collective; the collection proceeds in
SPMD mode with each processor collecting roots from its local
heap, followed by a single core collecting the shared heap. Finally,
each core updates the references from its local heap to the shared
heap with the new location of the shared heap object. The MPB
is utilized by shared heap collection for synchronization and data
exchange.

7. Results
7.1 Benchmarks
The benchmarks shown in Figure 10 were designed such that the
input size and the number of threads are tunable; each of these
benchmarks were derived from a sequential standard ML imple-
mentation, and parallelized using our lightweight thread system and
CML-style [18] message-passing communication.

!"# $%% !&'(!"# $%% !&'()*$+ !"# $%% !&'(!"#$%&##
'(()*+,- ./% 01 /020 /# /# 0! // "0# 0/" 1"%#. !1"$0##&
3*,45-678 %%" %2 /1." "2 "2 .%# " 0/" /2"! 1"%#. !1.$%&0
9:748;,*<6- "0&! /!! !!%0 "! "! //%# / /". "0# /#1.! !!2$120
=*>5?@A+@5 "!!0 /"% !"## "/ "/ &01 /1 "0# /2"! ./&" !0/$!&10
BC(7-85,+4; 1#!1 /2. .&"% 1" 1" /"#0 1 "0# /2"! ./&" !01$#.&#
D*4E5(F,:8 1!& !1 ##& " " 1" . /". 0/" ./&" !#%$11&0
G7C(5+C /!12 .% !%#/ /1 /! #2& / #! 1.! /#1.! !%.$#1".
H*I8,*C5 .2& 0! "/11 // /" ##1 ! /". "0# "2!. !%&$#.."

!.0$1#..
!&2$012.
022$02!&
020$!/2/
02#$.#11
02%$/.."
0/&$2/!/
01&$!/&/
0!/$10%%
002$/001
00!$2"&#
0#/$&..

0.2$20%1
0./$0""0
0.!$!01"
#2/$#0"

#/#$22&"
#1!$21/#
#%2$&%/"
.%%$2&#%
..0$.#/1
&11$/!11
&1&$022&
#.1$/!.%0

!,,-./01-2*3/04*
5"6789642.+:/;< =*>+;4/?8

6@048*!,,-./04?*5A69

Figure 10: Benchmark characteristics. %Sh represents the average
fraction of bytes allocated in the shared heap across all the archi-
tectures.

• AllPairs: an implementation of Floyd-Warshall algorithm for
computing all pairs shortest path.

• BarnesHut: an n-body simulation using Barnes-Hut algorithm.
• CountGraphs: computes all symmetries (automorphisms)

within a set of graphs.
• GameOfLife: Conway’s Game of Life simulator
• Kclustering: a k-means clustering algorithm, where each stage

is spawned as a server.
• Mandelbrot: a Mandelbrot set generator.
• Nucleic: Pseudoknot [11] benchmark applied on multiple in-

puts.
• Raytrace: a ray-tracing algorithm to render a scene.

Parameters are appropriately scaled for different architectures
to ensure sufficient work for each of the cores. The benchmarks
running on AMD and SCC were given the same input size. Hence,
we see that the benchmarks allocate the same amount of memory
during their lifetime. But, we increase the number of threads on
the SCC when compared to AMD since there is more hardware
parallelism available. For Azul, we scale both the input size and the
number of threads, and as a result we see a large increase in bytes
allocated when compared to the other platforms. Out of the total
bytes allocated during the program execution, on average 5.4% is
allocated in the shared heap. Thus, most of the objects allocated are
collected locally, without the need for stalling all of the mutators.

We observe that the allocation rate is highly architecture depen-
dent, and is the slowest on the SCC. Allocation rate is particularly
dependent on memory bandwidth, processor speed and cache be-
havior. On the SCC, not only is the processor slow (533MHz) but
the serial memory bandwidth for our experimental setup is only
around 70 MB/s.

7.2 Performance
Next, we analyze the performance of the new local collector design.
In order to establish a baseline for the results presented, we have
ported our runtime system to utilize the Boehm-Demers-Weiser
(BDW) conservative garbage collector [7]. We briefly describe the
port of our runtime system utilizing BDW GC.

Although BDW GC is conservative, it can utilize tracing infor-
mation when provided. Our compiler generates tracing information
for all objects, including the stack. However, we provide the trac-
ing information for all object allocations except the stack. Stack
objects in our runtime system represent all of the reserved space
for a stack, while only a part of the stack is actually used which can
grow and shrink as frames are pushed and popped. Since the BDW
GC does not allow tracing information of objects to be changed af-

ter allocation, we scan stack objects conservatively. BDW uses a
mark-sweep algorithm, and we enable parallel marking and thread-
local allocations.

Figure 11a illustrates space-time trade-offs critical for any
garbage collector evaluation. STW GC is the baseline stop-the-
world collector described in Section 3.2, while RB+ and RB- are
local collectors. RB+ is a local collector with read barriers while
RB- is our new local collector design without read barriers, exploit-
ing procrastination and cleanliness. We compare the normalized
running times of our benchmarks under different garbage collec-
tion schemes as we decrease the heap size. For each run of the
experiment, we decrease the maximum heap size allowed and re-
port the maximum size of the heap utilized. Thus, we leave it to the
collectors to figure out the optimal heap size, within the allowed
space. This is essential for the local collectors, since the allocation
pattern of each core is usually very different and depends on the
structure of the program.

The results presented here were collected on 16 cores. As we
decrease overall heap sizes, we see programs under all of the dif-
ferent GC schemes taking longer to run. But RB- exhibits better
performance characteristics than its counterparts. We observe that
the minimum heap size under which the local collectors would run
is greater than the STW and BDW GCs. In the local collectors,
since the heap is split across all of the cores, there is more frag-
mentation. Also, under the current scheme, each local collector is
greedy and will try to utilize as much heap as it can in order to
reduce the running time (by choosing semi-space collection over
mark-compact), without taking into account the heap requirements
of other local collectors. Currently, when one of the local cores
runs out of memory, we terminate the program. Since we are inter-
ested in throughput on scalable architectures where memory is not
a bottleneck, we have not optimized the collectors for memory uti-
lization. We believe we can modify our collector for memory con-
strained environments by allowing local heaps to shrink on demand
and switch from semi-space to compacting collection, if other local
heaps run out of memory.

The STW and BDW GCs are much slower than the two local
collectors. In order to study the reason behind this slowdown,
we separate the mutator time (Figure 11b) and garbage collection
time (Figure 11c). We see that STW GC is actually faster than
the local collectors in terms of mutator time, since it does not
pay the overhead of executing read or write barriers. But, since
every collection requires stopping all the mutators and a single
collector performs the collection, it executes serially during a GC.
Figure 11d shows that roughly 70% of the execution total time for
our benchmarks under STW is spent performing GCs, negatively
impacting scalability.

Interestingly, we see that programs running under the BDW GC
are much slower when compared to other GCs. This is mainly due
to allocation costs. Although we enabled thread-local allocations,
on 16 cores, approximately 40% of the time was spent on object
allocation. While the cost of object allocation for our other collec-
tors only involves bumping the frontier, allocation in BDW GC is
significantly more costly, involving scanning through a free list, in-
curring substantial overhead. Moreover, BDW GC is tuned for lan-
guages like C/C++ and Java, where the object lifetimes are longer
and allocation rate is lower when compared to functional program-
ming languages.

In Figure 11a, at 3X the minimum heap size, RB+, STW and
BDW GCs are 32%, 106% and 584% slower than the RB- GC. We
observe that there is very little difference between RB+ and RB-
in terms of GC time but the mutator time for RB+ is consistently
higher than RB- due to read barrier costs. The difference in mutator
times is consistent since it is not adversely affected by the increased
number of GCs incurred as a result of smaller heap sizes. This also

0 1 2 3 4 5 6 7
Heap size relative to min heap size

1

2

4

8

16

N
o
rm

a
liz

e
d
 T

im
e
 (

lo
g
)

RB-

RB+

STW

BDW

(a) Total time

0 1 2 3 4 5 6 7
Heap size relative to min heap size

1

2

4

8

16

N
o
rm

a
liz

e
d
 M

u
ta

to
r

T
im

e
 (

lo
g
)

RB-

RB+

STW

BDW

(b) Mutator time

0 1 2 3 4 5 6 7
Heap size relative to min heap size

1

2

4

8

16

32

64

N
o
rm

a
liz

e
d
 G

C
 T

im
e
 (

lo
g
) RB-

RB+

STW

BDW

(c) GC time

0 1 2 3 4 5 6 7
Heap size relative to min heap size

0

10

20

30

40

50

60

70

80

G
C

 o
v
e
rh

e
a
d
 (

%
)

RB-

RB+

STW

BDW

(d) GC overhead

Figure 11: Performance comparison of Stop-the-world (STW), Boehm-Demers-Weiser conservative garbage collector (BDW), local collector
with read barriers (RB+), and local collector without read barriers (RB-): Geometric mean for 8 benchmarks running on AMD64 with 16
cores.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Heap size relative to min heap size

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

N
o
rm

a
liz

e
d
 T

im
e

RB-

RB+

(a) Total time

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Heap size relative to min heap size

1.00

1.10

1.20

1.30

1.40

1.50

1.60

N
o
rm

a
liz

e
d
 M

u
ta

to
r

T
im

e RB-

RB+

(b) Mutator time

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Heap size relative to min heap size

1

2

4

8

16

N
o
rm

a
liz

e
d
 G

C
 T

im
e
 (

lo
g
) RB-

RB+

(c) Garbage collection time

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Heap size relative to min heap size

10

15

20

25

30

35

40

45

50

G
C

 o
v
e
rh

e
a
d
 (

%
)

RB-

RB+

(d) Garbage collection overhead

Figure 12: Performance comparison of local collector with read barriers (RB+) and local collector without read barriers (RB-): Geometric
mean for 8 benchmarks running on Azul with 846 cores.

0 1 2 3 4 5 6
Heap size relative to min heap size

1.0

1.5

2.0

2.5

3.0

3.5

4.0

N
o
rm

a
liz

e
d
 T

im
e

RB-

RB+

(a) Total time

0 1 2 3 4 5 6
Heap size relative to min heap size

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

N
o
rm

a
liz

e
d
 M

u
ta

to
r

T
im

e RB-

RB+

(b) Mutator time

0 1 2 3 4 5 6
Heap size relative to min heap size

1

2

4

8

16

32

64

N
o
rm

a
liz

e
d
 G

C
 T

im
e
 (

lo
g
) RB-

RB+

(c) Garbage collection time

0 1 2 3 4 5 6
Heap size relative to min heap size

0

10

20

30

40

50

60

70

G
C

 o
v
e
rh

e
a
d
 (

%
)

RB-

RB+

(d) Garbage collection overhead

Figure 13: Performance comparison of local collector with read barriers (RB+) and local collector without read barriers (RB-): Geometric
mean for 8 benchmarks running on SCC with 48 cores.

explains why the total running time of RB- approaches RB+ as the
heap size is decreased in Figure 11a. With decreasing heap size, the
programs spend a larger portion of the time performing GCs, while
the mutator time remains consistent. Hence, there is diminishing
returns from using RB- as heap size decreases.

Next, we analyze the performance on Azul (see Figure 12). We
only consider performance of our local collectors since our AMD
results show that the other collectors (STW and BDW) simply do
not have favorable scalability characteristics. At 3X the minimum
heap size, RB- is 30% faster than RB+.

SCC performance results are presented in Figure 13. At 3X the
minimum heap size, RB- is 20% faster than RB+. From the total
time graphs, we can see that the programs tend to run much slower
as we decrease the heap sizes on SCC. Compared to the fastest
running times, the slowest running time for RB- is 2.01X, 2.05X,
and 3.74X slower on AMD, Azul, and SCC respectively. This is

due to the increased number of shared heap collections, which are
more expensive than other architectures as a result of the absence
of caching. This is noticeable by a more rapid increase in garbage
collection overhead percentages (Figure 13d).

7.3 Impact of cleanliness
Cleanliness information allows the runtime system to avoid pre-
empting threads on a write barrier when the source of an exporting
write is clean. In order to study the impact of cleanliness, we re-
moved the reference counting code and cleanliness check from the
write barrier; thus, every exporting write results in a thread preemp-
tion and stall. The results presented here were taken on the AMD
machine with programs running on 16 cores with the benchmark
configurations given in Figure 10. The results will be similar on
SCC and Azul.

!"
#$
%&

'(
)

!"
"#
$%&
'

($
&)
*'
+,
-

./
,)
-0
&$
12
'

0$
3
*4
56%
5*

78
",
'-*

&%)
9

:
$)
;*
"<
&/
-

=,
8"*
%8

>$
?-
&$
8*

*!+ @AB@ CDEBF @EC BADF@ FEA@F @BF @ED BEFB
*!+,-.+ @AB@ CGHFB@F @HF IBEECB EGBFB FGH CBBGHF BICB
*!+,/0+ @FCFBF DI@EDAF@ EG@IA EADICFB FIGFBH@@ FECH@ H@FBCH D@@HA

Figure 14: Number of preemptions on write barrier.

!"
#$
%&

'(
)

!"
"#
$%&
'

($
&)
*'
+,
-

./
,)
-0
&$
12
'

0$
3
*4
56%
5*

78
",
'-*

&%)
9

:
$)
;*
"<
&/
-

=,
8"*
%8

>$
?-
&$
8*

!"
#$
%&

'(
)

!"
"#
$%&
'

($
&)
*'
+,
-

./
,)
-0
&$
12
'

0$
3
*4
56%
5*

78
",
'-*

&%)
9

:
$)
;*
"<
&/
-

=,
8"*
%8

>$
?-
&$
8*

*!+ @A@B @ACD @ EAFG @ CAGE @ CADH
*!+,-.+ @A@B CIAH @A@E IAGD @A@H HABJ IAED CADH
*!+,/0+ EBAFF C@@ @ACB IIADF HCAJG BJAHH CIAE HGABJ

Figure 15: Forced GCs as a percentage of the total number of major
GCs.

Figure 14 shows the number of preemptions on write barrier for
different local collector configurations. RB- row represents the lo-
cal collector designs with all of the features enabled; RB- MU- row
shows a cleanliness optimization that does not take an object’s mu-
tability into consideration in determining cleanliness (using only
recorded reference counts instead), and row RB- CL- row repre-
sents preemptions incurred when the collector does not use any
cleanliness information at all. Without cleanliness, on average, the
programs perform substantially more preemptions when encoun-
tering a write barrier.

Recall that if all of the threads belonging to a core get preempted
on a write barrier, a local major GC is forced, which lifts all of
the sources of exporting writes, fixes the references to forwarding
pointers and unblocks the stalled threads. Hence, an increase in the
number of preemptions leads to an increase in the number of local
collections.

Figure 15 shows the percentage of local major GCs that were
forced compared to the total number of local major GCs. Row RB-
CL- shows the percentage of forced GCs if cleanliness information
is not used. On average, 49% of local major collection performed
is due to forced GCs if cleanliness information is not used, whereas
it is less than 1% otherwise. On benchmarks like BarnesHut,
GameOfLife and Mandelbrot, where all of the threads tend to
operate on a shared global data structure, there are a large number
of exporting writes. On such benchmarks almost all local GCs are
forced in the absence of cleanliness. This adversely affects the
running time of programs.

Figure 16 shows the running time of programs without using
cleanliness. On average, programs tend to run 28.2% slower if
cleanliness information is ignored. The results show that cleanli-
ness analysis therefore plays a significant role in our GC design.

7.4 Impact of immutability
If the source of an exporting write is immutable, we can make a
copy of the object in the shared heap and assign a reference to the
new shared heap object to the target. Hence, we can ignore the
reference count of such objects. Not all languages may have the
ability to distinguish between mutable and immutable objects in
the compiler or in the runtime system. Hence, we study the impact
of our local collector design with mutability information in mind.
To do this, we ignore the test for mutability in the cleanliness check

AllP
ai
rs

Bar
ne

sH
ut

Cou
nt

Gra
ph

s

Gam
eO

fL
ife

Kc
lu

st
er

in
g

M
an

de
lb

ro
t

Nuc
le
ic

Ray
tra

ce
−10

0

10

20

30

40

50

60

S
lo

w
d
o
w

n
 (

%
)

RB- MU-
RB- CL-

Figure 16: Impact of utilizing object mutability information and
cleanliness analysis on the performance of RB- GC.

!"#$%&'&&()*%&(+'
,-./
01/.
230,
0244
,20/
/5,2
0,34
00,2

!"
#$
%&

'(
)

!6
67
8(9
&

:8
9*
'&
;<
=

>)
<*
=#
98
?;
&

@8
A
'B
CD(
C'

EF
6<
&='

9(*
#

G
8*
H'
6I
9)
=

J<
F6'
(F

K8
L=
98
F'

*+,-+$."'# 1$2 02$4 /$3 ,2$, 05$3 4$1 02$2 /$,
/012+3"3345#+
346"+789:"3;

,-./ 01/. 230, 0244 ,20/ /5,2 0,34 00,2

Figure 17: Impact of heap session: % LM clean represents the
fraction of instances when a clean object closure has at least one
object with LOCAL MANY references.

(Line 4 in Figure 6) and modify the object lifting code in Figure 8
to treat all objects as mutable.

RB- MU- row in Figure 14 and Figure 15 show the number of
write barrier preemptions and the percentage of forced GCs, re-
spectively, if all objects were treated as mutable. For some pro-
grams such as AllPairs, CountGraphs, or Kclustering, ob-
ject mutability does not play a significant factor. For benchmarks
where it does, distinguishing between mutable and immutable ob-
jects helps avoid inducing preemptions on a write barrier since a
copy of the immutable object can be created in the shared heap
without the need to repair existing references to the local heap copy.

Figure 16 shows the performance impact of taking object
mutability into account. BarnesHut, GameOfLife and Nucleic
are slower due to the increased number of forced GCs. Interest-
ingly, AllPairs, CountGraphs, Kclustering and Raytrace are
marginally faster since they avoid manipulating the imSet (Line
14 in Figure 8) and walking immutable objects after the objects
are lifted (Lines 25-27 in Figure 8). On average, we see a 11.4%
performance impact if mutability information is not utilized for
cleanliness.

7.5 Impact of heap session
In order to assess the effectiveness of using heap sessions, we mea-
sured the percentage of instances where the source of an exporting
write is clean with at least one of the objects in the closure has a
LOCAL MANY reference. During such instances, we walk the current
heap session to fix any references to forwarded objects. Without us-
ing heap sessions, we would have preempted the thread in the write
barrier, reducing available concurrency. The results were obtained

on the AMD with programs running on 16 cores with the configu-
ration given in Figure 10. The results are presented in Figure 17.

The first row shows the percentage of instances when an object
closure is clean and has at least one object with LOCAL MANY
references. On average, we see that 12% of clean closures have at
least one object with LOCAL MANY references. We also measured
the average size of heap sessions when the session is traced as
a part of lifting an object closure to the shared heap (Lines 29-
31 in Figure 8). The average size of a heap session when it is
traced is 2859 bytes, which is less than a page size. These results
show that utilizing heap sessions significantly contributes to objects
being tagged as clean, and heap sessions are small enough to not
introduce significant overheads during tracing.

8. Related Work
Modern garbage collectors rely on read and write barriers for en-
capsulating operations to be performed when the mutator reads or
writes a reference from or to some heap allocated object. The Baker
read barrier [5] was the first to use protection and invariants for mu-
tator accesses. While the Baker read barrier is a conditional read
barrier, the Brooks read barrier [8] is an unconditional read bar-
rier, where all loads unconditionally forward a pointer in the object
header to get to the object. For objects that are not forwarded, this
pointer points to the object itself. The Brooks read barrier elimi-
nates branches but increases the size of objects. Trading branches
with loads is not a clear optimization as modern processors allow
speculation through multiple branches, especially ones that are in-
frequent.

Over the years, several local collector designs [1, 9, 21, 22]
have been proposed for multithreaded programs. Recently, varia-
tions of local collector design have been adopted for multithreaded,
functional language runtimes like GHC [14] and Manticore [3].
Doligez et al. [9] proposed a local collector design for ML with
threads where all mutable objects are allocated directly on the
shared heap, and immutable objects are allocated in the local heap.
Similar to our technique, whenever local objects are shared be-
tween cores, a copy of the immutable object is made in the shared
heap. Although this design avoids the need for read and write barri-
ers, allocating all mutable objects, irrespective of their sharing char-
acteristics can lead to poor performance due to increased number
of shared collections, and memory access overhead due to NUMA
effects and uncached shared memory as in the case of SCC. It is for
this reason we do not treat the shared memory as the oldest genera-
tion for our local generation collector unlike other designs [9, 14].

Several designs utilize static analysis to determine objects that
might potentially escape to other threads [13, 22]. Objects that do
not escape are allocated locally, while all others are allocated in the
shared heap. The usefulness of such techniques depends greatly on
the precision of the analysis, as objects that might potentially be
shared are allocated on the shared heap. This is undesirable for ar-
chitectures like the SCC where shared memory accesses are very
expensive compared to local accesses. Compared to these tech-
niques, our design only exports objects that are definitely shared
between two or more cores. Our technique is also agnostic to the
source language, does not require static analysis, and hence can be
implemented as a lightweight runtime technique.

Anderson [1] describes a local collector design (TGC) that trig-
gers a local garbage collection on every exporting write of a mu-
table object, while immutable objects, that do not have any point-
ers, are copied to the shared heap. This scheme is a limited form
of our cleanliness analysis. In our system, object cleanliness nei-
ther solely relies on mutability information, nor is it restricted to
objects without pointer fields. Moreover, TGC does not exploit de-
laying exporting writes to avoid local collections. However, the pa-
per proposes several interesting optimizations that are applicable to

our system. In order to avoid frequent mutator pauses on exporting
writes, TGC’s local collection runs concurrently with the mutator.
Though running compaction phase concurrently with the mutator
would require read barriers, we can enable concurrent marking to
minimize pause times. TGC also proposes watermarking scheme
for minimizing stack scanning, which can be utilized in our system
to reduce the stack scanning overheads during context switches and
exporting writes of clean objects.

Marlow et al. [14] propose exporting only part of the transitive
closure to the shared heap, with the idea of minimizing the objects
that are globalized. The rest of the closure is exported essentially
on demand during the next access from another core. This design
mandates the need for a read barrier to test whether the object being
accessed resides in the local heap of another core. However, since
the target language is Haskell, there is an implicit read barrier on
every load, to check whether the thunk has already been evaluated
to a value. Since our goal is to eliminate read barriers, we choose
to export the transitive closure on an exporting write.

9. Conclusions
The use of read barriers can impose non-trivial overheads in man-
aged languages. In this paper, we consider a design of a runtime
system for a thread-aware implementation of Standard ML that
completely eliminates the need for read barriers. The design em-
ploys a split-heap to allow concurrent local collection, but exploits
notions of procrastination and cleanliness to avoid creating for-
warding pointers. Procrastination stalls threads about to perform an
operation that would otherwise introduce a forwarding pointer, and
thus can be used to eliminate read barriers for any exporting write.
Cleanliness is an important optimization that helps avoid the cost of
stalling by using runtime information to determine when it is safe to
copy (rather than move) an object, deferring repair of pointers from
the old (local) instance of the object to the new (shared) copy until a
later collection. Experimental results on a range of benchmarks and
architectural platforms indicate that read barrier elimination con-
tributes to notable performance improvement without significantly
complicating the runtime system.

Acknowledgments
We would like to thank our shepherd, Dave Detlefs, and the other
anonymous reviewers for their detailed comments and suggestions.
This work is supported by the National Science Foundation under
grants CCF-0811631 and CNS-0958465, and by gifts from Intel
and Samsung Corporation.

References
[1] T. A. Anderson. Optimizations in a Private Nursery-based Garbage

Collector. In ISMM, pages 21–30, 2010.

[2] A. W. Appel. Simple Generational Garbage Collection and Fast
Allocation. Software Practice and Experience, 19:171–183, February
1989.

[3] S. Auhagen, L. Bergstrom, M. Fluet, and J. Reppy. Garbage Collection
for Multicore NUMA Machines. In Workshop on Memory Systems
Performance and Correctness, pages 51–57, 2011.

[4] D. F. Bacon, P. Cheng, and V. T. Rajan. A Real-Time Garbage
Collector with Low Overhead and Consistent Utilization. In POPL,
pages 285–298, 2003.

[5] H. G. Baker, Jr. List Processing in Real Time on a Serial Computer.
Communication of the ACM, 21:280–294, 1978.

[6] S. M. Blackburn and A. L. Hosking. Barriers: Friend or Foe? In ISMM,
pages 143–151, 2004.

[7] H. Boehm. A Garbage Collector for C and C++, 2012. URL http:
//www.hpl.hp.com/personal/Hans_Boehm/gc.

http://www.hpl.hp.com/personal/Hans_Boehm/gc
http://www.hpl.hp.com/personal/Hans_Boehm/gc

[8] R. A. Brooks. Trading Data Space for Reduced Time and Code Space
in Real-Time Garbage Collection on Stock Hardware. In Lisp and
Functional Programming, pages 256–262, 1984.

[9] D. Doligez and X. Leroy. A Concurrent, Generational Garbage Col-
lector for a Multithreaded Implementation of ML. In POPL, pages
113–123, 1993.

[10] L. Gidra, G. Thomas, J. Sopena, and M. Shapiro. Assessing the
scalability of garbage collectors on many cores. SIGOPS Operating
Systems Review, 45(3):15–19, 2012.

[11] P. Hartel, M. Feeley, M. Alt, and L. Augustsson. Benchmarking Im-
plementations of Functional Languages with “Pseudoknot”, a Float-
Intensive Benchmark. Journal of Functional Programming, 6(4):621–
655, 1996.

[12] Intel. SCC Platform Overview, 2012. URL http://communities.
intel.com/docs/DOC-5512.

[13] R. Jones and A. C. King. A Fast Analysis for Thread-Local Garbage
Collection with Dynamic Class Loading. In International Workshop
on Source Code Analysis and Manipulation, pages 129–138, 2005.

[14] S. Marlow and S. Peyton Jones. Multicore Garbage Collection with
Local Heaps. In ISMM, pages 21–32, 2011.

[15] R. Milner, M. Tofte, and D. Macqueen. The Definition of Standard
ML. MIT Press, Cambridge, MA, USA, 1997.

[16] MLton. The MLton Compiler and Runtime System, 2012. URL
http://www.mlton.org.

[17] MultiMLton. MLton for Scalable Multicore Architectures, 2012. URL
http://multimlton.cs.purdue.edu.

[18] J. Reppy. Concurrent Programming in ML. Cambridge University
Press, 2007.

[19] P. M. Sansom. Dual-Mode Garbage Collection. In Proceedings of the
Workshop on the Parallel Implementation of Functional Languages,
pages 283–310, 1991.

[20] F. Siebert. Limits of parallel marking garbage collection. In ISMM,
pages 21–29, 2008.

[21] G. L. Steele, Jr. Multiprocessing Compactifying Garbage Collection.
Communcations of the ACM, 18:495–508, September 1975.

[22] B. Steensgaard. Thread-Specific Heaps for Multi-Threaded Programs.
In ISMM, pages 18–24, 2000.

[23] Streambench. The STREAM Benchmark: Computer Memory Band-
width, 2012. URL http://http://www.streambench.org/.

[24] L. Ziarek, K. Sivaramakrishnan, and S. Jagannathan. Composable
Asynchronous Events. In PLDI, pages 628–639, 2011.

http://communities.intel.com/docs/DOC-5512
http://communities.intel.com/docs/DOC-5512
http://www.mlton.org
http://multimlton.cs.purdue.edu
http://http://www.streambench.org/

	Introduction
	Motivation
	GC Design and Implementation
	Threading system
	Baseline collector (Stop-the-world)
	Local collector (Split-heap)
	Remembered stacks

	Cleanliness Analysis
	Heap session
	Reference count
	Cleanliness

	Write barrier
	Delaying writes
	Lifting objects to the shared heap
	Remote spawns
	Barrier implementation

	Target Architectures
	Local collector on SCC

	Results
	Benchmarks
	Performance
	Impact of cleanliness
	Impact of immutability
	Impact of heap session

	Related Work
	Conclusions

