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Data replication is crucial for enabling fault tolerance and uniform low latency in modern decentralized
applications. Replicated Data Types (RDTs) have emerged as a principled approach for developing replicated
implementations of basic data structures such as counter, flag, set, map, etc. While correctness of RDTs is
generally specified using the notion of strong eventual consistency–which guarantees that replicas which
have received the same set of updates would converge to the same state–a more expressive specification
which relates the converged state to updates received at a replica would be more beneficial to RDT users.
Replication-aware linearizability is one such specification, which requires all replicas to always be in a state
which can be obtained by linearizing the updates received at the replica. In this work, we develop a novel
fully automated technique for verifying replication-aware linearizability for Mergeable Replicated Data Types
(MRDTs). We identify novel algebraic properties for MRDT operations and the merge function which are
sufficient for proving an implementation to be linearizable and which go beyond the standard notions of
commutativity, associativity and idempotence. We also develop a novel inductive technique called bottom-up
linearization to automatically verify the required algebraic properties. Our technique can be used to verify
both MRDTs and state-based CRDTs. We have successfully applied our approach on a number of complex
MRDT and CRDT implementations including a novel JSON MRDT.

1 Introduction
Modern decentralized applications often employ data replication across geographically distributed
locations to enhance fault tolerance, minimize data access latency and improve scalability. This
practice is crucial for mitigating the impact of network failures and reducing data transmission
delays to end users. However, these systems encounter the challenge of concurrent conflicting data
updates across different replicas.
Recently, Mergeable Replicated Data Types (MRDTs) [11, 12, 23] have emerged as a systematic

approach to the problem of ensuring that replicas remain eventually consistent despite concurrent
conflicting updates. MRDTs draw inspiration from the Git version control system, where each
update creates a new version and any two versions can be merged explicitly through a user-defined
merge function.merge is a ternary function which takes as input the two versions to be merged and
their Lowest Common Ancestor (LCA), i.e., the most recent version from which the two versions
diverged. As opposed to Conflict-Free Replicated Data Types (CRDTs)[21] which may have to carry
around causal context metadata to ensure consistency, MRDTs can rely on the underlying system
model to provide the causal context through the LCA. This results in implementations that are
comparatively simpler and also more efficient. For example, if we consider state-based CRDTs, which
are the closest analogue to the MRDTmodel, then any counter CRDT implementation would require
𝑂 (𝑛) space, where 𝑛 is the number of replicas (a lower bound proved by [4]), whereas a counter
MRDT implementation only requires𝑂 (1) space. The states maintained by CRDT implementations
need to form a join semi-lattice, with all CRDT operations restricted to being monotonic functions
and merge restricted to the lattice join. While these restrictions simplify the task of reasoning about
correctness [5, 13, 18], crafting correct and efficient CRDT implementations itself becomes much
harder.
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India; Aseem Rastogi, Microsoft Research, Bangalore, India; KC Sivaramakrishnan, IIT Madras and Tarides, Chennai, India.



50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
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MRDTs do not require any of the above restrictions, which helps in developing implementations
with better space and time complexity. However, reasoning about correctness now becomes harder.
Indeed, the MRDT system model allows arbitrary replicas to merge their states at arbitrary points
of time, and this can result in subtle bugs requiring a very specific orchestration of merge actions.
As part of this work, we discovered such subtle bugs in MRDT implementations claimed to be
verified by previous works [23] (more details can be found in §5.2). The MRDT state as well as the
implementation of data type operations and the merge function have to be cleverly designed to
ensure strong eventual consistency. That is, despite concurrent conflicting updates and arbitrary
ordering of merges, all replicas will eventually converge to the same state. Further, we would
also like to show that an MRDT satisfies the functional behavior of the data type, along with the
user-defined conflict resolution policy for concurrent conflicting updates (e.g., for a set data type,
an add-wins policy which favors the add operation over a concurrent remove of the same element
at different replicas). There have been few works [11, 12, 23] which have looked at the problem of
specifying and verifying MRDTs. However, they either restrict the system model by disallowing
concurrent merges [12], focus only on convergence as the correctness specification [11, 12], or do
not support automated verification [23].

In this work, we couch correctness of MRDTs using the notion of Replication-Aware Linearizability
(RA-linearizability) [25], which says that the state at any replica must be obtained by linearizing
(i.e., constructing a sequence of) update operations that have been applied at the replica. As a first
contribution, we adapt RA-linearizability to the MRDT system model (§3), and develop a simple
specification framework for MRDTs based on conflict resolution policy for concurrent update
operations. We show that an MRDT implementation can be linearized only under certain technical
constraints on the conflict resolution policy and if the merge operation satisfies a weaker notion of
commutativity called conditional commutativity. By ensuring that the linearization order obeys
the conflict resolution policy for concurrent update operations and it remains the same across
all replicas, we guarantee both strong eventual consistency and adherence to the user-provided
specification.

Next, we propose a sound but not complete technique for proving RA-linearizability for MRDT
implementations. The main challenge lies in showing that the merge function generates a state
which is a linearization of its inputs. We develop a technique called bottom-up linearization, which
relies on certain simple algebraic properties of the merge function to prove that it generates the
correct linearization. We then design an induction scheme to automatically verify the required
algebraic properties of merge for an arbitrary MRDT implementation. Our main insight here is
to leverage the fact that the merge inputs are themselves linearizations, and hence we can use
induction over their operation sequences. We extract a set of verification conditions (VCs) which
are amenable to automated reasoning, and prove that if an MRDT implementation satisfies the VCs,
it is linearizable (§4). While our development is focussed on MRDTs, our technique can be directly
applied on state-based CRDTs. State-based CRDTs also have a merge-based system model which is
slightly simpler than MRDTs as the merge function does not require any LCA.

Finally, we develop a framework in the F★ [24] programming language that allows implementing
MRDTs and automatically mechanically proving the VCs required by our technique. The framework
provides several advantages over previous works. First, we require the programmer to specify only
the MRDT operations, the merge function, and the conflict resolution policy, in contrast to the
earlier work that also requires proof constructs such as abstract simulation relations [23]. Second,
the VCs are simple enough that in all the case studies we have done, including data types such
as counter, set, map, boolean flag, and list, they are automatically discharged by F★. Finally, we
extract the verified implementations to OCaml using the F★ extraction pipeline and run them (§5).
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Automatically Verifying Replication-aware Linearizability 3

We have also implemented and verified few state-based CRDTs using our framework. In the next
section, we present the main ideas of our work informally through a series of examples.

2 Overview
2.1 System Model
The MRDT system model resembles a distributed version control system, such as Git [6], with
replication centred around versioned states in branches and explicit merges. A replicated data store
handles multiple objects independently [9, 19]; in our presentation, we focus on modelling a store
with a single object. The state of the object is replicated across multiple replicas 𝑟1, 𝑟2, . . . ∈ R in
the store. Clients interact with the store by performing query or update operations on one of the
replicas, with update operations modifying its state. These replicas operate concurrently, allowing
independent modifications without synchronization. They periodically (and non-deterministically)
exchange updates with each other through a process called merge. Due to concurrent operations
happening at multiple replicas, conflicts may arise, which must be resolved by the merge operation
in an appropriate and consistent manner. An object has a type 𝜏 ∈ 𝑇𝑦𝑝𝑒 , whose type signature
⟨𝑂𝜏 , 𝑄𝜏 ,𝑉𝑎𝑙𝜏 ⟩ contains the set of supported update operations 𝑂𝜏 , query operations 𝑄𝜏 and their
return values 𝑉𝑎𝑙𝜏 .

Definition 2.1. AMRDT implementation for a data type𝜏 is a tupleD𝜏 = ⟨Σ, 𝜎0, do,merge, query, rc⟩,
where:

• Σ is the set of states, 𝜎0 ∈ Σ is the initial state.
• do : Σ × T × R ×𝑂𝜏 → Σ implements all update operations in 𝑂𝜏 , where T is the set of
timestamps.

• merge : Σ × Σ × Σ → Σ is a three-way merge function.
• query: Σ ×𝑄𝜏 → 𝑉𝑎𝑙𝜏 implements all query operations in 𝑄𝜏 , returning a value in 𝑉𝑎𝑙𝜏 .
• rc ⊆ 𝑂𝜏 ×𝑂𝜏 is the conflict resolution policy to be followed for concurrent update operations.

1: Σ = N
2: 𝑂 = {inc}
3: 𝑄 = {rd}
4: 𝜎0 = 0
5: do(𝜎, _, _, inc) = 𝜎 + 1
6: merge(𝜎⊤, 𝜎1, 𝜎2 ) = 𝜎1 + 𝜎2 − 𝜎⊤
7: query(𝜎, 𝑟𝑑 ) = 𝜎

8: rc = ∅

Fig. 1. Counter MRDT implementation

An MRDT D𝜏 provides implementations of do,merge and
query which will be invoked by the data store appropriately.
A client request to perform an update operation 𝑜 ∈ 𝑂𝜏 at
a replica 𝑟 triggers the call do(𝜎, 𝑡, 𝑟, 𝑜). This takes as input
the current state 𝜎 ∈ Σ of 𝑟 , a unique timestamp 𝑡 ∈ T
and produces an updated state which is then installed at 𝑟 .
The data store ensures that timestamps are unique across
all operations (which can be achieved through e.g. Lamport
timestamps [14]).

Replicas can also receive states from other replicas, which
are merged with the receiver’s state usingmerge. Themerge
function is called with the current states of both the sender and receiver replicas and their lowest
common ancestor (LCA), which represents the most recent common state from which the two
replicas diverged. Clients can query the state of the MRDT using the query method. This takes a
MRDT state 𝜎 ∈ Σ and a query operation as input and produces a return value. Note that a query
operation cannot change the state at a replica.

While merging, it may happen that conflicting update operations may have been performed on
the two states, in which case, the implementation also provides a conflict resolution policy rc. The
merge function should make sure that this policy is followed while computing the merged state. To
illustrate, we now present a couple of MRDT implementations: an increment-only counter and an
observed-remove set.
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The counter MRDT implementation is given in Fig. 1. The state space of the counter MRDT is
simply the set of natural numbers, and it allows clients to perform only one update operation (inc)
which increments the value of the counter. For merging two counter states 𝜎1 and 𝜎2, whose lowest
common ancestor is 𝜎⊤, intuitively, we want to find the total number of increment operations
across 𝜎1 and 𝜎2. Since 𝜎⊤ already accounts for the effect of the common increments in 𝜎1 and
𝜎2, we need to count the newer increments and then add them to 𝜎⊤. This is achieved by adding
𝜎1 − 𝜎⊤ and 𝜎2 − 𝜎⊤ to 𝜎⊤, which simplifies to the merge definition in Fig. 1. For example, suppose
we have replicas 𝑟1 and 𝑟2 whose initial state was 𝜎⊤ = 2. Now, if there are 2 inc operations at 𝑟1 and
3 inc operation at 𝑟2, their states will be 𝜎1 = 4 and 𝜎2 = 5. On merging 𝑟2 at 𝑟1, merge(𝜎⊤, 𝜎1, 𝜎2)
will return 7, which reflects the total number of increments. The query method simply returns the
current state of the counter. Finally, the increment operation commutes with itself, so there is no
need to define a conflict resolution policy.

1: Σ = P(E × T)
2: 𝑂 = {add𝑎, rem𝑎 | 𝑎 ∈ E}
3: 𝑄 = {rd}
4: 𝜎0 = {}
5: do(𝜎, 𝑡, _, add𝑎 ) = 𝜎 ∪ { (𝑎, 𝑡 ) }
6: do(𝜎, _, _, rem𝑎 ) = 𝜎\{ (𝑎, 𝑖 ) | (𝑎, 𝑖 ) ∈ 𝜎 }
7: merge(𝜎⊤, 𝜎1, 𝜎2 ) =

(𝜎⊤ ∩ 𝜎1 ∩ 𝜎2 ) ∪ (𝜎1\𝜎⊤ ) ∪ (𝜎2\𝜎⊤ )
8: query(𝜎, 𝑟𝑑 ) = {𝑎 | (𝑎, _) ∈ 𝜎 }
9: rc = { (rem𝑎, add𝑎 ) | 𝑎 ∈ E}

Fig. 2. OR-set MRDT implementation

An observed-remove set (OR-set) [21] is an implemen-
tation of a set data type which employs an add-wins
conflict-resolution strategy, prioritizing addition in cases
of concurrent addition and removal of the same element.
Fig. 2 shows the OR-set MRDT implementation. This im-
plementation is quite similar to the operation-based (op-
based) CRDT implementation of OR-set [22]. The state of
the OR-set is a set of element-timestamp pairs, with the
initial state being an empty set. Clients can perform two
operations for every element 𝑎 ∈ E: add𝑎 and rem𝑎 . The
add𝑎 method adds the element 𝑎 along with the (unique)
timestamp at which the operation was performed. The
rem𝑎 method removes all entries in the set corresponding

to the element 𝑎. An element 𝑎 is considered to be present in the set if there is some (𝑎, 𝑡) in the
state.

Themergemethod takes as input the LCA set 𝜎⊤ and the two sets 𝜎1 and 𝜎2 to be merged, retains
elements of 𝜎⊤ that were not removed in both sets, and includes the newly added elements from
both sets. Since 𝜎⊤ is the most recent state from which the two sets diverged, the intersection of
all three sets is the set of elements that were not removed from 𝜎⊤ in either branch, while the
difference of either set with the 𝜎⊤ corresponds to the newly added elements. The query operation
𝑟𝑑 returns all the elements in the set. The conflict resolution relation rc orders rem𝑎 before add𝑎 of
the same element in order to achieve the add-wins semantics. Note that all other pairs of operations
(add_ and add_, rem_ and rem_, and add𝑥 and rem𝑦 with 𝑥 ≠ 𝑦) commute with each other, hence
rc does not specify their ordering. We now consider whether the merge operation adheres to the
conflict resolution policy.

2.2 RA-linearizability for MRDTs
Wewould like to verify that anMRDT implementation is correct, in the sense that in every execution,
(a) replicas which have observed the same set of update operations converge to the same state, and
(b) this state reflects the semantics of the implemented data type and the conflict resolution policy.
Note that an update operation 𝑜 is considered to be visible to a replica 𝑟 either if 𝑜 is directly applied
by a client at 𝑟 , or indirectly through merge with another replica 𝑟 ′ on which 𝑜 was visible. To
specify MRDT correctness, we propose to use the notion of RA-linearizability [25]: the state at any
replica during any execution must be achievable by applying a sequence (or linearization) of the
update operations visible to the replica. Further, this linearization should obey the user-specified
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conflict resolution policy for concurrent operations, and the local replica order for non-concurrent
operations.
Our definition of RA-linearizability allows viewing the state of an MRDT replica as a sequence

of update operations applied on the initial state, thus abstracting over the merge function and how
it handles concurrent operations. Consequently, any formal reasoning (e.g. assertion checking,
functional correctness, equivalence checking etc.) can now essentially forget about the presence of
merges, and only focus on update operations, with the additional guarantee that operations would
have been correctly linearized taking into account the conflict resolution policy and local replica
ordering.
Proving RA-linearizability for MRDTs is straightforward when there is only a single replica on

which all operations are performed, since there is no interleaving among operations on a single
replica. Complexity arises when update operations happen concurrently across replicas, which
are then merged. For a merge operation, we need to show that the output can be obtained by
applying a linearization of update operations witnessed by both replicas being merged. However,
the states being merged would have been obtained after an arbitrary number of update operations
or even other merges. Further, the MRDT framework maintains only the states, but not the update
operations leading to those states, thus requiring the verification technique to somehow infer the
update operations leading to a state, and then show that merge constructs the correct linearization.

We break down this difficult problem gradually with a series of observations. We will start with
an intuitively correct approach, show how it could be broken through examples, and gradually
refine it to make it work. As a starting point, we first observe that we can leverage the following
algebraic properties of the MRDT update operations and the merge function: (i) commutativity
of merge and update operations, (ii) commutativity of merge, (iii) idempotence of merge, and (iv)
commutativity of update operations. To motivate this, we first introduce some terminology. An
event 𝑒 = ⟨𝑡, 𝑟, 𝑜⟩ is generated for every update operation instance, where 𝑡 is the event’s timestamp
and 𝑟 is the replica on which the update operation 𝑜 is applied. Applying an event 𝑒 on a replica with
state 𝜎 changes the replica state to 𝑒 (𝜎) = do(𝜎, 𝑡, 𝑟, 𝑜) using the implementation of the operation 𝑜 .
Given a sequence of events 𝜋 = 𝑒1𝑒2 . . . 𝑒𝑛 , we use the notation 𝜋 (𝜎) to denote 𝑒𝑛 (. . . (𝑒2 (𝑒1 (𝜎)))).
Now, the properties described above can be formally defined as follows (forall 𝜎⊤, 𝜎1, 𝜎2, 𝑒, 𝑒′):

(P1) merge(𝜎⊤, 𝑒 (𝜎1), 𝜎2) = 𝑒 (merge(𝜎⊤, 𝜎1, 𝜎2))
(P2) merge(𝜎⊤, 𝜎1, 𝜎2) = merge(𝜎⊤, 𝜎2, 𝜎1)
(P3) merge(𝜎⊤, 𝜎⊤, 𝜎⊤) = 𝜎⊤
(P4) 𝑒 (𝑒′ (𝜎)) = 𝑒′ (𝑒 (𝜎))

As per our proposed definition of RA-linearizability, we need to show that there exists a lineariza-
tion of events visible at the replica such that the state of the replica can be obtained by applying
this linearization. As mentioned earlier, an event can become visible at a replica either by a direct
client application, or by merging with another replica. To illustrate this, consider the scenario

𝜎!

𝜎"𝜎#

𝜎$

𝜋# 𝜋"

Fig. 3. Linearizing a merge oper-
ation

shown in Fig. 3 where two replicas with states 𝜎1 and 𝜎2 are be-
ing merged. These states were obtained by applying a sequence
of events 𝜋1 and 𝜋2 respectively on the LCA state 𝜎⊤. We call the
events in 𝜋1 and 𝜋2 as local to their respective replicas. Now, when
the two states are merged to create a new state 𝜎𝑚 wewould need to
show that the state 𝜎𝑚 (= merge(𝜎⊤, 𝜎1, 𝜎2)) can be obtained by lin-
earizing all the events in 𝜋1 and 𝜋2, and applying this linearization
on the state 𝜎⊤.
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To show that the merge function constructs a linearization, we
can take advantage of properties (P1)-(P4). In particular, com-
mutativity of merge and update operation application (P1) al-
lows us to move an event from the second argument of merge
to outside, and we can then repeatedly apply this property to peel off all the events in 𝜋1.
More formally, by performing induction on the sequence 𝜋1 and using (P1), we can show that
merge(𝜎⊤, 𝜋1 (𝜎⊤), 𝜎2) = 𝜋1 (merge(𝜎⊤, 𝜎⊤, 𝜎2)). We can then use commutativity of merge (P2) to
swap the last two arguments of merge, and then apply (P1) again to peel off all the events in 𝜋2, thus
establishing that merge(𝜎⊤, 𝜎⊤, 𝜋2 (𝜎⊤)) = 𝜋2 (merge(𝜎⊤, 𝜎⊤, 𝜎⊤)). Finally, using merge idempo-
tence (P3), and combining all the previous results, we can infer thatmerge(𝜎⊤, 𝜎1, 𝜎2) = 𝜋2 (𝜋1 (𝜎⊤)).
Commutativity of update operations (P4) ensures that all linearizations of events in 𝜋1 and 𝜋2 lead
to the same state, thus ratifying the specific linearization order 𝜋1𝜋2 that we constructed using
properties P1-P3. We call this process as bottom-up linearization, since we built the sequence from
end through property (P1), linearizing one event at a time.

{}

{}

𝑒!: (2, r!, rem")

𝑣#

𝑣! 𝑣${(a,1)}

{(a,1)} 𝑣%

𝑒$: (1, r$, add")

Fig. 4. OR-set execution

It is also easy to see that the counter MRDT implementation in
Fig. 1 satisfies (P1)-(P4). In particular, commutativity of integer ad-
dition and subtraction essentially gives us (P1)-(P4) for free. While
this strategy works for the counter MRDT, commutativity of all
update operations is in general a very strong requirement, and
would fail for other datatypes. For example, the OR-set MRDT of
Fig. 2 does not satisfy (P4), as the add𝑎 and rem𝑎 operations do not
commute.

In the presence of non-commutative update operations, the prop-
erty (P1) now needs to be altered, as we need to consider the conflict
resolution policy to decide the replica from which an event needs to be peeled off. To illustrate this,
consider an OR-set execution depicted in Fig. 4. We show the version graph of the execution, where
each oval represents a version. The state of the version is depicted inside the oval. The versions
𝑣1 and 𝑣2 are obtained by applying rem𝑎 and add𝑎 operations to the version 𝑣⊤ on two different
replicas (𝑟1 and 𝑟2). Each edge is labeled with the event corresponding to the application of an
operation. Let 𝜎⊤ = {} denote the state of the LCA 𝑣⊤. The versions 𝑣1 and 𝑣2 are then merged at
𝑟2 which gives rise to a new version 𝑣𝑚 with state merge(𝜎⊤, 𝑒1 (𝜎⊤), 𝑒2 (𝜎⊤)). Now, since 𝑒1 and
𝑒2 do not commute, the conflict resolution policy of OR-set places 𝑒1 (i.e. the remove operation)
before 𝑒2 (i.e. the add operation). Hence, we want the merged version to follow the linearization
order 𝑒2 (𝑒1 (𝜎⊤)). This requires us to first peel off the event 𝑒2 from the third argument of merge.
To achieve this, we can alter the property (P1) by making it aware of the conflict resolution policy
as follows:
(P1′) (𝑒1, 𝑒2) ∈ rc =⇒ merge(𝜎⊤, 𝑒1 (𝜎1), 𝑒2 (𝜎2)) = 𝑒2 (merge(𝜎⊤, 𝑒1 (𝜎1), 𝜎2))1

Property (P1′) would then allow us to establish the required linearization order. Property (P4)
also needs to be altered due to the presence of non-commutative update operations. We modify
(P4) to enforce commutativity for non-rc related events, which gives us flexibility to include such
events in any order while constructing the linearization sequence:
(P4′) (𝑒1, 𝑒2) ∉ rc ∧ (𝑒2, 𝑒1) ∉ rc =⇒ 𝑒1 (𝑒2 (𝜎)) = 𝑒2 (𝑒1 (𝜎))
However, we now face another major challenge: proving (P1′) for the OR-set MRDT. For the

counter MRDT, the operations and merge function used integer addition and subtraction, which
commute with each other. But for the OR-set, add𝑎 uses set union, while merge uses set difference
1Note that we are abusing the rc notation slightly, since rc is a relation over operations𝑂 , but we are considering it over
operation instances (i.e. events)
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and intersection, which do not commute in general. Hence, (P1′) does not hold for arbitrary
𝜎⊤, 𝜎1, 𝜎2.

To illustrate this concretely, consider the same execution of Fig. 4, except assume that the state
𝜎⊤ of the LCA 𝑣⊤ is {(𝑎, 1)}. Let us try to establish (P1′) for the merge of versions 𝑣1 and 𝑣2. First,
note that as per the OR-set rc, the antecedent of (P1′) is satisfied, as (𝑒1, 𝑒2) ∈ rc. Now, the RHS
in the consequent must contain the tuple (𝑎, 1), since the event 𝑒2 adds (𝑎, 1) to the result of the
merge. Does the LHS also contain (𝑎, 1)? Expanding the definition of merge in the LHS, (𝑎, 1) will
not be present in (𝜎⊤ ∩ 𝑒1 (𝜎⊤) ∩ 𝑒2 (𝜎⊤)) (because (𝑎, 1) ∉ 𝑒1 (𝜎⊤), as 𝑒1 removes 𝑎). Similarly, since
(𝑎, 1) is in 𝜎⊤, it will not be present in 𝑒2 (𝜎⊤) \ 𝜎⊤. It will not be in 𝑒1 (𝜎⊤) \ 𝜎⊤, as 𝑒1 removes 𝑎. To
conclude, (𝑎, 1) will not be present in the LHS, thus invalidating the consequent of (P1′).

However, we note that this particular execution is actually spurious, because the tuple (𝑎, 1) in
the LCA could only have been added by another add𝑎 operation whose timestamp is the same as
𝑒2. But this is not possible as the data store ensures that timestamps are unique across all events. In
the general case, we would not be able to show (P1′) for OR-set because the tuple (𝑎, 𝑡) being added
by the add𝑎 operation (event 𝑒2) could also be present in the LCA state. However, this situation
cannot occur.

Thus, it is possible to show (P1′) for all feasible states 𝜎⊤, 𝜎1, 𝜎2 that may occur during an actual
execution. In the case of OR-set, there are two arguments which are required to infer this: (i)
timestamps are unique across all events and (ii) if a tuple (𝑎, 𝑡) is present in the state 𝜎 , then there
must have been an add𝑎 operation with timestamp 𝑡 in the history of events leading to 𝜎 . While
the first argument is a property of the data store, the second argument is an invariant linking a
state with the history of events leading to that state. Such arguments are in general hard to infer,
and would also change across different MRDTs. We now present our second major observation
which allows us to automatically verify (P1′) for feasible states without requiring invariants like
argument (ii) linking MRDT states and events.

2.3 Verification using Induction on Event Sequences
In order to show property (P1′) for an MRDT implementation, we need to consider the feasible
states which would be given as input to the merge function during an actual execution. We observe
that we can leverage RA-linearizability of the MRDT implementation, and hence characterize these
feasible states by sequences of MRDT update operations (more precisely, events corresponding to
update operation instances). We can now use induction over these sequences to establish property
(P1′). Note that the input states to merge may themselves have been obtained through prior merges,
but we can inductively assume that these prior merges resulted in correct linearizations. Since
merge takes as input three states (𝜎⊤, 𝜎1, 𝜎2), we need to consider three sequences which led to
these states and induct on all the three separately.

𝜎!

𝜎"𝜎#

𝜎$

𝜋# 𝜋"

𝜎%
𝜋!

𝑒# 𝑒"

Fig. 5. Induction on event se-
quences

Concretely, let 𝜋⊤ be a sequence of events which when applied on
the initial MRDT state 𝜎0 results in the state 𝜎⊤. Since the LCA state
always contains events which are common to the states 𝜎1 and 𝜎2,
𝜋⊤ will be the common prefix of the sequences leading to both 𝜎1
and 𝜎2. We consider the sequences 𝜋1 and 𝜋2 that consist of the local
events which when applied on 𝜎⊤ led to 𝜎1 and 𝜎2 respectively. Fig. 5
depicts the situation. Notice that the last two events on each replica
before the merge are fixed to be 𝑒1 and 𝑒2, which would be related
by the rc relation, as per the requirement of property (P1′).
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merge(𝜎0, 𝑒1 (𝜎0), 𝑒2 (𝜎0)) = 𝑒2 (merge(𝜎0, 𝑒1 (𝜎0), 𝜎0)) (1)
merge(𝜎⊤, 𝑒1 (𝜎⊤), 𝑒2 (𝜎⊤)) = 𝑒2 (merge(𝜎⊤, 𝑒1 (𝜎⊤), 𝜎⊤))
=⇒ merge(𝑒 (𝜎⊤), 𝑒1 (𝑒 (𝜎⊤)), 𝑒2 (𝑒 (𝜎⊤))) = 𝑒2 (merge(𝑒 (𝜎⊤), 𝑒1 (𝑒 (𝜎⊤)), 𝑒 (𝜎⊤))) (2)

We first induct on the sequence 𝜋⊤ which leads to the state 𝜎⊤. For this, we assume that 𝜋1 =
𝜋2 = 𝜖 , and hence 𝜎⊤ = 𝜎1 = 𝜎2 = 𝜋⊤ (𝜎0). We also assume the antecedent of property (P1′), i.e.
(𝑒1, 𝑒2) ∈ rc, and hence our goal is to show its consequent. For the OR-set, 𝑒1 will be a rem𝑎 event,
while 𝑒2 will be an add𝑎 event (say with timestamp 𝑡 ).

Eqn. (1) is the base-case of the induction (where 𝜋⊤ = 𝜖), and this can be now directly discharged
since 𝜎0 is an empty set, and hence clearly won′t contain (𝑎, 𝑡). Eqn. (2) is the inductive case, which
assumes that (P1′) is true for some LCA state 𝜎⊤, and tries to prove the property when one more
update operation (signified by the event 𝑒) is applied on the LCA (and also on both 𝜎1 and 𝜎2,
since LCA operations are common to both states to be merged). This can also be automatically
discharged with the property that events 𝑒, 𝑒1, 𝑒2 have different timestamps. Intuitively, the inductive
hypothesis establishes that (𝑎, 𝑡) ∉ 𝜎⊤, and since the timestamp of event 𝑒 is different from 𝑒1
and 𝑒2, it cannot add (𝑎, 𝑡) to the LCA, thus preserving the property that (𝑎, 𝑡) ∉ 𝑒 (𝜎⊤), thereby
implying the consequent. This completes the proof for property (P1′) for any arbitrary LCA state
𝜎⊤ that may be feasible in an actual execution. A similar inductive strategy is used for proving
property (P1′) for feasible states 𝜎1 and 𝜎2 (more details in §4).

2.4 Intermediate Merges
In our linearization strategy for merges (given by properties (P1′-P4′)), we first considered the local
update operations of each branch, linearized them according to the conflict-resolution policy, and
then applied this sequence on the LCA. This effectively orders the update operations that led to the
LCA before the update operations local to each branch.

However, in a Git-based execution model, due to a phenomenon known as intermediate merges,
it may happen that update operations of the LCA may need to be linearized after update operations
local to a branch. To illustrate this, consider an execution of the OR-set MRDT as shown in Fig. 6.
There are 3 operations and 2 merges being performed in this execution, with the events 𝑒1, 𝑒3 at
replica 𝑟1 and event 𝑒2 at replica 𝑟2.

𝑒1: (2, r", add#)

𝑣$

𝑣" 𝑣%{}

{(a,2)} 𝑣&

𝑒2: (1, r2, rema)
{(a,1)}

{(a,1),(a,2)}

{}

{}

𝑒): (3, r", rem#)

𝑣)

𝑒%𝑒"

𝑒"
𝑒)

𝑒%
𝑒"

𝑒%
𝑒"
𝑒)

Fig. 6. Intermediate merge

Instead of merging with the latest version 𝑣3 at replica 𝑟1,
replica 𝑟2 first merges with an intermediate version 𝑣1 to gen-
erate the version 𝑣4. Next, this version 𝑣4 is merged with the
latest version 𝑣3 of replica 𝑟1. However, note that for this merge,
the LCA will be version 𝑣1. This is because the set of events
associated with version 𝑣3 is {𝑒1, 𝑒3}, while for version 𝑣4, it is
{𝑒1, 𝑒2}. Hence, the set of common events among both versions
would be {𝑒1}, which corresponds to the version 𝑣1. Indeed,
in the version graph, both 𝑣1 and 𝑣0 are ancestors of 𝑣3 and 𝑣4,
but 𝑣1 is the lowest common ancestor2.

In Fig. 6, we have also provided the linearization of events
associated with each version. Notice that for version 𝑣4, which
is obtained through amerge of 𝑣1 and 𝑣2, the conflict resolution
policy of the OR-set linearizes 𝑒2 before 𝑒1. Now, for the merge
2in §3, we will formally prove that the LCA of two versions according to the version graph contains the intersection of
events in both the versions.
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of 𝑣3 and 𝑣4, we have a situation where a local event (𝑒2 in 𝑣4) needs to be linearized before an
event of the LCA (𝑒1 in 𝑣1). This does not fit our linearization strategy. Let us see why. If we were
to try to apply (P1′), it would linearize 𝑒1 after 𝑒3, since these are the last operations in the two
states to be merged and the conflict resolution policy orders add𝑎 (𝑒1) after rem𝑎 (𝑒3). However, in
the execution, 𝑒1 and 𝑒3 are causally related, i.e. 𝑒1 occurs before 𝑒3 on the same replica, and hence
they should be linearized in that order. Intuitively, property (P1′) does not work because it does
not consider the possibility that the last event in one replica could be visible to the last event in
another replica, and hence the linearization must obey the visibility relation.

In order to handle this situation, we consider another algebraic property (P1-1), which explicitly
forces visibility relation among the last events by making one of them part of the LCA:
(P1-1) merge(𝑒1 (𝜎0), 𝑒3 (𝜎1), 𝑒1 (𝜎2)) = 𝑒3 (merge(𝑒1 (𝜎0), 𝜎1, 𝑒1 (𝜎2)))
Note that events in the LCA are visible to events on both replicas being merged. Hence, by

having the same event 𝑒1 in both the first and third argument to merge in the LHS, 𝑒3 would have
to be linearized after 𝑒1 to respect the visibility order, thus over-riding the rc ordering among them.
Property (P1-1) can be directly applied to the execution in Fig. 6 for the merge of 𝑣3 and 𝑣4 (with 𝜎0
as the state of 𝑣0, 𝜎1 as the state of 𝑣1 and 𝜎2 as the state of 𝑣2), constructing the correct linearization.
We will revisit the example in Fig. 6 and properties (P1′) and (P1-1) in a more formal setting in

§4, renaming them as BottomUp-2-OP and BottomUp-1-OP. We will also identify the conditions
under which these properties can guarantee the existence of a correct linearization.

3 Problem Definition
In this section, we formally define the semantics of the replicated data store on top of which the
MRDT implementations operate (§3.1), the notion of RA-linearizability for MRDTs (§3.2), and the
process of bottom-up linearization (§3.3).

3.1 Semantics of the Replicated Data Store

[CreateBranch]

𝑟 ∈ 𝑑𝑜𝑚 (𝐻 ) 𝑟 ′ ∉ 𝑑𝑜𝑚 (𝐻 ) 𝑣 ∉ 𝑑𝑜𝑚 (𝑁 )
𝑁 ′ = 𝑁 [𝑣 ↦→ 𝑁 (𝐻 (𝑟 ) ) ] 𝐻 ′ = 𝐻 [𝑟 ′ ↦→ 𝑣 ] 𝐿′ = 𝐿[𝑣 ↦→ 𝐿 (𝐻 (𝑟 ) ) ] 𝐺 ′ = (𝑑𝑜𝑚 (𝑁 ) ∪ {𝑣}, 𝐸 ∪ { (𝐻 (𝑟 ), 𝑣) } )

(𝑁,𝐻, 𝐿,𝐺, 𝑣𝑖𝑠 )
𝑐𝑟𝑒𝑎𝑡𝑒𝐵𝑟𝑎𝑛𝑐ℎ (𝑟 ′,𝑟 )
−−−−−−−−−−−−−−→ (𝑁 ′, 𝐻 ′, 𝐿′,𝐺 ′, 𝑣𝑖𝑠 )

[Apply]

𝑒 = (𝑡, 𝑟, 𝑜 )
𝑜 ∈ 𝑂𝜏 ∀𝑒′ ∈

⋃
𝑟𝑎𝑛𝑔𝑒 (𝐿) . 𝑡𝑖𝑚𝑒 (𝑒′ ) ≠ 𝑡 𝑟 ∈ 𝑑𝑜𝑚 (𝐻 ) 𝑣 ∉ 𝑑𝑜𝑚 (𝑁 ) 𝑁 ′ = 𝑁 [𝑣 ↦→ do(𝑁 (𝐻 (𝑟 ) ), 𝑒 ) ]

𝐻 ′ = 𝐻 [𝑟 ↦→ 𝑣 ] 𝐿′ = 𝐿[𝑣 ↦→ 𝐿 (𝐻 (𝑟 ) ) ∪ {𝑒 } ] 𝐺 ′ = (𝑑𝑜𝑚 (𝑁 ′ ), 𝐸 ∪ { (𝐻 (𝑟 ), 𝑣) } ) 𝑣𝑖𝑠′ = 𝑣𝑖𝑠 ∪ (𝐿 (𝐻 (𝑟 ) ) × {𝑒 })

(𝑁,𝐻, 𝐿,𝐺, 𝑣𝑖𝑠 )
𝑎𝑝𝑝𝑙𝑦 (𝑡,𝑟 ,𝑜 )
−−−−−−−−−→ (𝑁 ′, 𝐻 ′, 𝐿′,𝐺 ′, 𝑣𝑖𝑠′ )

[Merge]

𝑟1, 𝑟2 ∈ 𝑑𝑜𝑚 (𝐻 ) 𝑣 ∉ 𝑑𝑜𝑚 (𝑁 ) 𝑣⊤ = 𝐿𝐶𝐴(𝐻 (𝑟1 ), 𝐻 (𝑟2 ) ) 𝑁 ′ = 𝑁 [𝑣 ↦→ merge(𝑁 (𝑣⊤ ), 𝑁 (𝐻 (𝑟1 ) ), 𝑁 (𝐻 (𝑟2 ) ) ]
𝐻 ′ = 𝐻 [𝑟1 ↦→ 𝑣 ] 𝐿′ = 𝐿[𝑣 ↦→ 𝐿 (𝐻 (𝑟1 ) ) ∪ 𝐿 (𝐻 (𝑟2 ) ) ] 𝐺 ′ = (𝑑𝑜𝑚 (𝑁 ′ ), 𝐸 ∪ { (𝐻 (𝑟1 ), 𝑣), (𝐻 (𝑟2 ), 𝑣) } )

(𝑁,𝐻, 𝐿,𝐺, 𝑣𝑖𝑠 )
𝑚𝑒𝑟𝑔𝑒 (𝑟1,𝑟2 )−−−−−−−−−→ (𝑁 ′, 𝐻 ′, 𝐿′,𝐺 ′, 𝑣𝑖𝑠 )

[Query]
𝑟 ∈ 𝑑𝑜𝑚 (𝐻 ) 𝑞 ∈ 𝑄𝜏 𝑎 = query(𝑁 (𝐻 (𝑟 ) ), 𝑞)

(𝑁,𝐻, 𝐿,𝐺, 𝑣𝑖𝑠 )
𝑞𝑢𝑒𝑟𝑦 (𝑟,𝑞,𝑎)
−−−−−−−−−→ (𝑁,𝐻, 𝐿,𝐺, 𝑣𝑖𝑠 )

Fig. 7. Semantics of the replicated datastore
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The semantics of the replicated store defines all possible executions of an MRDT implementation.
Formally, the semantics are parametrised by anMRDT implementationD = ⟨Σ, 𝜎0, do,merge, query, rc⟩
of type 𝜏 = ⟨𝑂𝜏 , 𝑄𝜏 ,𝑉𝑎𝑙𝜏 ⟩ and are represented by a labeled transition system SD = (Φ, →). Each
configuration in Φ maintains a set of versions, where each version is created either by applying an
MRDT operation to an existing version, or by merging two versions. Each replica is associated with
a head version, which is the most recent version seen at the replica. Formally, each configuration𝐶
in Φ is a tuple ⟨𝑁,𝐻, 𝐿,𝐺, 𝑣𝑖𝑠⟩, where:

• 𝑁 : Version ⇀ Σ is a partial function that maps versions to their states (Version is the set
of all possible versions).

• 𝐻 : R ⇀ Version is also a partial function that maps replicas to their head versions.
• 𝐿 : Version ⇀ P(E) maps a version to the set of events that led to this version. Each event
𝑒 ∈ E is an update operation instance, uniquely identified by a timestamp value (we define
E = T × R ×𝑂).

• 𝐺 = (𝑑𝑜𝑚(𝑁 ), 𝐸) is the version graph, whose vertices represent the versions in the configu-
ration (i.e. those in the domain of 𝑁 ) and whose edges represent a relationship between
different versions (we explain the different types of edges below).

• 𝑣𝑖𝑠 ⊆ E × E is a partial order over events.
Figure 7 gives a formal description of the transition rules. CreateBranch forks a new replica 𝑟 ′

from an existing replica 𝑟 , installing a new version 𝑣 at 𝑟 ′ with the same state as the head version
𝐻 (𝑟 ) of 𝑟 , and adding an edge (𝐻 (𝑟 ), 𝑣 ′) in the version graph. Apply applies an update operation 𝑜
on some replica 𝑟 , generating a new event 𝑒 with a timestamp different than all events generated
so far.

⋃
range(𝐿) denotes the set of events witnessed across all versions. A new version 𝑣 is also

created whose state is obtained by applying 𝑜 on the current state of the replica 𝑟 . The version
graph is updated by adding the edge (𝐻 (𝑟 ), 𝑣). The 𝑣𝑖𝑠 relation as well as the function 𝐿, which
tracks events applied at each version, are also updated. In particular, each event 𝑒′ already applied
at 𝑟 , i.e. 𝑒′ ∈ 𝐿(𝐻 (𝑟 )), is made visible to 𝑒: (𝑒′, 𝑒) ∈ 𝑣𝑖𝑠 , while 𝐿′ (𝑣) is obtained by adding 𝑒 to
𝐿(𝐻 (𝑟 )).

Merge takes two replicas 𝑟1 and 𝑟2, applies themerge function on the states of their head versions
to generate a new version 𝑣 , which is installed as the new head version at 𝑟1. Edges are added in
the version graph from the previous head versions of 𝑟1 and 𝑟2 to 𝑣 . 𝐿(𝑣) is obtained by taking a
union of 𝐿(𝑟1) and 𝐿(𝑟2), and there is no change in the visibility relation. Query takes a replica
𝑟 and a query operation 𝑞 and applies 𝑞 to the state at the head version of 𝑟 , returning an output
value 𝑎. Note that the Query transition does not modify the configuration and the return value
of the query is stored as part of the transition label. While our operational semantics is based on
and inspired by previous works [11, 23], we note that it is more general and precisely captures the
MRDT system model as opposed to previous works. In particular, Kaki et al. [11] places significant
restrictions on the Merge transition, disallowing arbitrary replicas to be merged to ensure that
there is a total order on the merge transitions. While the semantics in Soundarapandian et al. [23]
does allow arbitrary merges, it is more abstract and high-level, and does not even keep track of
versions and the version graph.

Notation: We now introduce some notation that will be used throughout the paper. Given a
configuration 𝐶 , we use 𝑋 (𝐶) to project the component 𝑋 of 𝐶 . For a relation 𝑅, we use 𝑥 𝑅−→ 𝑦 to
signify that (𝑥,𝑦) ∈ 𝑅. We use 𝑅 |𝑆 to indicate the relation as given by 𝑅 but restricted to elements
of the set 𝑆 . Let 𝑅∗ denote the reflexive-transitive closure of 𝑅, and let 𝑅+ denote the transitive
closure of 𝑅. For an event 𝑒 , we use the projection functions op, time, rep to obtain the update
operation, timestamp and replica resp. For a sequence of events 𝜋 , 𝜋 |𝑆 (𝜎) denotes application of
the sub-sequence of 𝜋 restricted to events in 𝑆 . For a configuration 𝐶 , we use 𝑒1 | |𝐶 𝑒2 to denote
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that 𝑒1 and 𝑒2 are concurrent, that is ¬(𝑒1
vis(𝐶 )
−−−−−→ 𝑒2 ∨ 𝑒2

vis(𝐶 )
−−−−−→ 𝑒1). Given a total order over a set of

events E, represented by a sequence 𝜋 , and lo ⊆ E × E, we say that 𝜋 extends lo if lo ⊆ 𝜋 . The
relation rc orders update operations, but for convenience we sometime use it for ordering events,
with the intention that it is actually being applied on the underlying update operations. We use
𝑒1 ≠ 𝑒2 to indicate that time(𝑒1) ≠ time(𝑒2).

We define the initial configuration of SD as 𝐶0 = ⟨𝑁0, 𝐻0, 𝐿0,𝐺0, ∅⟩, which consists of only one
replica 𝑟0. Here, 𝐻0 = [𝑟0 ↦→ 𝑣0], 𝑁0 = [𝑣0 ↦→ 𝜎0], where 𝜎0 is the initial state as given by D𝜏 , while
𝑣0 denotes the initial version and 𝐿0 = [𝑣0 ↦→ ∅]. The graph𝐺0 = ({𝑣0}, ∅) is the initial version graph.
An execution of SD is defined to be a finite sequence of transitions, 𝐶0

𝑡1−→ 𝐶1
𝑡2−→ 𝐶2 . . .

𝑡𝑛−→ 𝐶𝑛 .
Note that the label of a transition corresponds to its type. Let JSDK denote the set of all possible
executions of SD .
Finally, as mentioned earlier, merge is a ternary function, taking as input the states of two

versions to be merged, and the state of the lowest common ancestor (LCA) of the two versions.
Version 𝑣1 ∈ 𝑉 is defined to be a causal ancestor of version 𝑣2 ∈ 𝑉 if and only if (𝑣1, 𝑣2) ∈ 𝐸∗.

Definition 3.1 (LCA). Given a version graph𝐺 = (𝑉 , 𝐸) and versions 𝑣1, 𝑣2 ∈ 𝑉 , 𝑣⊤ ∈ 𝑉 is defined
to be the lowest common ancestor of 𝑣1 and 𝑣2 (denoted by 𝐿𝐶𝐴(𝑣1, 𝑣2)) if (i) (𝑣⊤, 𝑣1) ∈ 𝐸∗ and
(𝑣⊤, 𝑣2) ∈ 𝐸∗, (ii) ∀𝑣 ∈ 𝑉 .(𝑣, 𝑣1) ∈ 𝐸∗ ∧ (𝑣, 𝑣2) ∈ 𝐸∗ =⇒ (𝑣, 𝑣⊤) ∈ 𝐸∗.

Note that the version history graph at any point in any execution is guaranteed to be acyclic (i.e.
a DAG), and hence the LCA (if it exists) is guaranteed to be unique. We now present an important
property linking the LCA of two versions with events applied at each version.

Lemma 3.2. Given a configuration 𝐶 = ⟨𝑁,𝐻, 𝐿,𝐺, 𝑣𝑖𝑠⟩ reachable in some execution 𝜏 ∈ JSDK and
two versions 𝑣1, 𝑣2 ∈ 𝑑𝑜𝑚(𝑁 ), if 𝑣⊤ is the LCA of 𝑣1 and 𝑣2 in 𝐺 , then 𝐿(𝑣⊤) = 𝐿(𝑣1) ∩ 𝐿(𝑣2)3.

𝑣!

𝑣" 𝑣#

𝑣$ 𝑣%

𝑣&𝑣'

𝑣(

𝑒" 𝑒#

𝑒$ 𝑒%

Fig. 8. Version Graph with no
LCA for 𝑣5 and 𝑣6

Thus, the events of the LCA are exactly those applied at both the
versions. This intuitively corresponds to the fact that 𝐿𝐶𝐴(𝑣1, 𝑣2)
is the most recent version from which the two versions 𝑣1 and 𝑣2
diverged. Note that it is possible that the LCA may not exist for
two versions. Fig. 8 depicts the version graph of such an execution.
Vertices with in-degree 1 (i.e. 𝑣1, 𝑣2, 𝑣3, 𝑣4) have been generated by
applying a new update operation (with the orange edges labeled by
the corresponding events 𝑒1, 𝑒2, 𝑒3, 𝑒4), while vertices with in-degree
2 have been obtained by merging two other versions (depicted by
blue edges). The merge of 𝑣1 and 𝑣4 (leading to 𝑣6) has a unique LCA
𝑣0, similarly, merge of 𝑣2 and 𝑣3 (leading to 𝑣5) also has a unique
LCA 𝑣0. However, if we now want to merge 𝑣5 and 𝑣6, both 𝑣1 and
𝑣2 are ancestors, but there is no LCA. We note that this execution
will actually be prohibited by the semantics of Kaki et al. [11], since
the two merges leading to 𝑣5 and 𝑣6 are concurrent.

Notice that 𝐿(𝑣5) = {𝑒1, 𝑒2, 𝑒3}, while 𝐿(𝑣6) = {𝑒1, 𝑒2, 𝑒4}. Hence, by Lemma 3.2, 𝐿(𝐿𝐶𝐴(𝑣5, 𝑣6)) =
{𝑒1, 𝑒2}, but such a version is not generated during the execution. To resolve this issue, we introduce
the notion of potential LCAs.

Definition 3.3 (Potential LCAs). Given a version graph 𝐺 = (𝑉 , 𝐸) and versions 𝑣1, 𝑣2 ∈ 𝑉 ,
𝑣⊤ ∈ 𝑉 is defined to be a potential LCA of 𝑣1 and 𝑣2 if (i) (𝑣⊤, 𝑣1) ∈ 𝐸∗ and (𝑣⊤, 𝑣2) ∈ 𝐸∗, (ii)
¬(∃𝑣 .(𝑣, 𝑣1) ∈ 𝐸∗ ∧ (𝑣, 𝑣2) ∈ 𝐸∗ ∧ (𝑣⊤, 𝑣) ∈ 𝐸∗).
3All proofs are in the Appendix §A



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588

12 Vimala Soundarapandian, Kartik Nagar, Aseem Rastogi, and KC Sivaramakrishnan

For merging 𝑣1 and 𝑣2, we first find all the potential LCAs, and recursively merge them to obtain
the actual LCA state. For the execution in Fig. 8, the potential LCAs of 𝑣5 and 𝑣6 would be 𝑣1 and
𝑣2 (with 𝐿(𝑣1) = {𝑒1} and 𝐿(𝑣2) = {𝑒2}); merging them would get us the actual LCA. In §A.1, we
prove that this recursive merge-based strategy is guaranteed to generate the actual LCA.

3.2 Replication-aware Linearizability for MRDTs
As mentioned in §2, our goal is to show that the state of every version 𝑣 generated during an
execution is a linearization of the events in 𝐿(𝑣). We use the notation lo to indicate the linearization
relation, which is a binary relation over events. For an execution in SD , we want lo between the
events of the execution to satisfy certain desirable properties: (i) lo between two events should not
change during an execution, (ii) lo should obey the conflict resolution policy for concurrent events
and (iii) lo should obey the replica-local vis ordering for non-concurrent events. This would ensure
that two versions which have observed the same set of events will have the same state (i.e. strong
eventual consistency), and this state would also be a linearization of update operations of the data
type satisfying the conflict resolution policy.

While the lo relation in classical linearizability literature is typically a total order, in our context,
we take advantage of commutativity of update operations, and only define lo over non-commutative
events. As we will see later, this flexibility allows us to have different sequences of events which
extend the same lo relation between non-commutative events, and hence are guaranteed to lead
to the same state. We use the notation 𝑒 ⇄ 𝑒′ to indicate that events 𝑒 and 𝑒′ commute with each
other. Formally, this means that ∀𝜎. 𝑒 (𝑒′ (𝜎)) = 𝑒′ (𝑒 (𝜎)). Two update operations 𝑜, 𝑜 ′ commute
if ∀𝑒, 𝑒′ . op(𝑒) = 𝑜 ∧ op(𝑒′) = 𝑜 ′ =⇒ 𝑒 ⇄ 𝑒′. As mentioned earlier, the rc relation is also only
defined between non-commutative update operations.

Lemma 3.4. Given a set of events E, if lo ⊆ E × E is defined over every pair of non-commutative
events in E, then for any two sequences 𝜋1, 𝜋2 which extend lo, for any state 𝜎 , 𝜋1 (𝜎) = 𝜋2 (𝜎).

Given a configuration 𝐶 = ⟨𝑁,𝐻, 𝐿,𝐺, 𝑣𝑖𝑠⟩, let E𝐶 =
⋃

range(𝐿(𝐶)) denote the set of events
witnessed across all versions in C. Then, our goal is to define an appropriate linearization relation
lo𝐶 ⊆ E𝐶 × E𝐶 , which adheres to the rc relation for concurrent events, the vis relation for non-
concurrent events, and for every version 𝑣 ∈ 𝑑𝑜𝑚(𝑁 ), 𝑁 (𝑣) should be obtained by sequentializing
the events in 𝐿(𝑣), with the sequence extending lo𝐶 . Note that this requires lo+ to be irreflexive4.

𝑣! 𝑣"

𝑣# 𝑣$

𝑣%𝑣&

𝑒!: 𝑜′ 𝑒": 𝑜′

𝑒#: 𝑜 𝑒$: 𝑜

Fig. 9. Example demonstrating
cycle in lo

We now demonstrate that an lo relation with all the desirable
properties may not exist for all executions. Suppose there areMRDT
update operations 𝑜, 𝑜 ′ such that 𝑜 rc−→ 𝑜 ′. Fig. 9 contains a part of
the version graph generated during some execution, containing
two instances of both 𝑜 and 𝑜 ′. We use 𝑒𝑖 : 𝑜𝑖 to denote that event
op(𝑒𝑖 ) = 𝑜𝑖 . Notice that 𝑒1 and 𝑒4, 𝑒2 and 𝑒3 are concurrent, while
𝑒1 and 𝑒3, 𝑒2 and 𝑒4 are non-concurrent. Applying the rc ordering
on concurrent events, we would want 𝑒3

lo−→ 𝑒2 and 𝑒4
lo−→ 𝑒1, while

applying vis ordering, we would want 𝑒1
lo−→ 𝑒3 and 𝑒2

lo−→ 𝑒4.
However, this results in a lo-cycle, thus making it impossible to
construct a sequence of update operations for the merge of 𝑣5 and 𝑣6, which adheres to the lo
ordering.

Notice that the above execution only requires the rc relation to be non-empty (i.e. there should
exist some (𝑜, 𝑜 ′) ∈ rc). If the rc relation is empty, then all update operations would commute
4lo need not be transitive, as we only want to define lo between non-commutative events, and non-commutativity is not a
transitive property
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with each other, and hence the lo relation would also be empty. If rc is non-empty, rc+ should be
irreflexive to ensure irreflexivity of lo+. Note that rc+ being irreflexive means that for any MRDT
update operation 𝑜 , (𝑜, 𝑜) ∉ rc, and hence 𝑜 must commute with itself, since rc relation is defined
for all pairs of non-commutative update operations. Furthermore, Fig. 9 shows that even if rc+
is irreflexive, it may still not be possible to construct an lo relation which can be extended to a
total order and which adheres to the rc relation between all pairs of concurrent events. To ensure
existence of an lo relation such that lo+ is irreflexive when rc+ is irreflexive, we define it as follows:

Definition 3.5 (Linearization relation). Let 𝐶 be a configuration reachable in some execution in
JSDK. Let E𝐶 be the set of events in 𝐶 . Then, loC is defined as:

∀𝑒1, 𝑒2 ∈ E𝐶 . 𝑒1
loC−−→ 𝑒2 ⇔(𝑒1

vis(C)
−−−−−→ 𝑒2 ∧ ¬𝑒1 ⇄ 𝑒2)

∨ (𝑒1 | |𝐶 𝑒2 ∧ 𝑒1
rc−→ 𝑒2 ∧ ¬(∃𝑒3 ∈ E . 𝑒2

vis(C)
−−−−−→ 𝑒3 ∧ ¬𝑒2 ⇄ 𝑒3))

lo𝐶 follows the visibility relation only between non-commutative events. For concurrent non-
commutative events 𝑒1 and 𝑒2 with 𝑒1

rc−→ 𝑒2, lo𝐶 follows the rc relation only if there is no event
𝑒3 such that 𝑒2 is visible to 𝑒3 and 𝑒2 doesn’t commute with 𝑒3. Applying this definition to the
execution in Fig. 9, for the configuration obtained after merge, we would have neither 𝑒4

lo−→ 𝑒1, nor
𝑒3

lo−→ 𝑒2, thus avoiding the cycle in lo.

Lemma 3.6. For an MRDT D such that rc+ is irreflexive, for any configuration 𝐶 reachable in SD ,
lo+𝐶 is irreflexive.

Going forward, we will assume that rc+ is irreflexive for any MRDT D. We note that restricting
lo to not always obey the rc relation by considering non-commutative update operations happening
locally (and thus related by vis) is also sensible from a practical perspective. For example, in the
case of OR-set, even though we have rem𝑎

rc−→ add𝑎 , if add𝑎 is locally followed by another rem𝑎 ,
it doesn’t make sense to order a concurrent rem𝑎 event before the add𝑎 event. More generally,
if an event 𝑒2 is visible to another event 𝑒3 with which it doesn’t commute, then 𝑒2 is effectively
"overwritten" by 𝑒3, and hence there is no need to linearize a concurrent event 𝑒1 before 𝑒2.

While lo𝐶 is now guaranteed to be irreflexive for any configuration𝐶 , and hence can be extended
to a sequence, it now no longer enforces an ordering among all non-commutative pairs of events.
Thus, there could exist sequences 𝜋1, 𝜋2 extending an lo𝐶 relation which may contain a pair of
non-commutative events in different orders. For example, in Fig. 9, for the configuration𝐶 obtained
after the merge, lo𝐶 = {(𝑒1, 𝑒3), (𝑒2, 𝑒4)}, resulting in sequences 𝜋1 = 𝑒1𝑒2𝑒3𝑒4 and 𝜋2 = 𝑒1𝑒3𝑒2𝑒4
which both extend lo𝐶 , but contain the non-commutative events 𝑒2 and 𝑒3 in different orders. Thus,
Lemma 3.4 can no longer be applied, and it is not guaranteed that 𝜋1 and 𝜋2 would lead to the
same state. Notice that in the sequences 𝜋1 and 𝜋2 above, even though 𝑒2 and 𝑒3 appear in different
orders, 𝑒4 always appears after both. Indeed, 𝑒4 must appear after 𝑒2 due to visibility relation, and
since 𝑒3 and 𝑒4 commute with each other (since both correspond to the same operation 𝑜), it is
enough to consider sequences where 𝑒4 appears after 𝑒3. Based on the above observation, we now
introduce a notion called conditional commutativity to ensure that sequences such as 𝜋1, 𝜋2 would
lead to the same state:

Definition 3.7 (Conditional Commutativity). Events 𝑒 and 𝑒′ are said to conditionally com-

mute with respect to event 𝑒′′ (denoted by 𝑒
𝑒′′

⇄ 𝑒′) if ∀𝜎 ∈ Σ. ∀𝜋 ∈ E∗ . 𝑒′′ (𝜋 (𝑒 (𝑒′ (𝜎)))) =

𝑒′′ (𝜋 (𝑒′ (𝑒 (𝜎)))).
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Update operations 𝑜 and 𝑜 ′ conditionally commute w.r.t. update operation 𝑜 ′′ if ∀𝑒, 𝑒′, 𝑒′′ .op(𝑒) =

𝑜∧op(𝑒′) = 𝑜 ′∧op(𝑒′′) = 𝑜 ′′ ⇒ 𝑒
𝑒′′

⇄ 𝑒′. For example, for the OR-setMRDT of Fig. 2, add𝑎
rem𝑎

⇄ rem𝑎 .
Even though add and remove operations of the same element do not commute with each other, if
there is guaranteed to be a future remove operation, then they do commute. For the execution in
Fig. 9, if 𝑒2 and 𝑒3 conditionally commute w.r.t. 𝑒4, then both the sequences 𝜋1 and 𝜋2 will lead to
the same state. For non-commutative update operations which are not ordered by lo, we enforce
their conditional commutativity through the following property:

cond-comm(D) ≜ ∀𝑜1, 𝑜2, 𝑜3 ∈ 𝑂. (𝑜1
rc−→ 𝑜2 ∧ ¬𝑜2 ⇄ 𝑜3) ⇒ 𝑜1

𝑜3
⇄ 𝑜2

cond-comm(D) is a property of an MRDT D, enforcing conditional commutativity of update
operations 𝑜1 and 𝑜2 w.r.t. 𝑜3 if 𝑜2 does not commute with 𝑜3. Connecting this with the definition
of linearization relation, if there are events 𝑒1, 𝑒2, 𝑒3 performing operations 𝑜1, 𝑜2, 𝑜3 resp., and if
𝑒1

rc−→ 𝑒2, 𝑒2
vis−−→ 𝑒3 and ¬𝑒2 ⇄ 𝑒3, then there will not be a linearization relation between 𝑒1 and 𝑒2.

However, cond-comm(D) would then ensure that the ordering of 𝑒1 and 𝑒2 will not matter, due to
the presence of the event 𝑒3. We also formalize the requirement of an rc relation between all pairs
of non-commutative update operations:

rc-non-comm(D) ≜ ∀𝑜1, 𝑜2 ∈ 𝑂.¬𝑜1 ⇄ 𝑜2 ⇔ 𝑜1
rc−→ 𝑜2 ∨ 𝑜2

rc−→ 𝑜1

Lemma 3.8. For an MRDT D which satisfies rc-non-comm(D) and cond-comm(D), for any
reachable configuration𝐶 in SD , for any two sequences 𝜋1, 𝜋2 over E𝐶 which extend lo𝐶 , for any state
𝜎 , 𝜋1 (𝜎) = 𝜋2 (𝜎).

Definition 3.9 (RA-linearizability of MRDT). LetD be anMRDTwhich satisfies rc-non-comm(D)
and cond-comm(D). Then, a configuration 𝐶 = ⟨𝑁,𝐻, 𝐿,𝐺, 𝑣𝑖𝑠⟩ of SD is RA-linearizable if, for
every active replica 𝑟 ∈ 𝑟𝑎𝑛𝑔𝑒 (𝐻 ), there exists a sequence 𝜋 consisting of all events in 𝐿(𝐻 (𝑟 ))
such that lo(𝐶) |𝐿 (𝐻 (𝑟 ) ) ⊆ 𝜋 and 𝑁 (𝐻 (𝑟 )) = 𝜋 (𝜎0). An execution 𝜏 ∈ JSDK is RA-linearizable if all
of its configurations are RA-linearizable. Finally, D is RA-linearizable if all of its executions are
RA-linearizable.

For a configuration to be RA-linearizable, every active replica must have a state which can be
obtained by applying a sequence of events witnessed at that replica, and that sequence must obey
the linearization relation of the configuration. For an execution to be RA-linearizable, all of its
configurations must be RA-linearizable. Lemma 3.6 ensures the existence of a sequence extending
the linearization relation, while Lemma 3.8 ensures that two versions which have witnessed the
same set of events will have the same state (i.e. strong eventual consistency). Further, we also show
that if an MRDT is RA-linearizable, then for any query operation in any execution, the query result
is derived from the state obtained by applying the update events seen at the corresponding replica
right before the query:

Lemma 3.10. If MRDT D is RA-linearizable, then for all executions 𝜏 ∈ JSDK, for all transitions

𝐶
𝑞𝑢𝑒𝑟𝑦 (𝑟,𝑞,𝑎)
−−−−−−−−−−→ 𝐶′ in 𝜏 where 𝐶 = ⟨𝑁,𝐻, 𝐿,𝐺, 𝑣𝑖𝑠⟩, there exists a sequence 𝜋 consisting of all events in

𝐿(𝐻 (𝑟 )) such that lo(𝐶) |𝐿 (𝐻 (𝑟 ) ) ⊆ 𝜋 and 𝑎 = query(𝜋 (𝜎0), 𝑞).

Compared to the definition of RA-linearizability in Wang et. al. [25], there is one major difference:
Wang et. al. also consider a sequential specification in the form of a set of valid sequences of
data-type operations, and requires the linearization sequence to belong to the specification. Our
definition simply requires the state of a replica to be a linearization of the update operations applied
to the replica, without appealing to a separate sequential specification. Once this is done, we can
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separately show that a linearization of the MRDT operations obeys the sequential specification. For
this, we can ignore the presence of the merge operation as well as the MRDT system model (which
are taken care of by the RA-linearizability definition), thus boiling down to proving a specification
over a sequential functional implementation, which is a well-studied problem.

3.3 Bottom-up Linearization
As demonstrated in §2, our approach to show RA-linearizability of an MRDT implementation is
based on using algebraic properties of merge (specifically, commutativity of merge and update
operation application) which allows us to show that the result of a merge operation is a linearization
of the events in each of the versions being merged. We first describe a generic template for the
algebraic properties which can be used to prove RA-linearizability:

∀𝑗 . 𝜋 𝑗 ∈ E ∪ {𝜖} 𝑙, 𝑎, 𝑏 ∈ Σ 𝜋 ∈ {𝜋0, 𝜋1, 𝜋2} ∀𝑗 . 𝜋 ′
𝑗 = 𝜋 𝑗 − 𝜋

merge(𝜋0 (𝑙), 𝜋1 (𝑎), 𝜋2 (𝑏)) = 𝜋 (merge(𝜋 ′
0 (𝑙), 𝜋 ′

1 (𝑎)), 𝜋 ′
2 (𝑏))))

[BottomUpTemplate]

The template for the algebraic property is given in the conclusion of the above rule, while the
premises describe certain conditions. Each 𝜋 𝑗 for 𝑗 ∈ {0, 1, 2} is a sequence of 0 or 1 event (i.e.
either 𝜖 or a single event 𝑒 𝑗 ), while 𝑙, 𝑎, 𝑏 are arbitrary states of the MRDT. Note that applying the 𝜖
event on a state leaves it unchanged (i.e. 𝜖 (𝑠) = 𝑠). Then, we can select one event 𝜋 which has been
applied to the arguments of merge on the LHS, and bring it outside, i.e. remove the event from each
argument on which it was applied, and instead apply the event to the result of merge. Note that
the notation 𝜋

′
𝑗 = 𝜋 𝑗 − 𝜋 means that if 𝜋 = 𝜋 𝑗 , then 𝜋

′
𝑗 = 𝜖 , else 𝜋 ′

𝑗 = 𝜋 𝑗 − 𝜋 .
The rule (P1′) given in §2.2 can be seen as an instantiation of the above template with 𝜋0 = 𝜖, 𝜋1 =

𝑒1, 𝜋2 = 𝑒2 and 𝜋 = 𝑒2 where 𝑒1
rc−→ 𝑒2. Similarly, (P1-1) is another instantiation with 𝜋0 = 𝜋2 = 𝑒1,

𝜋1 = 𝑒3 and 𝜋 = 𝑒3 where 𝑒3 ≠ 𝑒1. Assuming that the input arguments to merge are obtained
through sequences of events 𝜏0, 𝜏1, 𝜏2, the template rule builds the linearization sequence 𝜏 = 𝜏 ′𝑒
where 𝑒 is the last event in one of the 𝜏𝑖s, and 𝜏 ′ is recursively generated by applying the rule on
𝜏
′
= 𝜏 − 𝑒 . We call this procedure as bottom-up linearization. The event 𝑒 should be chosen in such

a way that the sequence 𝜏 is an extension of the linearization relation (Def. 3.5).

𝑣!

𝑣"

𝑣#

𝑒!: 𝑜!

𝑣$
𝑒": 𝑜"

𝑒#: 𝑜#

𝑣%

Fig. 10. Example demonstrating
the failure of bottom-up lineariza-
tion in the presence of an rc-
chain

However, bottom-up linearization might fail if the last event in
the merge output is not the last event in any of the three arguments
to merge. For example, consider the execution shown in Fig. 10,
where there exists an rc-chain: 𝑜2

rc−→ 𝑜3
rc−→ 𝑜1, and 𝑜1 and 𝑜2 are

non-commutative. 𝑒1 is visible to 𝑒2, while event 𝑒3 is concurrent
to 𝑒1 and 𝑒2. Now, for the version obtained after merging 𝑣3 and 𝑣4,
the linearization relation would be 𝑒1

lo−−→
vis

𝑒2 and 𝑒2
lo−→
rc

𝑒3. Notably,
even though 𝑒1 and 𝑒3 are also concurrent, and rc orders 𝑜3 before
𝑜1, this will not result in a linearization relation from 𝑒3 to 𝑒1, due
to the presence of a non-commutative update operation 𝑒2 to which
𝑒1 is visible. The bottom-up linearization for the merge of 𝑣3 and
𝑣4, will result in the sequence 𝑒1𝑒2𝑒3, which is an extension of the
linearization order.

However, suppose we first merge versions 𝑣2 and 𝑣4, to obtain the version 𝑣5, where the lineariza-
tion relation is 𝑒3

lo−→
rc

𝑒1. Merging 𝑣3 and 𝑣5 (with LCA 𝑣2) would have the same linearization relation
as merging 𝑣3 and 𝑣4. However, the sequences leading to 𝑣3 and 𝑣5 are 𝑒1𝑒2 and 𝑒3𝑒1 respectively,
while the only sequence which extends the linearization relation for their merge is 𝑒1𝑒2𝑒3. Bottom-
up linearization will then be constrained to pick either 𝑒1 or 𝑒2 to appear at the end, but such a
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sequence will not extend the linearization relation resulting in failure of bottom-up linearization.
To avoid such cases, we place an additional constraint which prohibits the presence of an rc-chain:

no-rc-chain(D) ≜ ¬(∃𝑜1, 𝑜2, 𝑜3 ∈ 𝑂. 𝑜1
rc−→ 𝑜2

rc−→ 𝑜3)

If there is an rc-chain, executions such as Fig. 10 are possible, resulting in infeasibility of bottom-up
linearization. However, we will show that if an MRDT satisfies no-rc-chain(D), then we can use
bottom-up linearization to prove that D is linearizable. We note that no-rc-chain is a pragmatic
restriction and consistent with standard conflict-resolution strategies such as add/remove-wins,
enable/disable-wins, update/delete-wins, etc. which are typically used in MRDT implementations.

4 Verifying RA-linearizability of MRDTs
In this section, we present our verification strategy for proving RA-linearizability of MRDTs using
bottom-up linearization. According to Def. 3.9, in order to prove that an MRDT D is linearizable,
we need to consider every configuration𝐶 reachable in any execution, and show that all replicas in
𝐶 have states which can be obtained by linearizing the events applied to the replica, i.e. finding
a sequence which obeys the linearization relation (Def. 3.5). We will assume that D satisfies the
three constraints (rc-non-comm, cond-comm and no-rc-chain) necessary for an MRDT to be
linearizable, and for bottom-up linearization to succeed.

Our overall proof strategy is to use induction on the length of the execution and to extract generic
verification conditions (VCs) which help us to discharge the inductive case. These VCs would essen-
tially be instantiations of the BottomUpTemplate rule, proving that the merge operation results
in a linearization of the events of the two versions being merged. Proving these VCs for arbitrary
MRDTs is not straightforward (as discussed in §2.3), and hence we propose another induction
scheme over event sequences. We first discuss the instantiations of the BottomUpTemplate rule
required for linearizing merges.

4.1 Linearizing Merge Operations
Consider an execution 𝜏 ∈ JSDK such that all configurations in 𝜏 are linearizable. Suppose 𝜏 ends in
the configuration 𝐶 . Now, we extend 𝜏 by one more transition, resulting in the new configuration
𝐶′; we need to prove that 𝐶′ is also linearizable. Let 𝐶 = ⟨𝑁,𝐻, 𝐿,𝐺, 𝑣𝑖𝑠⟩, 𝐶′ = ⟨𝑁 ′, 𝐻 ′, 𝐿′,𝐺 ′, 𝑣𝑖𝑠′⟩.
It is easy to see if that this transition is caused due to CreateBranch or Apply rules, then 𝐶′ will
be linearizable. For example, in the [Apply] transition, where a new update operation 𝑜 is applied
on a replica 𝑟 (generating a new event 𝑒), only the state at 𝑟 changes, and this new state is obtained
by directly applying 𝑒 on the original state 𝜎 at 𝑟 . Since 𝜎 was assumed to be linearizable, there
exists a sequence 𝜋 which extends lo(𝐶) |𝐿 (𝐻 (𝑟 ) ) , with 𝜎 = 𝜋 (𝜎0) (recall that 𝐿(𝐻 (𝑟 )) denotes the
set of events applied at 𝑟 ). Then, the new state 𝑒 (𝜎) is clearly linearizable through the sequence 𝜋𝑒
which extends lo(𝐶′) |𝐿′ (𝐻 ′ (𝑟 ) ) .

We focus on the difficult case when there is a Merge transition from 𝐶 to 𝐶′ which merges the
replicas 𝑟1 and 𝑟2. Let 𝜎1 and 𝜎2 be the states of the head versions 𝑣1 and 𝑣2 at 𝑟1 and 𝑟2 respectively.
Let 𝜎⊤ be the state of the LCA version 𝑣⊤ of 𝑣1 and 𝑣2. Recall that 𝐿(𝑣⊤) = 𝐿(𝑣1) ∩ 𝐿(𝑣2). The
transition will install a new version with state 𝜎𝑚 = merge(𝜎⊤, 𝜎1, 𝜎2) at the replica 𝑟1, leaving
the other replicas unchanged. Also, 𝐿′ (𝑣𝑚) = 𝐿(𝑣1) ∪ 𝐿(𝑣2). We need to show that there exists a
sequence 𝜋 of events in 𝐿′ (𝑣𝑚) such that 𝜋 extends lo(𝐶′) |𝐿′ (𝑣𝑚 ) and 𝜎𝑚 = 𝜋 (𝜎0).

We first describe the structure of a sequence 𝜋 which extends lo(𝐶′) |𝐿′ (𝑣𝑚 ) . For ease of readability,
we use 𝐿1 for 𝐿(𝑣1), 𝐿2 for 𝐿(𝑣2) and 𝐿⊤ for 𝐿(𝑣⊤), and lom for lo(𝐶′) |𝐿′ (𝑣𝑚 ) . We define the following
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sets of events:

𝐿′1 = 𝐿1 \ 𝐿⊤ 𝐿′2 = 𝐿2 \ 𝐿⊤

𝐿𝑏1 = {𝑒 ∈ 𝐿
′
1 | ∃𝑒⊤ ∈ 𝐿⊤. (𝑒

lom−−→ 𝑒⊤ ∨ ∃𝑒′ ∈ 𝐿
′
1. 𝑒

lom−−→ 𝑒
′ lom−−→ 𝑒⊤)}

𝐿𝑏2 = {𝑒 ∈ 𝐿
′
2 | ∃𝑒⊤ ∈ 𝐿⊤. (𝑒

lom−−→ 𝑒⊤ ∨ ∃𝑒′ ∈ 𝐿
′
2. 𝑒

lom−−→ 𝑒
′ lom−−→ 𝑒⊤)}

𝐿𝑎⊤ = {𝑒⊤ ∈ 𝐿⊤ | ∃𝑒 ∈ 𝐿𝑏1 ∪ 𝐿𝑏2 .𝑒
lom−−→ 𝑒⊤} 𝐿𝑎1 = 𝐿

′
1 \ 𝐿𝑏1 𝐿𝑎2 = 𝐿

′
2 \ 𝐿𝑏2 𝐿𝑏⊤ = 𝐿⊤ \ 𝐿𝑎⊤

Fig. 11. Structure of sequence 𝜋
extending lo𝑚

𝐿
′
1 and 𝐿

′
2 are the local events in each version. Note that any pair

of events 𝑒1 ∈ 𝐿′1, 𝑒2 ∈ 𝐿′2 will necessarily be concurrent. This is
because in any reachable configuration, any version 𝑣 is always
causally closed, which means that if 𝑒1

vis−−→ 𝑒2 and 𝑒2 ∈ 𝐿(𝑣),
then 𝑒1 ∈ 𝐿(𝑣). Hence, for events 𝑒1 ∈ 𝐿′1, 𝑒2 ∈ 𝐿′2, if 𝑒1

vis−−→ 𝑒2 then
𝑒1 ∈ 𝐿′2, whichwouldmake 𝑒1 a non-local event (i.e. part of the LCA).
Bottom-up linearization first linearizes the local events across the
two versions using the rc relation for non-commutative events, and
then linearizes events of the LCA. However, as demonstrated by the
example in §2.4, local events may also need to be linearized before
events of the LCA (due to possible intermediate merges), and these
events are collected in the sets 𝐿𝑏1 and 𝐿𝑏2 . Specifically, 𝐿𝑏𝑖 (𝑖 = 1, 2)
contains those local events 𝑒 in 𝐿′𝑖 which either occur lom before
some event in the LCA, or which occur lom before another local
event 𝑒′ which occurs lom before an LCA event. The events of the
LCA which need to be linearized after local events are collected in
𝐿𝑎⊤. Finally, 𝐿𝑎1 and 𝐿𝑎2 contain local events which do not occur lom before an LCA event.

Example 4.1. Consider the execution in Fig. 6, and the merge of versions 𝑣3 and 𝑣4, for which
the LCA is 𝑣1. For this merge, 𝐿′1 = {𝑒3}, 𝐿′2 = {𝑒2}, 𝐿𝑏1 = ∅, 𝐿𝑏2 = {𝑒2}, 𝐿𝑎⊤ = {𝑒1}. For the merge of
versions 𝑣1 and 𝑣2 (whose LCA is 𝑣0), 𝐿′1 = {𝑒1}, 𝐿′2 = {𝑒2}, while 𝐿𝑏1 , 𝐿𝑏2 , 𝐿𝑎⊤ will all be empty (since
no local event comes lo-before an LCA event).

We now show that there exists a sequence 𝜋 which extends lom and which has events in 𝑆1 = 𝐿𝑏⊤
followed by 𝑆2 = 𝐿𝑎⊤ ∪ 𝐿𝑏1 ∪ 𝐿𝑏2 followed by 𝑆3 = 𝐿𝑎1 ∪ 𝐿𝑎2 (later, we will discuss the ordering of
events inside each set 𝑆𝑖 ). To prove this, we will demonstrate that there is no lom from events in
𝑆𝑖 to events in 𝑆𝑖−1. Based on the definitions of the 𝑆𝑖 sets, we can deduce some obvious facts: (i)
there cannot be events 𝑒 ∈ 𝑆3, 𝑒′ ∈ 𝐿⊤ such that 𝑒 lom−−→ 𝑒′, because otherwise, such an event 𝑒
would be in 𝐿𝑏1 ∪ 𝐿𝑏2 (and hence not in 𝑆3), (ii) there cannot be events 𝑒 ∈ 𝐿𝑏1 ∪ 𝐿𝑏2 , 𝑒′ ∈ 𝐿𝑏⊤ such that
𝑒

lom−−→ 𝑒′, because otherwise, such an event 𝑒′ would be in 𝐿𝑎⊤. In addition, using no-rc-chain and
rc-non-comm, we also prove the following:

Lemma 4.2. (1) For events 𝑒 ∈ 𝐿𝑎1 ∪ 𝐿𝑎2 , 𝑒
′ ∈ 𝐿𝑏1 ∪ 𝐿𝑏2 , ¬(𝑒

lom−−→ 𝑒′).
(2) For events 𝑒 ∈ 𝐿𝑎⊤, 𝑒

′ ∈ 𝐿𝑏⊤, ¬(𝑒
lom−−→ 𝑒′).

(1) from the above lemma ensures that there is no lom relation from 𝑆3 to 𝑆2, while (2) ensures
the same from 𝑆2 to 𝑆1. Hence a sequence with the structure 𝑆1 𝑆2 𝑆3 would extend lom. Let us now
consider the ordering among events in each set. First, for 𝑆3, this set contains local events which are
guaranteed to not come lom before any event of the LCA. An event in 𝐿𝑎1 will be concurrent with an
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event in 𝐿𝑎2 , and the linearization relation between them will depend upon the rc relation between
the underlying operations (if the events don’t commute). We now instantiate BottomUpTemplate
for the case where both 𝐿𝑎1 and 𝐿𝑎2 are non-empty in the rule BottomUp-2-OP in Fig. 12, so that
the linearization needs to consider the rc relation between events in the two sets.

[BottomUp-2-OP] [BottomUp-1-OP]

𝑒1 ≠ 𝑒2 𝑒1
rc−→ 𝑒2 ∨ 𝑒1 ⇄ 𝑒2

merge(𝑙, 𝑒1 (𝑎), 𝑒2 (𝑏)) = 𝑒2 (merge(𝑙, 𝑒1 (𝑎), 𝑏))
(𝑒⊤ ≠ 𝜖 ∧ 𝑒1 ≠ 𝑒⊤) ∨ (𝑒⊤ = 𝜖 ∧ 𝑙 = 𝑏)

merge(𝑒⊤ (𝑙), 𝑒1 (𝑎), 𝑒⊤ (𝑏)) = 𝑒1 (merge(𝑒⊤ (𝑙), 𝑎, 𝑒⊤ (𝑏)))

[BottomUp-0-OP] [MergeIdempotence] [MergeCommutativity]
merge(𝑒⊤ (𝑙), 𝑒⊤ (𝑎), 𝑒⊤ (𝑏)) = 𝑒⊤ (merge(𝑙, 𝑎, 𝑏)) merge(𝑎, 𝑎, 𝑎) = 𝑎 merge(𝑙, 𝑎, 𝑏) = merge(𝑙, 𝑏, 𝑎)

Fig. 12. Bottom-up Linearization

Note that 𝑒1, 𝑒2 and 𝑙, 𝑎, 𝑏 are all universally quantified. The BottomUp-2-OP rule is an algebraic
property of merge which needs to be separately shown for each MRDT implementation. For our
case where we are trying to linearizemerge(𝜎⊤, 𝜎1, 𝜎2), we can apply BottomUp-2-OP with 𝑙 = 𝜎⊤,
𝑒1 (𝑎) = 𝜎1 and 𝑒2 (𝑏) = 𝜎2. Note that since 𝐿𝑎1 and 𝐿𝑎2 are both non-empty, 𝑒1 ∈ 𝐿𝑎1 , 𝑒2 ∈ 𝐿𝑏2 (in fact,
𝑒1 and 𝑒2 would be the maximal events in 𝐿𝑎1 and 𝐿𝑏2 according to lom). BottomUp-2-OP would then
linearize 𝑒2 at the end of the sequence. If 𝑒1

rc−→ 𝑒2, then 𝑒1
lom−−→ 𝑒2, and thus linearizing 𝑒2 at the end

obeys the lom ordering. Note that due to the no-rc-chain constraint, 𝑒2 cannot come lom before
another concurrent event 𝑒3. BottomUp-2-OP can now be recursively applied onmerge(𝑙, 𝑒1 (𝑎), 𝑏),
by considering 𝑒1 and the last event leading to the state 𝑏. By repeatedly applying BottomUp-2-OP
all the remaining events in 𝐿𝑎1 and 𝐿𝑎2 can be linearized until one of the sets becomes empty.
Let us now consider the scenario where exactly one of 𝐿𝑎1 and 𝐿𝑎2 is empty. WLOG, let 𝐿𝑎1 be

non-empty. We instantiate BottomUpTemplate for the case where 𝐿𝑎1 is non-empty and 𝐿𝑎2 is
empty in the rule BottomUp-1-OP in Fig. 12, so that the linearization orders all events of 𝐿𝑎1 after
events of 𝑆2.
Let us consider the first clause in the premise where 𝑒⊤ ≠ 𝜖 . To understand BottomUp-1-OP,

note that if 𝐿𝑎2 is empty, then all local events in 𝐿′2 are linearized before the LCA events. In this
case, the last event which leads to the state 𝜎2 must be an LCA event. BottomUp-1-OP uses this
observation, with 𝑒⊤ (𝑙) = 𝜎⊤, 𝑒1 (𝑎) = 𝜎1 and 𝑒⊤ (𝑏) = 𝜎2. Notice that the last event in both the LCA
and the second argument to merge are exactly the same. 𝑒⊤ will be the maximal event (according
to lom relation) in 𝐿𝑎⊤, while 𝑒1 will be the maximal event in 𝐿𝑎1 . BottomUp-1-OP then linearizes 𝑒1
at the end of the sequence, thus ensuring that all 𝐿𝑎1 events are linearized after events in 𝑆1 and
𝑆2. It is possible that 𝐿𝑎⊤ is empty, in which case 𝐿′2 will be empty, which is covered by the second
clause where 𝑒⊤ = 𝜖 and 𝑙 = 𝑏 since there is no local event in the second state.

Example 4.3. Referring to Example 4.1 for the execution in Fig. 6, recall that for the merge of 𝑣3
and 𝑣4, we have 𝐿𝑎1 = {𝑒3}, 𝐿𝑎2 = ∅ and 𝐿⊤ = {𝑒1}. BottomUp-1-OP can be applied in this scenario
to linearize 𝑒3 at the end of the sequence.

BottomUp-2-OP and BottomUp-1-OP can thus be used to linearize all events in 𝑆3. Let us now
consider 𝑆2, which contains both local events in 𝐿𝑏1 ∪ 𝐿𝑏2 and LCA events in 𝐿𝑎⊤. We first provide a
more fine-grained structure of lom among events in the set 𝑆2. Let 𝐿𝑎⊤ = {𝑒⊤1 , . . . , 𝑒⊤𝑚}. For each 𝑒⊤𝑖 ,
we collect all local events from 𝐿𝑏1 and 𝐿𝑏2 which need to be linearized before 𝑒⊤𝑖 . For local events
which need to be linearized before multiple 𝑒⊤𝑖 s, we associate them with the smallest such 𝑖 . We



883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931

Automatically Verifying Replication-aware Linearizability 19

use 𝐿𝑏1 (𝑒⊤𝑖 ) and 𝐿𝑏2 (𝑒⊤𝑖 ) to denote these sets. Formally:

∀𝑒⊤𝑖 ∈ 𝐿𝑎⊤ . 𝐿
𝑏
1 (𝑒⊤𝑖 ) = {𝑒 ∈ 𝐿

′
1 | (∀𝑗 . 𝑗 < 𝑖 =⇒ 𝑒 ∉ 𝐿𝑏1 (𝑒⊤𝑗 )) ∧ 𝑒

lom−−→ 𝑒⊤𝑖 ∨ ∃𝑒 ′ ∈ 𝐿
′
1 .𝑒

lom−−→ 𝑒
′ lom−−→ 𝑒⊤𝑖 }

𝐿𝑏2 (𝑒⊤𝑖 ) is defined in a similar manner. We now prove the following lemma using no-rc-chain
and rc-non-comm:

Lemma 4.4. (1) For all events 𝑒⊤𝑖 , 𝑒
⊤
𝑗 ∈ 𝐿𝑎⊤, where 𝐿

𝑎
⊤ = {𝑒⊤1 , . . . , 𝑒⊤𝑚}, ¬(𝑒⊤𝑖

lom−−→ 𝑒⊤𝑗 )

(2) For events 𝑒 ∈ 𝐿𝑏1 (𝑒⊤𝑖 ) ∪ 𝐿𝑏2 (𝑒⊤𝑖 ), 𝑒′ ∈ 𝐿𝑏1 (𝑒⊤𝑗 ) ∪ 𝐿𝑏2 (𝑒⊤𝑗 ) where 𝑗 < 𝑖 , ¬(𝑒 lom−−→ 𝑒′).

From (1) in the above lemma, since there is no lom relation among events in 𝐿𝑎⊤, consider the
sequence 𝑒⊤1 𝑒⊤2 . . . 𝑒⊤𝑚 as a starting point for the sequence of events in 𝑆2 which extends lom. We
then inject 𝐿𝑏1 (𝑒⊤𝑖 ) ∪ 𝐿𝑏2 (𝑒⊤𝑖 ) before each 𝑒⊤𝑖 in the sequence 𝑒⊤1 𝑒⊤2 . . . 𝑒⊤𝑚 , as shown in Fig. 11. Note
that in Fig.11, we have only presented various segments of the sequence, with the ordering within
those segments determined by vis and rc. By (2) in Lemma 4.4, we can show that such a sequence
will extend lo𝑚 among the events in 𝑆2.

To show that merge follows the sequence 𝜋 for 𝑆2, we now instantiate BottomUpTemplate for
the case where 𝐿𝑎1 and 𝐿𝑎2 are empty (i.e. 𝑆3 has already been linearized) in the rule Bottom-0-OP
in Fig. 12. Following the structure of 𝜋 in Fig. 11, 𝑒⊤ would be the event 𝑒⊤𝑚 ∈ 𝐿𝑎⊤. Note that since
𝑒⊤𝑚 is an LCA event, it will be present in both states being merged. BottomUp-0-OP then allows
this event to be linearized first at the end.

Example 4.5. Following on from Example 4.3 for the execution in Fig. 6 for the merge of 𝑣3 and
𝑣4, after BottomUp-1-OP is applied to linearize 𝑒3, the states to be merged would be the versions
𝑣1 and 𝑣4 (with LCA 𝑣1), both of whose last operation is 𝑒1. Hence, BottomUp-0-OP would be
applicable, which would linearize 𝑒1.

After applying BottomUp-0-OP to linearize the LCA event 𝑒⊤𝑚 , we then need to linearize events
in 𝐿𝑏1 (𝑒⊤𝑚) ∪ 𝐿𝑏2 (𝑒⊤𝑚). However, the event 𝑒⊤𝑚 has already been linearized, so none of the events
in 𝐿𝑏1 (𝑒⊤𝑚) ∪ 𝐿𝑏2 (𝑒⊤𝑚) appear lom after an LCA event. This scenario can now be handled using
BottomUp-2-OP (if both 𝐿𝑏1 (𝑒⊤𝑚) and 𝐿𝑏2 (𝑒⊤𝑚) are non-empty) or BottomUp-1-OP (if one of 2 sets
is empty). These rules will appropriately linearize the events in 𝐿𝑏1 (𝑒⊤𝑚) ∪ 𝐿𝑏2 (𝑒⊤𝑚) taking into
account the rc relation for concurrent events and vis relation for non-concurrent events. Once
𝐿𝑏1 (𝑒⊤𝑚) ∪ 𝐿𝑏2 (𝑒⊤𝑚) becomes empty, we then encounter the next LCA event in 𝐿𝑎⊤, which can again be
linearized using BottomUp-0-OP.

The three instantiations of BottomUpTemplate can thus be repeatedly applied to linearize the
rest of the events in 𝑆2. Following this, all the local events would have been linearized, leaving only
the LCA events in 𝑆1. This would result in all three arguments to merge being equal, in which case
we can use the MergeIdempotence rule in Fig. 12. Using MergeIdempotence, we can equate the
output of merge to it’s argument, which has already been assumed to be appropriately linearized.

In order to avoid mirrored versions of BottomUp-2-OP and BottomUp-1-OP where the second
and third arguments are swapped, we also require the MergeCommutativity property in Fig. 12.
We now state our soundness theorem linking the various properties with RA-linearizability of
MRDT:

Theorem 4.6. If an MRDT D satisfies BottomUp-2-OP, BottomUp-1-OP, BottomUp-0-OP,
MergeIdempotence and MergeCommutativity, then D is linearizable.

The proof closely follows the informal arguments that we have presented in this sub-section,
using induction on the size of the various sets 𝐿𝑎1 , 𝐿𝑎2 , 𝐿𝑏1 ∪ 𝐿𝑏2 , 𝐿

𝑎
⊤.
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4.2 Automated Verification
While we have identified the sufficient conditions to show RA-linearizability of an MRDT using
bottom-up linearization, proving these conditions for arbitrary MRDTs is not straightforward.
Further, while the BottomUp-X-OP properties as shown in the previous sub-section had universal
quantification over MRDT states 𝑙, 𝑎, 𝑏, in general, for proving RA-linearizability, we only need to
show these properties for feasible states that may arise during an actual execution.

We now leverage the fact that the feasible states would have been obtained through linearization
of the visible events at the respective versions. In particular, we can characterize the states on which
merge can be invoked through the various events sets 𝐿𝑎1 , 𝐿𝑎2 , 𝐿𝑏1 , 𝐿𝑏2 , 𝐿𝑎⊤, 𝐿𝑏⊤ that we had defined
in the previous sub-section. We only need to prove the BottomUp-X-OP properties for states
which have been obtained through linearizations of events in these event sets. For this purpose, we
propose an induction scheme which establishes the required properties while traversing the event
sets as depicted in Fig. 11 in a top-down fashion.

Table 1. Induction scheme for BottomUpTemplate. For clarity, we use · for function composition, and 𝜇 for
merge.

VC
Name

Pre-condition Post-condition

𝜓
𝐿𝑏⊤
base 𝜇 (𝜋0 (𝜎0 ), 𝜋1 (𝜎0 ), 𝜋2 (𝜎0 ) ) =

𝜋 ·𝜇 (𝜋 ′
0 (𝜎0 ), 𝜋 ′

1 (𝜎0 ), 𝜋 ′
2 (𝜎0 ) )

𝜓
𝐿𝑏⊤
ind 𝜇 (𝜋0 (𝑙 ), 𝜋1 (𝑙 ), 𝜋2 (𝑙 ) ) =

𝜋 ·𝜇 (𝜋 ′
0 (𝑙 ), 𝜋 ′

1 (𝑙 ), 𝜋 ′
2 (𝑙 ) )

𝜇 (𝜋0 ·𝑒⊤ (𝑙 ), 𝜋1 ·𝑒⊤ (𝑙 ), 𝜋2 ·𝑒⊤ (𝑙 ) ) =
𝜋 ·𝜇 (𝜋 ′

0 ·𝑒⊤ (𝑙 ), 𝜋 ′
1 ·𝑒⊤ (𝑙 ), 𝜋 ′

2 ·𝑒⊤ (𝑙 ) )
𝜓
𝐿𝑎⊤
ind ∃𝑒. 𝑒 rc−→ 𝑒⊤ 𝜇 (𝜋0 (𝑙 ), 𝜋1 (𝑎), 𝜋2 (𝑏 ) ) =

𝜋 ·𝜇 (𝜋 ′
0 (𝑙 ), 𝜋 ′

1 (𝑎), 𝜋 ′
2 (𝑏 ) )

𝜇 (𝜋0 ·𝑒⊤ (𝑙 ), 𝜋1 ·𝑒⊤ (𝑎), 𝜋2 ·𝑒⊤ (𝑏 ) ) =
𝜋 ·𝜇 (𝜋 ′

0 ·𝑒⊤ (𝑙 ), 𝜋 ′
1 ·𝑒⊤ (𝑎), 𝜋 ′

2 ·𝑒⊤ (𝑏 ) )

𝜓
𝐿𝑏1
ind1 𝑒𝑏

rc−→ 𝑒⊤ 𝜇 (𝜋0 ·𝑒⊤ (𝑙 ), 𝜋1 ·𝑒⊤ (𝑎), 𝜋2 ·𝑒⊤ (𝑏 ) ) =
𝜋 ·𝜇 (𝜋 ′

0 ·𝑒⊤ (𝑙 ), 𝜋 ′
1 ·𝑒⊤ (𝑎), 𝜋 ′

2 ·𝑒⊤ (𝑏 ) )
𝜇 (𝜋0 ·𝑒⊤ (𝑙 ), 𝜋1 ·𝑒⊤ ·𝑒𝑏 (𝑎), 𝜋2 ·𝑒⊤ (𝑏 ) ) =
𝜋 ·𝜇 (𝜋 ′

0 ·𝑒⊤ (𝑙 ), 𝜋 ′
1 ·𝑒⊤ ·𝑒𝑏 (𝑎), 𝜋 ′

2 ·𝑒⊤ (𝑏 ) )

𝜓
𝐿𝑏1
ind2 𝑒𝑏

rc−→ 𝑒⊤ ∧ ¬𝑒 ⇄ 𝑒𝑏 𝜇 (𝜋0·𝑒⊤ (𝑙 ), 𝜋1·𝑒⊤·𝑒𝑏 (𝑎), 𝜋2·𝑒⊤ (𝑏 ) ) =
𝜋·𝜇 (𝜋 ′

0·𝑒⊤ (𝑙 ), 𝜋 ′
1·𝑒⊤·𝑒𝑏 (𝑎), 𝜋 ′

2·𝑒⊤ (𝑏 ) )
𝜇 (𝜋0 ·𝑒⊤ (𝑙 ), 𝜋1 ·𝑒⊤ ·𝑒𝑏 ·𝑒 (𝑎), 𝜋2 ·𝑒⊤ (𝑏 ) ) =
𝜋 ·𝜇 (𝜋 ′

0 ·𝑒⊤ (𝑙 ), 𝜋 ′
1 ·𝑒⊤ ·𝑒𝑏 ·𝑒 (𝑎), 𝜋 ′

2 ·𝑒⊤ (𝑏 ) )

𝜓
𝐿𝑏2
ind1 𝑒𝑏

rc−→ 𝑒⊤ 𝜇 (𝜋0 ·𝑒⊤ (𝑙 ), 𝜋1 ·𝑒⊤ (𝑎), 𝜋2 ·𝑒⊤ (𝑏 ) ) =
𝜋 ·𝜇 (𝜋 ′

0 ·𝑒⊤ (𝑙 ), 𝜋 ′
1 ·𝑒⊤ (𝑎), 𝜋 ′

2 ·𝑒⊤ (𝑏 ) )
𝜇 (𝜋0 ·𝑒⊤ (𝑙 ), 𝜋1 ·𝑒⊤ (𝑎), 𝜋2 ·𝑒⊤ ·𝑒𝑏 (𝑏 ) ) =
𝜋 ·𝜇 (𝜋 ′

0 ·𝑒⊤ (𝑙 ), 𝜋 ′
1 ·𝑒⊤ (𝑎), 𝜋 ′

2 ·𝑒⊤ ·𝑒𝑏 (𝑏 ) )

𝜓
𝐿𝑏2
ind2 𝑒𝑏

rc−→ 𝑒⊤ ∧ ¬𝑒 ⇄ 𝑒𝑏 𝜇 (𝜋0·𝑒⊤ (𝑙 ), 𝜋1·𝑒⊤·𝑒𝑏 (𝑎), 𝜋2·𝑒⊤ (𝑏 ) ) =
𝜋·𝜇 (𝜋 ′

0·𝑒⊤ (𝑙 ), 𝜋 ′
1·𝑒⊤·𝑒𝑏 (𝑎), 𝜋 ′

2·𝑒⊤ (𝑏 ) )
𝜇 (𝜋0 ·𝑒⊤ (𝑙 ), 𝜋1 ·𝑒⊤ ·𝑒𝑏 (𝑎), 𝜋2 ·𝑒⊤ ·𝑒𝑏 ·𝑒 (𝑏 ) ) =
𝜋 ·𝜇 (𝜋 ′

0·𝑒⊤ (𝑙 ), 𝜋 ′
1·𝑒⊤·𝑒𝑏 (𝑎), 𝜋 ′

2·𝑒⊤·𝑒𝑏 ·𝑒 (𝑏 ) )
𝜓
La1
ind 𝜇 (𝜋0 (𝑙 ), 𝜋1 (𝑎), 𝜋2 (𝑏 ) ) =

𝜋 ·𝜇 (𝜋 ′
0 (𝑙 ), 𝜋 ′

1 (𝑎), 𝜋 ′
2 (𝑏 ) )

𝜇 (𝜋0 (𝑙 ), 𝜋1 ·𝑒 (𝑎), 𝜋2 (𝑏 ) ) =
𝜋 ·𝜇 (𝜋 ′

0 (𝑙 ), 𝜋 ′
1 ·𝑒 (𝑎), 𝜋 ′

2 (𝑏 ) )
𝜓
La2
ind 𝜇 (𝜋0 (𝑙 ), 𝜋1 (𝑎), 𝜋2 (𝑏 ) ) =

𝜋 ·𝜇 (𝜋 ′
0 (𝑙 ), 𝜋 ′

1 (𝑎), 𝜋 ′
2 (𝑏 ) )

𝜇 (𝜋0 (𝑙 ), 𝜋1 (𝑎), 𝜋2 ·𝑒 (𝑏 ) ) =
𝜋 ·𝜇 (𝜋 ′

0 (𝑙 ), 𝜋 ′
1 (𝑎), 𝜋 ′

2 ·𝑒 (𝑏 ) )

Here, we present the induction scheme for the generic BottomUpTemplate rule. The scheme
can then be instantiated for all the three BottomUp-X-OP rules. Table 1 contains the verification
conditions corresponding to the base case and inductive case over the different event sets. Every
VC has the form (pre-condition =⇒ post-condition), and all variables are universally quantified.
Our goal is to show the BottomUpTemplate rule for all feasible MRDT states 𝑙, 𝑎, 𝑏, where 𝑙 is the
state of the LCA of 𝑎 and 𝑏. Let 𝐿⊤, 𝐿1, 𝐿2 be the event sets corresponding to 𝑙, 𝑎, 𝑏 respectively. We
define the event sets 𝐿𝑎1 , 𝐿𝑎2 , 𝐿𝑏1 , 𝐿𝑏2 , 𝐿𝑎⊤, 𝐿𝑏⊤ in exactly the same manner as the previous sub-section,
based on the linearization relation of the configuration obtained by the merge(𝑙, 𝑎, 𝑏) transition.
Note that the events in 𝜋0, 𝜋1, 𝜋2 (used in the BottomUpTemplate rule) would also come from the
above event sets, but in the following discussion, we freeze these events, i.e. all our assertions about
the events sets will be modulo these events.

We start with the VC𝜓
𝐿𝑏⊤
base, which corresponds to the case where every event set is empty. There is

no pre-condition, and the post-condition requires BottomUpTemplate to hold on the initial MRDT
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state 𝜎0. For example, for the BottomUp-2-OP rule,𝜓𝐿𝑏⊤
base VC would be merge(𝜎0, 𝑒1 (𝜎0), 𝑒2 (𝜎0)) =

𝑒2 (merge(𝜎0, 𝑒1 (𝜎0), 𝜎0)), where 𝑒1
rc−→ 𝑒2 or 𝑒1 and 𝑒2 commute. Notice that 𝑒1 and 𝑒2 would be

events in 𝐿𝑎1 and 𝐿𝑎2 , and our assertion about all event sets being empty is modulo these events.
Next, the VC 𝜓

𝐿𝑏⊤
ind corresponds to the inductive case on 𝐿𝑏⊤, where we assume every event set

except 𝐿𝑏⊤ to be empty. The pre-condition corresponds to the inductive hypothesis, where we
assume the property to hold for some event set 𝐿𝑏⊤, and the post-condition asserts that the property
holds while adding another event 𝑒⊤ to 𝐿𝑏⊤. Recall that 𝐿𝑏⊤ corresponds to the LCA events which
come lo before all local events. Since all the other event sets are empty, this translates to the same
state 𝑙 for all the three arguments to merge in the pre-condition, and applying the LCA event 𝑒⊤ to
all three arguments in the post-condition.
Next, we induct on the set 𝐿𝑎⊤, i.e. the set of LCA events which occur lo after a local event. The

base case, where | 𝐿𝑎⊤ |= ∅ exactly corresponds to the result of the induction on 𝐿𝑏⊤. The inductive
case is covered by the VC𝜓

𝐿𝑎⊤
ind, which adds an LCA event 𝑒⊤ to all three arguments of merge from

pre-condition to post-condition. Notice that we also have another pre-condition which requires the
existence of some event 𝑒 which should come rc-before 𝑒⊤, which is necessary for 𝑒⊤ to be in 𝐿𝑎⊤.
The post-condition just adds a new LCA event 𝑒⊤. The events in 𝐿𝑏1 (𝑒⊤) and 𝐿𝑏2 (𝑒⊤) will be added
by the next 4 VCs.
𝜓
𝐿𝑏1
ind1 and𝜓

𝐿𝑏1
ind2 add an event in 𝐿𝑏1 from the pre-condition to the post-condition.𝜓𝐿𝑏1

ind1 considers an

event 𝑒𝑏 which occurs rc-before the LCA event 𝑒⊤. Notice that the pre-condition of𝜓𝐿𝑏1
ind1 is exactly

the same as the post-condition of𝜓𝐿𝑎⊤
ind. In the post-condition of𝜓𝐿𝑏1

ind1, the event 𝑒𝑏 is applied before

𝑒⊤ on the argument 𝑎 to merge, thus reflecting that this is an event in 𝐿𝑏1 .𝜓
𝐿𝑏1
ind2 adds an event 𝑒 ∈ 𝐿𝑏1

which does not commute with an existing event 𝑒𝑏 ∈ 𝐿𝑏1 (see the definition of 𝐿𝑏1 ).𝜓
𝐿𝑏2
ind1 and𝜓

𝐿𝑏2
ind2

are analogous and do the same thing for the argument 𝑏 to merge.
Finally,𝜓La1

ind and𝜓
La2
ind add events from 𝐿𝑎1 and 𝐿𝑎2 . The base cases for the two sets would exactly

correspond to the result of the induction carried out so far on the rest of the event sets. For the induc-
tive case, in𝜓La1

ind (resp.𝜓
La2
ind), a new event 𝑒 is added on the second argument 𝑎 (resp. third argument

𝑏) from the pre-condition to the post-condition. This establishes the rule BottomUpTemplate for
any feasible input arguments to merge during any execution. We denote the set of VCs in Table 1
by𝜓 ∗ (BottomUpTemplate).

Theorem 4.7. If an MRDT D satisfies the VCs𝜓 ∗ (BottomUp-2-OP),𝜓 ∗ (BottomUp-1-OP),
𝜓 ∗ (BottomUp-0-OP),MergeIdempotence and MergeCommutativity, then D is linearizable.

5 Experimental Evaluation
We have implemented our verification technique in the F★ programming language and verified
several MRDTs using it. We also extracted OCaml code from the verified implementations and ran
them as part of Irmin [9], a Git-like distributed database which follows the MRDT system model
described in §3. This distinguishes our work from prior works in automated RDT verification [16]
which focuses on verifying abstract models rather than actual implementations.

Our framework in F★ consists of an F★ interface that defines signatures for an MRDT implemen-
tation (Fig. 2) and the VCs described in Table 1; these are encoded as F★ lemmas. This interface
contains 200 lines of F★ code. An MRDT developer instantiates the interface with their specific
MRDT implementation and calls upon F★ to prove the lemmas (i.e., the VCs). Once this is done, our
metatheory (Theorem 4.7) guarantees that the MRDT implementation is linearizable.
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Table 2. Verified MRDTs. ∗ denotes MRDT implementations not present in prior work.

MRDT rc Policy #LOC Verification Time (s)

Increment-only counter [12] none 6 0.72
PN counter [23] none 10 1.64
Enable-wins flag∗ disable

rc−→ enable 30 29.80
Disable-wins flag∗ enable

rc−→ disable 30 37.91
Grows-only set [12] none 6 0.45
Grows-only map [23] none 11 4.65
OR-set [23] rema

rc−→ adda 20 4.53
OR-set (efficient)∗ rema

rc−→ adda 34 660.00
Remove-wins set∗ adda

rc−→ rema 22 9.60
Set-wins map∗ delk

rc−→ setk 20 5.06
Replicated Growable Array [1] none 13 1.51
Optional register∗ unset

rc−→ set 35 200.00
Multi-valued Register∗ none 7 0.65
JSON-style MRDT∗ Fig. 13 26 148.84

We instantiate the interface with MRDT implementations of several datatypes such as counter,
flag, set, map, and list (Table 2). All the results were obtained on a Intel®Xeon®Gold 5120 x86-64
machine running Ubuntu 22.04 with 64GB of main memory. While some of the MRDTs have been
taken from previous works [1, 12, 23] or translated from their CRDT counterparts, we also develop
some new implementations, denoted by ∗ in Table 2. We also uncovered bugs in previous MRDT
implementations (Enable-wins flag and Efficient OR-set) from [23], which we fixed (more details in
§5.2). We note that in all our experiments, all the VCs were automatically discharged by F★ in a
reasonable amount of time.

While our approach ensures that the MRDT implementations are verified in the F★ framework, it
is important to note that the user is obligated to trust the F★ language implementation, the extraction
mechanism, the OCaml language implementation, the OCaml runtime, and the hardware.
We now highlight several notable features about our verified MRDTs. We have designed and

developed the first correct implementations of both an enable-wins and disable-wins flag MRDT.
Our implementation of efficient OR-set maintains a per-replica, per-element counter instead of
adding different versions of the same element (as done by the OR-set implementation of Fig. 2),
thus matching the theoretical lower bound in terms of space-efficiency for any OR-set CRDT
implementation (as proved in [4]). We have developed the first known MRDT implementation
of a remove-wins set datatype. Finally, as a demonstration of vertical compositionality, we have
developed a JSON MRDT which is composed of several component MRDTs, with its correctness
guarantee being directly derived from the correctness of the component MRDTs.

5.1 Case study: A verified polymorphic JSON-style MRDT
JSON is a notable example of a data type which is composed of several other datatypes. JSON is
widely used as a data interchange format in many databases and web services [10]. Our JSONMRDT
is modeled as an unordered collection of key/value pairs, where the values can be any primitive
types, such as counter, list, etc., or they can be JSON type themselves. We assume that keys are
update-only; that is, key-value mappings can be added and modified, but once a key is added, it
cannot be deleted. Previous works, such as Automerge [2], have developed similar JSON-style
CRDT models. However, these models are monomorphic, which means that the data type of the
values must be known in advance. Our goal is to develop a more generic JSON-style MRDT that
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supports polymorphic values, i.e. we leave the value data type as an abstract type which can be
instantiated with any concrete MRDT.

1: Σjson : (𝑘 : (string × Ω) ) → Σsnd(𝑘 )
2: 𝑂json = {set(𝑘, 𝑜 ) | 𝑜 ∈ 𝑂snd(𝑘 ) }
3: 𝑄json = {get(𝑘,𝑞) | 𝑞 ∈ 𝑄snd(𝑘 ) }
4: 𝜎0json = 𝜆 (𝑘 : string × Ω) . 𝜎0snd(𝑘 )
5: do(𝜎, 𝑡, 𝑟, set(𝑘, 𝑜 ) ) = 𝜎 [𝑘 ↦→ 𝑜 (𝜎 (𝑘 ), 𝑡, 𝑟 ) ]
6: mergejson (𝜎⊤, 𝜎1, 𝜎2 ) = 𝜆 (𝑘 : string × Ω) . mergesnd(𝑘 ) (𝜎⊤ (𝑘 ), 𝜎1 (𝑘 ), 𝜎2 (𝑘 ) )
7: queryjson (𝜎,𝑔𝑒𝑡 (𝑘,𝑞) ) = querysnd(𝑘 ) (𝜎 (𝑘 ), 𝑞)
8: rcjson = { (set(𝑘1, 𝑜1 ), set(𝑘2, 𝑜2 ) ) ∈ 𝑂json ×𝑂json | 𝑘1 = 𝑘2 ∧ (𝑜1, 𝑜2 ) ∈ rcsnd(𝑘1 ) }

Fig. 13. JSON-style MRDT implementation

Fig. 13 shows the implementation of the JSON MRDT. It uses a map to maintain association
between keys and values. Notice that the key is a tuple consisting of the identifier string and an
MRDT type 𝛼 ∈ Ω which denotes the type of the value. The type 𝛼 can be any arbitrary MRDT
with implementation D𝛼 = (Σ𝛼 , 𝜎0𝛼 ,merge𝛼 , query𝛼 , rc𝛼 ). Different key strings can now map to
different value MRDT types. We also allow overloading: the same key string can be associated
with multiple values of different types. The JSON MRDT allows update operations of the form
set(𝑘, 𝑜) where 𝑜 is an operation of the underlying value MRDT associated with the key 𝑘 . set(𝑘, 𝑜)
simply applies the operation 𝑜 on the value associated with 𝑘 , leaving the other key-value pairs
unchanged. The JSON merge calls the underlying MRDT merge on the values associated with
each key. The query operation of the form get(𝑘, 𝑞) retrieves the value associated with 𝑘 in 𝜎 and
applies the query operation 𝑞 of the underlying data type to it. The conflict resolution policy of
JSON operations (rcjson) depends on the conflict resolution of the value types when two operations
update the same key (i.e. same identifier and value type). Every other pair of JSON operations
commute with each other.

Notably, the proof of RA-linearizability of the JSON MRDT is directly derived from the proofs of
the underlying value MRDT types. If all the MRDTs in Ω are linearizable, then the JSON MRDT
is also linearizable. We have proved all the VCs for the JSON MRDT in F★ by using the VCs of
the underlying value MRDTs. We can now instantiate Ω with any set of verified MRDTs, thereby
obtaining the verified JSON MRDT for free.

5.2 Buggy MRDT Implementation in [23]
𝑒!: (_, r!, enable)

𝑣"

𝑣! 𝑣#(1,T)

(1,F) 𝑣$

𝑒#: (_, r#	, enable)
(0,F)

(1,F)

(2,T)

𝑒&: (_, r!, disable)

𝑣&

𝑣'

𝑒$: (_, r#, disable)

𝑣(𝑣)

(1,T)

(2,F) (2,T)

LCA=(0,F)

LCA=(1,T)

LC
A=

(0
,F
)

Fig. 14. An enable-wins flag execution

We now present some details of one of the buggy MRDTs,
Enable-wins flag, that we discovered using our framework in
Soundarapandian et al. [23]. The state of the enable-wins flag
MRDT consists of a pair: a counter and a flag. The counter
tracks the number of the enable events, while the flag is set
to true on an enable event. The desired specification for this
flag is that it should be true when there is at least one enable
event not visible to any disable event. In our framework, we
can express this specification as disable rc−→ enable, linearizing
the enable operation after a concurrent disable. When we
attempted to verify this implementation in our framework,
we discovered that one of the VCs,𝜓𝐿𝑏2

ind2−1op, was failing. Our
investigation revealed that the implementation violated the
specification, with the bug appearing in an execution with intermediate merges.
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Consider the execution depicted in Fig. 14. When merging versions 𝑣3 and 𝑣5 (with LCA 𝑣1),
since the counter value of 𝑣5 is greater than 𝑣1, the flag in the merged version 𝑣6 is set to true.
However, this contradicts the Enable-wins flag specification, which states that the flag should
be true only when there is an enable event that is not visible to any disable event. All enable
events in the execution are disabled by subsequent disable events on their individual replicas,
yet the flag is true at 𝑣6. Notice that the version 𝑣5 is obtained due to an intermediate merge. We
discovered that Soundarapandian et al. [23] had an implementation bug in the framework. The
framework expects a simulation relation from the MRDT developer, in addition to the specification
and the implementation. This simulation relation serves as a proof artefact. Soundarapandian et al.
[23] checks whether the developer-provided simulation relation is valid and the bug occurred
in the validity-checking procedure. Due to this, Soundarapandian et al. [23] admitted the buggy
enable-wins flag implementation5.

We further note that this buggy implementation does not even satisfy strong eventual consistency.
In Fig. 14, merging 𝑣3 and 𝑣4 results in 𝑣7, where the flag is false. Note that both versions 𝑣6 and
𝑣7 have observed the same set of updates on both replicas, yet they lead to divergent states. This
violates strong eventual consistency. We fixed this implementation by maintaining a counter-flag
pair for every replica, i.e. changing the state to a map from replica-IDs to counter-flag pair.

5.3 Verifying state-based CRDTs
Although the developement in the paper so far has focused on verifying MRDTs, we note that our
framework can also directly verify state-based CRDTs. The only difference between the two is that
state-based CRDTs do not maintain the LCA, and merge is a binary function. Our VCs (Table 1)
can be directly applied on state-based CRDTs, by simply ignoring the LCA argument for all merges.
Note that while the merge function in state-based CRDTs does not use the LCA, our VCs still use
the LCA to determine whether an event is local or common to both replicas, and appropriately
linearize events taking into account both rc and vis relations. The entire set of VCs retrofitted for
state-based CRDTs can be found in Table 4. We have also successfully implemented and verified 7
state-based CRDTs in our framework: Increment-only counter, PN counter, Observed-Remove set,
Two-Phase set, Grows-only set, Grows-only map and Multi-valued register.

5.4 Limitations
Our framework is currently unable to verify some MRDT implementations such as Queue from
previous works [12, 23]. The Queue MRDT follows at-least-once semantics for dequeues, which
allows concurrent dequeue operations to return the same element from the queue, thereby having
the effect of a single dequeue. Such an implementation is clearly not linearizable as per our definition,
since we cannot omit any event while constructing the linearization. It would be possible to modify
our notion of linearization to also allow events to be omitted; we leave this investigation as part of
future work. Our verification technique is also not complete, but in practice we have been able to
successfully verify all MRDT implementations (except Queue) from earlier works.

6 Related Work and Conclusion
Reconciling concurrent updates is a challenging problem in distributed systems. CRDTs [3, 20, 21]
(and more recently MRDTs) have emerged as a principled approach for building correct and
efficient replicated implementations. Numerous works have focused on specifying and verifying
CRDTs [1, 4, 7, 8, 13, 15–18, 25, 26]. Op-based CRDTs have a considerably different system model

5Buggy implementation can be found in §A.3
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than MRDTs, where every operation instance at a replica is individually sent to other replicas.
Hence, verification efforts targeting them [7, 15–17, 25] are mostly orthogonal to our work.

The system model of state-based CRDTs bears a close resemblance to the MRDT model, as it also
requires a merge function to be implemented for reconciling concurrent updates. However, there
are stringent restrictions to ensure convergence and consistency for state-based CRDTs, requiring
the CRDT states to form a join-semilattice, every update to be monotonic and the merge function
to be the join operation of the lattice. The three algebraic properties of a semi-lattice: idempotence,
commutativity, and associativity guarantee convergence.

Some CRDT works focus solely on ensuring convergence without addressing functional correct-
ness. For instance, Porre et al. [18] does not fully capture the user intent when verifying state-based
CRDTs. Consider a Counter CRDT with only an increment operation and an incorrect merge func-
tion that ignores its input states and always returns 0. Such an implementation is still convergent.
However, it clearly does not capture the developer intent, which is that the value of the counter
should be equal to the number of increment operations. Functional correctness is as important as
convergence for replicated data types. Our framework addresses both by couching both in terms of
RA-linearizability. We will flag the above implementation as incorrect, since the state after merge
cannot be obtained by linearizing the operations performed on both the replicas.

In the context of CRDTs, Wang et al. [25] proposed the notion of replication-aware linearizability,
which requires all replicas to have a state which can be obtained by linearizing the update operations
visible to the replica according to the sequential specification. However, they do not propose any
automated verification methodology for RA-linearizability. Further, though the main paper Wang
et al. [25] focuses on op-based CRDTs, the extended version Enea et al. [5] does address state-based
CRDTs, but they also require a semi-lattice-based formulation of the CRDT states for proving
RA-linearizability.

Fewworks [11, 23] have explored the problem of verifyingMRDT implementations. Kaki et al. [11]
only focus on verifying convergence, but not functional correctness. Moreover, they significantly
restrict the underlying system model by synchronizing all merge operations, which as mentioned
in the paper itself could lead to longer convergence times. Soundarapandian et al. [23] verify both
convergence and functional correctness, and their system model does not require merges to be
synchronized. However, their approach is not fully automated, and requires developers to provide
a simulation relation linking concrete MRDT states with an abstract state which is based on a
event-based declarative model. Their specification language is also based on an event-based model
and is not very intuitive or developer-friendly. A few MRDT implementations from [23] were found
to be buggy, and these errors were due to faulty simulation relations.
To conclude, in this work, we present the first, fully-automated verification methodology for

MRDTs. We introduce the notion of replication-aware linearizability for MRDTs, as well as a simple
specification framework based on ordering non-commutative update operations. We identify certain
restrictions on the specification to ensure existence of a consistent linearization. We then leverage
the definition of replication-aware linearizability to propose an automated verification methodology
based on induction on operation sequences. We have successfully applied the technique on a number
of complex MRDTs. While the foundations have been laid in this work, we believe there is a lot
of scope for enriching the technique even further by considering more complex linearization
strategies.
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A Appendix
A.1 Proofs of §3
Lemma 3.2 Given a configuration 𝐶 = ⟨𝑁,𝐻, 𝐿,𝐺, 𝑣𝑖𝑠⟩ reachable in some execution 𝜏 ∈ JSDK and
two versions 𝑣1, 𝑣2 ∈ 𝑑𝑜𝑚(𝑁 ), if 𝑣⊤ is the LCA of 𝑣1 and 𝑣2 in 𝐺 , then 𝐿(𝑣⊤) = 𝐿(𝑣1) ∩ 𝐿(𝑣2).

Proof. If (𝑣, 𝑣 ′) ∈ 𝐸, then 𝐿(𝑣) ⊆ 𝐿(𝑣 ′). This is because either 𝐿(𝑣 ′) = 𝐿(𝑣) ∪ {𝑒} for some event
𝑒 due to the apply transition, or 𝐿(𝑣 ′) = 𝐿(𝑣) ∪ 𝐿(𝑣 ′′) due to the merge transition.

Hence, if (𝑣, 𝑣 ′) ∈ 𝐸∗, then 𝐿(𝑣) ⊆ 𝐿(𝑣 ′).
Since (𝑣⊤, 𝑣1) ∈ 𝐸∗ and (𝑣⊤, 𝑣2) ∈ 𝐸∗, hence 𝐿(𝑣⊤) ⊆ 𝐿(𝑣1) and 𝐿(𝑣⊤) ⊆ 𝐿(𝑣2). Hence, 𝐿(𝑣⊤) ⊆

𝐿(𝑣1) ∩ 𝐿(𝑣2).
Consider vertices 𝑢,𝑤 and event 𝑒 such that (𝑢,𝑤) ∈ 𝐸, 𝑒 ∉ 𝐿(𝑢), 𝑒 ∈ 𝐿(𝑤) and in-degree of

𝑤 is 1. Then 𝑤 is called the 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 vertex of event 𝑒 . Note that there will always be a unique
generator vertex for each event.

Proposition A.1. For all versions 𝑣 , events 𝑒 , if 𝑒 ∈ 𝐿(𝑣), and𝑤 is the generator version of 𝑒 , then
(𝑤, 𝑣) ∈ 𝐸∗.

Consider 𝑒 ∈ 𝐿(𝑣1)∩𝐿(𝑣2). Then if𝑤 is the generator version of 𝑒 , by Proposition A.1 (𝑤, 𝑣1) ∈ 𝐸∗

and (𝑤, 𝑣2) ∈ 𝐸∗. Then, by definition of LCA, (𝑤, 𝑣⊤) ∈ 𝐸∗. Hence, 𝐿(𝑤) ⊆ 𝐿(𝑣⊤). This implies that
𝑒 ∈ 𝐿(𝑣⊤). Thus, 𝐿(𝑣1) ∩ 𝐿(𝑣2) ⊆ 𝐿(𝑣⊤).
We now prove Proposition A.1. If 𝑣 has in-degree 2, then suppose (𝑤1, 𝑣) ∈ 𝐸, (𝑤2, 𝑣) ∈ 𝐸 and

𝐿(𝑣) = 𝐿(𝑤1) ∪ 𝐿(𝑤2). Then either 𝑒 ∈ 𝐿(𝑤1) or 𝑒 ∈ 𝐿(𝑤2). WLOG, suppose 𝑒 ∈ 𝐿(𝑤1). We now
recursively apply Proposition A.1 on𝑤1. Then, (𝑤,𝑤1) ∈ 𝐸∗, which implies (𝑤, 𝑣) ∈ 𝐸∗.
If 𝑣 has in-degree 1, then suppose (𝑢, 𝑣) ∈ 𝐸. If 𝑒 ∈ 𝐿(𝑢), we recursively apply Proposition A.1

on 𝑢. If 𝑒 ∉ 𝐿(𝑢), then 𝑣 itself is the generator version of 𝑒 , and clearly, (𝑣, 𝑣) ∈ 𝐸∗.
Note that everytime we move backwards along an edge by recursively applying Proposition A.1,

we are either decreasing the number of events in the source vertex, or the number of unvisited
vertices in the graph while still retaining 𝑒 . Since the graph is acyclic and finite, and the number of
events are also finite, eventually, we will hit the generator version. □

□

Recursive Merge Strategy: For a given version graph 𝐺 = (𝑉 , 𝐸), for versions 𝑣1, 𝑣2, if the LCA
does not exist, then our strategy is to find potential LCAs. For each potential LCA 𝑣𝑝 , (𝑣𝑝 , 𝑣1) ∈ 𝐸∗,
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(𝑣𝑝 , 𝑣2) ∈ 𝐸∗ and �𝑣 . (𝑣, 𝑣1) ∈ 𝐸∗ ∧ (𝑣, 𝑣2) ∈ 𝐸∗ ∧ (𝑣𝑝 , 𝑣) ∈ 𝐸∗. Note that since the version graph is
rooted at the initial version 𝑣0, a common ancestor of any two versions 𝑣1 and 𝑣2 always exist. Let
𝑉𝑐 be the set of all common ancestors of 𝑣1 and 𝑣2.

𝑉𝑐 = {𝑣 ∈ 𝑉 | (𝑣, 𝑣1) ∈ 𝐸∗ ∧ (𝑣, 𝑣2) ∈ 𝐸∗}
For two common ancestors 𝑣, 𝑣 ′ ∈ 𝑉𝑐 , either there is a path between them or there isn’t. If there

is a path, say (𝑣, 𝑣 ′) ∈ 𝐸∗, then 𝑣 can neither be a potential or actual LCA. In this way, we eliminate
all common ancestors which cannot be potential or actual LCAs. Finally, we are left with the set
of potential LCAs 𝑉𝑝 . Hence, for any 𝑣, 𝑣 ′ ∈ 𝑉𝑝 , (𝑣, 𝑣 ′) ∉ 𝐸∗ and (𝑣 ′, 𝑣) ∉ 𝐸∗. It is then clear to see
that if𝑉𝑝 = {𝑣⊤}, i.e.𝑉𝑝 is singleton, then 𝑣⊤ must be the actual LCA, because every other common
ancestor 𝑣 must have been eliminated due to (𝑣, 𝑣⊤) ∈ 𝐸∗.

Otherwise, if𝑉𝑝 is not singleton, we pairwise invokemerge on every pair of versions in𝑉𝑝 . Note
that wewould have to repeat the samemerge strategywhile merging any two versions in𝑉𝑝 . We now
show that if 𝑣𝑚 is the version obtained by merging all the versions in𝑉𝑝 , then 𝐿(𝑣𝑚) = 𝐿(𝑣1) ∩𝐿(𝑣2).
Since every version 𝑣 ∈ 𝑉𝑝 is a common ancestor of 𝑣1 and 𝑣2, 𝐿(𝑣) ⊆ 𝐿(𝑣1) ∩ 𝐿(𝑣2), and hence
𝐿(𝑣𝑚) ⊆ 𝐿(𝑣1) ∩ 𝐿(𝑣2). Consider 𝑒 ∈ 𝐿(𝑣1) ∩ 𝐿(𝑣2). Now, consider the generator version𝑤 of 𝑒 . By
Proposition A.1, 𝑤 is a common ancestor of 𝑣1 and 𝑣2. Either 𝑤 ∈ 𝑉𝑝 , in which case by merging
𝑤 to get 𝑣𝑚 , we would have 𝑒 ∈ 𝐿(𝑣𝑚). Or else, 𝑤 would have been eliminated, in which case
there will exist some version 𝑣 ∈ 𝑉𝑝 such that (𝑤, 𝑣) ∈ 𝐸∗. Hence, 𝑒 ∈ 𝐿(𝑣), which implies 𝑒 ∈ 𝐿(𝑣𝑚).

Lemma 3.4 Given a set of events E, if lo ⊆ E × E is defined over every pair of non-commutative
events in E, then for any two sequences 𝜋1, 𝜋2 which extend lo, for any state 𝜎 , 𝜋1 (𝜎) = 𝜋2 (𝜎).

Proof. If 𝜋1 = 𝜋2, then the result trivially holds. Consider the first point of difference between
𝜋1 and 𝜋2.
𝜋1 = 𝜏 .𝑒1.𝜏1, 𝜋2 = 𝜏 .𝑒2.𝜏2.
Then 𝑒1 must appear somewhere in 𝜏2.
𝜋2 = 𝜏 .𝑒2.𝜏3.𝑒1.𝜏4.
We consider two cases here:
Case 1: (𝜏3 = 𝜙)
Since 𝑒1 and 𝑒2 are in different orders in 𝜋1 and 𝜋2, neither 𝑒1

lo−→ 𝑒2 nor 𝑒2
lo−→ 𝑒1. Since lo is

defined over every pair of non-commutative events, but is not defined between 𝑒1 and 𝑒2, they must
commute, Hence, we can flip 𝑒2 and 𝑒1 in 𝜋2, leading to the same state.
Case 2: (𝜏3 ≠ 𝜙)
𝜋2 = 𝜏 .𝑒2.𝜏5.𝑒3 .𝑒1.𝜏4. Then in 𝜋1, 𝑒3 is not present in 𝜏 , hence it must be present after 𝑒1. Now 𝑒1 and
𝑒3 are in different orders in 𝜋1 and 𝜋2, hence neither 𝑒1

lo−→ 𝑒3 nor 𝑒3
lo−→ 𝑒1.

By the same argument as above applied on 𝑒1 and 𝑒2, we can flip 𝑒1 and 𝑒3 in 𝜋2. We keep doing
this for all events in 𝜏5 until 𝑒2 is adjacent to 𝑒1 after which we can flip them. Thus we can change
𝜋2 such that 𝑒1 will appear in the same position in 𝜋1. We can keep doing this until 𝜋1 and 𝜋2 are
identical. □

Lemma 3.6 For an MRDT D such that rc+ is irreflexive, for any configuration 𝐶 reachable in SD ,
lo+𝐶 is irreflexive.

To prove that lo+𝐶 is irreflexive, we need to prove that there cannot be cycles formed out of lo𝐶
edges.

Proof. A cycle cannot be formed using only vis edges, as vis+ is irreflexive. Similarly, a cycle
cannot be formed using only rc edges, as rc+ is irreflexive. Therefore, any potential cycle must
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consist of adjacent rc−→ and vis−−→ edges. Consider three events 𝑒1, 𝑒2, 𝑒3 such that 𝑒1
lo−→
rc

𝑒2
lo−−→
vis

𝑒3. Since

𝑒1
lo−→
rc

𝑒2, this implies 𝑒1
rc−→ 𝑒2 ∧ 𝑒1 | |𝐶 𝑒2. Given that 𝑒2

vis−−→ 𝑒3, the relation 𝑒1
lo−→
rc

𝑒2 is not possible.
Thus, this case is also not feasible. Hence, there cannot be cycles formed out of lo𝐶 edges. □

Lemma 3.8 For an MRDT D which satisfies rc-non-comm(D) and cond-comm(D), for any
reachable configuration 𝐶 in SD , for any two sequences 𝜋1, 𝜋2 over 𝐸𝐶 which extend lo𝐶 , for any
state 𝜎 , 𝜋1 (𝜎) = 𝜋2 (𝜎).

Proof. Consider the first point of difference between 𝜋1 and 𝜋2.
𝜋1 = 𝜏 .𝑒1.𝜏1, 𝜋2 = 𝜏 .𝑒2.𝜏2.
Then 𝑒1 must appear somewhere in 𝜏2.
𝜋2 = 𝜏 .𝑒2.𝜏3.𝑒1.𝜏4.
We consider two cases here:
Case 1: (𝜏3 = 𝜙)
Since 𝑒1 and 𝑒2 are in different orders in 𝜋1 and 𝜋2, neither 𝑒1

lo−→ 𝑒2 nor 𝑒2
lo−→ 𝑒1. If either 𝑒1

vis−−→ 𝑒2

or 𝑒2
vis−−→ 𝑒1, it must be the case that 𝑒1 ⇄ 𝑒2. In this case, we can flip the order of 𝑒1 and 𝑒2 in 𝜋2

leading to the same state. Suppose 𝑒1 | |𝐶 𝑒2, if neither 𝑒1
rc−→ 𝑒2 nor 𝑒2

rc−→ 𝑒1, 𝑒1 ⇄ 𝑒2. In this case,
we can again flip them in 𝜋2. Suppose 𝑒1

rc−→ 𝑒2, since ¬(𝑒1
lo−→ 𝑒2), by definition of lo, ∃𝑒3 .𝑒2

lo−→ 𝑒3.
Then ¬(𝑒2 ⇄ 𝑒3). By cond-comm, it must be the case that 𝑒1

𝑒3
⇄ 𝑒2. Since 𝑒2

lo−→ 𝑒3, 𝑒3 must be
present in 𝜏4. By definition of cond-comm, we can flip 𝑒2 and 𝑒1 in 𝜋2, leading to the same state.
Similar argument can be applied to 𝑒2

rc−→ 𝑒1.
Case 2: (𝜏3 ≠ 𝜙)
𝜋2 = 𝜏 .𝑒2.𝜏5.𝑒3 .𝑒1.𝜏4. Then in 𝜋1, 𝑒3 is not present in 𝜏 , hence it must be present after 𝑒1. Now 𝑒1 and
𝑒2 are in different orders in 𝜋1 and 𝜋2, hence neither 𝑒1

lo−→ 𝑒3 nor 𝑒3
lo−→ 𝑒1.

By the same argument as above applied on 𝑒1 and 𝑒2, we can flip 𝑒1 and 𝑒3 in 𝜋2. We keep doing
this for all events in 𝜏5 until 𝑒2 is adjacent to 𝑒1 after which we can flip them. Thus we can change
𝜋2 such that 𝑒1 will appear in the same position in 𝜋1. We can keep doing this until 𝜋1 and 𝜋2 are
identical. □

Lemma 3.10 If MRDTD is RA-linearizable, then for all executions 𝜏 ∈ JSDK, and for all transitions
𝐶

𝑞𝑢𝑒𝑟𝑦 (𝑟,𝑞,𝑎)
−−−−−−−−−−→ 𝐶′ in 𝜏 , where 𝐶 = ⟨𝑁,𝐻, 𝐿,𝐺, 𝑣𝑖𝑠⟩, there exists a sequence 𝜋 consisting of all events

in 𝐿(𝐻 (𝑟 )) such that lo(𝐶) |𝐿 (𝐻 (𝑟 ) ) ⊆ 𝜋 and 𝑎 = query(𝜋 (𝜎0), 𝑞).

Proof. Consider an MRDT D that is RA-linearizable. Let 𝜏 = 𝐶0
𝑡1−→ 𝐶1

𝑡2−→ 𝐶2 . . .
𝑡𝑛−→ 𝐶 be

an execution of SD , where {𝑡1, . . . , 𝑡𝑛} are the labels of the transition system. For a transition
𝐶

𝑞𝑢𝑒𝑟𝑦 (𝑟,𝑞,𝑎)
−−−−−−−−−−→ 𝐶′ in 𝜏 , where 𝐶 = ⟨𝑁,𝐻, 𝐿,𝐺, 𝑣𝑖𝑠⟩, we know that 𝐶 is RA-linearizable from Def. 3.9.

That is, for every active replica 𝑟 ∈ range(𝐻 ), there exists a sequence 𝜋 such that lo(𝐶) |𝐿 (𝐻 (𝑟 ) ) ⊆ 𝜋

and 𝑁 (𝐻 (𝑟 )) = 𝜋 (𝜎0). According to the semantics, we have 𝑎 = query(𝑁 (𝐻 (𝑟 )), 𝑞). Thus 𝑎 =

query(𝜋 (𝜎0), 𝑞). □

A.2 Proofs of §4

Lemma 4.2 (1) For events 𝑒 ∈ 𝐿𝑎1 ∪ 𝐿𝑎2 , 𝑒′ ∈ 𝐿𝑏1 ∪ 𝐿𝑏2 , ¬(𝑒
lom−−→ 𝑒′).

Proof. Suppose 𝑒 lom−−→ 𝑒′ is true. There are 2 possibilities:



1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470

30 Vimala Soundarapandian, Kartik Nagar, Aseem Rastogi, and KC Sivaramakrishnan

(1) 𝑒
lo−−→
vis

𝑒′ : By definition of 𝐿𝑏𝑖 , there are 2 cases:

(a) ∃𝑒⊤ ∈ 𝐿⊤.𝑒′
lom−−→ 𝑒⊤ : But this would require 𝑒 to be in 𝐿𝑏1 ∪ 𝐿𝑏2 .

(b) ∃𝑒⊤ ∈ 𝐿⊤, 𝑒′′ ∈ 𝐿′1 ∪ 𝐿′2.𝑒
′ lom−−→ 𝑒′′

lom−−→ 𝑒⊤ :
(i) 𝑒′

lo−−→
vis

𝑒′′ : Due to transitivity of vis, 𝑒 vis−−→ 𝑒′′. This would require 𝑒 ∈ 𝐿𝑏1 ∪ 𝐿𝑏2 .

(ii) 𝑒′′
lo−−→
vis

𝑒⊤ is not possible as 𝐿𝑎⊤ is causally closed.

(iii) 𝑒′
lo−→
rc

𝑒′′
lo−→
rc

𝑒⊤ is not possible due to no-rc-chain restriction.

(2) 𝑒
lo−→
rc

𝑒′ : By definition of 𝐿𝑏𝑖 , there are 2 cases:

(a) ∃𝑒⊤ ∈ 𝐿⊤.𝑒′
lom−−→ 𝑒⊤ :

(i) 𝑒′
lo−−→
vis

𝑒⊤ is not possible as 𝐿𝑎⊤ is causally closed.

(ii) 𝑒′
lo−→
rc

𝑒⊤ is not possible due to no-rc-chain restriction. Since 𝑒 | |𝐶 𝑒⊤, we have

𝑒
lo−→
rc

𝑒⊤ which requires 𝑒 ∈ 𝐿𝑏1 ∪ 𝐿𝑏2 .

(b) ∃𝑒⊤ ∈ 𝐿⊤, 𝑒′′ ∈ 𝐿′1 ∪ 𝐿′2.𝑒
′ lom−−→ 𝑒′′

lom−−→ 𝑒⊤ :
(i) 𝑒′′

lo−−→
vis

𝑒⊤ is not possible as 𝐿𝑎⊤ is causally closed.

(ii) 𝑒′
lo−→
rc

𝑒′′ is not possible due to no-rc-chain restriction.

(iii) 𝑒′
lo−−→
vis

𝑒′′
lo−→
rc

𝑒⊤ : 𝑒′ rc−→ 𝑒′′ creates RC-chain. Since 𝑒′ | |𝐶 𝑒⊤, we have 𝑒′
lo−→
rc

𝑒⊤

which violates the no-rc-chain restriction. 𝑒′′ rc−→ 𝑒′ would requires 𝑒 and 𝑒′ to
conditionally commute with each other. So 𝑒 lo−→

rc
𝑒′ does not hold true.

□

(2) For events 𝑒 ∈ 𝐿𝑎⊤, 𝑒′ ∈ 𝐿𝑏⊤, ¬(𝑒
lom−−→ 𝑒′).

Proof. By definition of 𝐿𝑎⊤, ∃𝑒′′ ∈ 𝐿𝑏1 ∪ 𝐿𝑏2 .𝑒
′′ lom−−→ 𝑒 . 𝑒′′ vis−−→ 𝑒 is not possible as 𝐿𝑎⊤ is causally

closed. Suppose 𝑒 lom−−→ 𝑒′ is true. There are 3 possibilities:

(1) 𝑒
lo−−→
vis

𝑒′ :

(a) 𝑒′′
lo−→
rc

𝑒 : 𝑒 rc−→ 𝑒′ causes RC-chain. Since 𝑒′′ | |𝐶 𝑒′, we have 𝑒′′ lo−→
rc

𝑒′ which requires

𝑒′ ∈ 𝐿𝑎⊤. 𝑒′
rc−→ 𝑒 cause 𝑒′′ and 𝑒 to conditionally commute with each other. So this case

does not hold true.
(2) 𝑒

lo−→
rc

𝑒′ : 𝑒′′ vis−−→ 𝑒 is not possible as 𝐿𝑎⊤ is causally closed.

(a) 𝑒′′
lo−→
rc

𝑒 : causes RC-chain.

□

Lemma 4.4 (1) For events 𝑒⊤𝑖 , 𝑒⊤𝑗 ∈ 𝐿𝑎⊤, where 𝐿𝑎⊤ = {𝑒⊤1 , . . . , 𝑒⊤𝑚}, ¬(𝑒⊤𝑖
lom−−→ 𝑒⊤𝑗 ).
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Proof. By definition of 𝐿𝑎⊤, ∃𝑒 ∈ 𝐿𝑏1 (𝑒⊤𝑖 ) ∪ 𝐿𝑏2 (𝑒⊤𝑖 ).𝑒
lom−−→ 𝑒⊤𝑖 . 𝑒

vis−−→ 𝑒⊤𝑖 is not possible as 𝐿𝑎⊤ is
causally closed. Suppose 𝑒⊤𝑖

lom−−→ 𝑒⊤𝑗 . There are 3 possibilities.

(1) 𝑒⊤𝑖
lo−−→
vis

𝑒⊤𝑗 :

(a) 𝑒
lo−→
rc

𝑒⊤𝑖 : 𝑒⊤𝑖
rc−→ 𝑒⊤𝑗 causes RC-chain. Since 𝑒 | |𝐶 𝑒⊤𝑗 , we have 𝑒

lo−→
rc

𝑒⊤𝑗 which requires

𝑒 ∈ 𝐿𝑏1 (𝑒⊤𝑗 ) ∪ 𝐿𝑏2 (𝑒⊤𝑗 ). But 𝑒 belongs to 𝐿𝑏1 (𝑒⊤𝑖 ) ∪ 𝐿𝑏2 (𝑒⊤𝑖 ). 𝑒⊤𝑗
rc−→ 𝑒⊤𝑖 cause 𝑒 and 𝑒⊤𝑖 to

conditionally commute with each other. So this case does not hold true.
(2) 𝑒⊤𝑖

lo−→
rc

𝑒⊤𝑗 :

(a) 𝑒
lo−→
rc

𝑒⊤𝑖 : By no-rc-chain restriction, this case cannot happen.
□

(2) For events 𝑒 ∈ 𝐿𝑏1 (𝑒⊤𝑖 ) ∪ 𝐿𝑏2 (𝑒⊤𝑖 ), 𝑒′ ∈ 𝐿𝑏1 (𝑒⊤𝑗 ) ∪ 𝐿𝑏2 (𝑒⊤𝑗 ) where 𝑗 < 𝑖 , ¬(𝑒 lom−−→ 𝑒′).

Proof. Suppose 𝑒 lom−−→ 𝑒′, ¬(𝑒 ⇄ 𝑒′). By definition of 𝐿𝑏1 (𝑒⊤𝑖 ) and 𝐿𝑏2 (𝑒⊤𝑖 ), we know that 𝑒 lo−→ 𝑒⊤𝑖

and 𝑒′ lo−→ 𝑒⊤𝑗 . We consider several possibilities based on this:

(1) Neither 𝑒 lo−−→
vis

𝑒⊤𝑖 nor 𝑒′ lo−−→
vis

𝑒⊤𝑗 is true because 𝐿𝑎⊤ is causally closed.

(2) 𝑒
lo−→
rc

𝑒⊤𝑖 ∧ 𝑒′
lo−→
rc

𝑒⊤𝑗 :

(a) 𝑒
rc−→ 𝑒′ ∨ 𝑒′

rc−→ 𝑒 creates RC chain.
□

Theorem 4.6 If an MRDT D satisfies BottomUp-2-OP, BottomUp-1-OP, BottomUp-0-OP,
MergeIdempotence and MergeCommutativity, then D is linearizable.

Proof. To prove thatD is linearizable, we will prove that any execution 𝜏 ∈ JSDK is linearizable,
for which we will show that all of its configurations are linearizable. Let 𝜏 = 𝐶0

𝑡1−→ 𝐶1
𝑡2−→ 𝐶2 . . .

𝑡𝑛−→
𝐶 be an execution of SD , where {𝑡1, . . . , 𝑡𝑛} are labels of the transition system. We prove by
induction on the length of 𝜏 . Base case of 𝐶0 which consists of only one replica 𝑟0 is trivially
satisfied, as no operations are applied on the head version 𝑣0 at 𝑟0. Assuming the required result
holds in the execution 𝐶0 →∗ 𝐶 , and suppose there is a new transition 𝐶 → 𝐶

′ , we need to prove
that 𝐶 is linearizable. There are four cases corresponding to the four transition rules given in Fig. 8.

A.2.1 Case (CreateBranch): Assume that a new replica 𝑟 ′ is forked off from the origin replica
𝑟 . Let 𝐶 = ⟨𝑁,𝐻, 𝐿,𝐺, 𝑣𝑖𝑠⟩ and 𝐶 ′

= ⟨𝑁 ′
, 𝐻

′
, 𝐿

′
,𝐺

′
, 𝑣𝑖𝑠⟩ be the configurations of the replica before

and after the branch creation. According to the semantics, we have 𝐿(𝐻 (𝑟 )) = 𝐿
′ (𝐻 ′ (𝑟 ′ )) and

𝑁 (𝐻 (𝑟 )) = 𝑁
′ (𝐻 ′ (𝑟 ′ )). We need to prove that Def. 3.9 holds for 𝐶 ′ . This is obvious since Def. 3.9

holds for C by the induction assumption.

A.2.2 Case (Apply): Assume that an event 𝑒 is applied on a replica 𝑟 . Let𝐶 = ⟨𝑁,𝐻, 𝐿,𝐺, 𝑣𝑖𝑠⟩ and
𝐶

′
= ⟨𝑁 ′

, 𝐻
′
, 𝐿

′
,𝐺

′
, 𝑣𝑖𝑠

′⟩ be the configurations of the replica before and after the apply operation.
By semantics we have 𝐿′ (𝐻 ′ (𝑟 )) = 𝐿(𝐻 (𝑟 )) ∪ {𝑒}. We need to prove that Def. 3.9 holds for 𝐶 ′ .
By induction assumption, ∃𝜋. lo(𝐶) |𝐿 (𝐻 (𝑟 ) ) ⊆ 𝜋 ∧ 𝑁 (𝐻 (𝑟 )) = 𝜋 (𝜎0). Here lo(𝐶

′ ) |𝐿′ (𝐻 ′ (𝑟 ) ) is the
linearization order lo(𝐶) |𝐿 (𝐻 (𝑟 ) ) .𝑒 and 𝜋

′
= 𝜋.𝑒 . We need to show that 𝜋 ′ extends lo(𝐶 ′ ) |𝐿′ (𝐻 ′ (𝑟 ) ) .

We have 𝑁 ′ (𝐻 ′ (𝑟 )) = 𝑒 (𝜋 (𝜎0)). Event 𝑒 is visible to all events in 𝜋 according to the semantics of
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apply. Since ∀𝑒 ′ ∈ 𝜋.𝑒
′ lo−−→

vis
𝑒 , 𝑒 lo−−→

vis
𝑒
′ is not possible due to anti-symmetry of vis. 𝑒 lo−→

rc
𝑒
′ is also

not possible as it would require 𝑒 and 𝑒 ′ to be concurrent events. Hence, 𝜋 ′ is a total order which
extends lo(𝐶 ′ ) |𝐿′ (𝐻 ′ (𝑟 ) ) . This proves the required result.

A.2.3 Case (Merge): Consider there is a merge(𝑟1, 𝑟2) transition to 𝐶 ′ where 𝑟2 merges with 𝑟1.
Let 𝐶 = ⟨𝑁,𝐻, 𝐿,𝐺, 𝑣𝑖𝑠⟩, 𝐶′ = ⟨𝑁 ′, 𝐻 ′, 𝐿′,𝐺 ′, 𝑣𝑖𝑠⟩ , and let 𝐻 (𝑟1) = 𝑣1, 𝐻 (𝑟2) = 𝑣2. Let 𝑣⊤ be the
LCA of 𝑣1 and 𝑣2 in 𝐺 . Let 𝑁 (𝑣1) = 𝑎, 𝑁 (𝑣2) = 𝑏, 𝑁 (𝑣⊤) = 𝑙 . The transition will install a version
𝑣𝑚 with state 𝑚 = merge(𝑙, 𝑎, 𝑏) at the replica 𝑟1, leaving the other replicas unchanged. Also,
𝐿′ (𝑣𝑚) = 𝐿(𝑣1) ∪ 𝐿(𝑣2). We need to show that there exists a sequence 𝜋𝑚 of events in 𝐿′ (𝑣𝑚) such
that 𝜋𝑚 extends lo(𝐶′) |𝐿′ (𝑣𝑚 ) and𝑚 = 𝜋 (𝜎0). For ease of readability, we use 𝐿1 for 𝐿(𝑣1), 𝐿2 for
𝐿(𝑣2) and 𝐿⊤ for 𝐿(𝑣⊤), and lom for lo(𝐶′) |𝐿′ (𝑣𝑚 ) .

We repeat the definitions of various event sets below:

𝐿′1 = 𝐿1 \ 𝐿⊤ 𝐿′2 = 𝐿2 \ 𝐿⊤

𝐿𝑏1 = {𝑒 ∈ 𝐿
′
1 | ∃𝑒⊤ ∈ 𝐿⊤ . (𝑒

lom−−→ 𝑒⊤ ∨ ∃𝑒′ ∈ 𝐿
′
1 . 𝑒

lom−−→ 𝑒
′ lom−−→ 𝑒⊤)}

𝐿𝑏2 = {𝑒 ∈ 𝐿
′
2 | ∃𝑒⊤ ∈ 𝐿⊤ . (𝑒

lom−−→ 𝑒⊤ ∨ ∃𝑒′ ∈ 𝐿
′
2 . 𝑒

lom−−→ 𝑒
′ lom−−→ 𝑒⊤)}

𝐿𝑎⊤ = {𝑒⊤ ∈ 𝐿⊤ | ∃𝑒 ∈ 𝐿𝑏1 ∪ 𝐿𝑏2 .𝑒
lom−−→ 𝑒⊤}

𝐿𝑎1 = 𝐿
′
1 \ 𝐿𝑏1 𝐿𝑎2 = 𝐿

′
2 \ 𝐿𝑏2 𝐿𝑏⊤ = 𝐿⊤ \ 𝐿𝑎⊤

Let loi = lo(𝐶′) |𝐿𝑖 for 𝑖 = 1, 2.
First we will prove that lo between two events should remain the same in all versions. ∀𝑒, 𝑒 ′ ∈

𝐿𝑖 .𝑒
loi−−→ 𝑒

′ ⇔ 𝑒
lom−−→ 𝑒

′ . Note that vis and rc ordering between events remains same in 𝐿𝑖 and
𝐿′ (𝑣𝑚).

• If 𝑒 rc−→ 𝑒
′
, 𝑒 | |𝐶 𝑒

′ and ¬(∃𝑒 ′′ ∈ 𝐿(𝑣𝑖 ).𝑒
′ vis−−→ 𝑒

′′ ∧ ¬𝑒 ′
⇄ 𝑒

′′ ), then these constraints will
continue to hold in 𝐿𝑚 . Because it is not possible that 𝑒

′ ∈ 𝐿
′
1, 𝑒

′′ ∈ 𝐿
′
2 such that 𝑒 ′ vis−−→ 𝑒

′′ .
Because otherwise 𝑒 ′ ∈ 𝐿

′
2 ⇒ 𝑒

′ ∈ 𝐿⊤.
• If 𝑒 vis−−→ 𝑒

′ ∧ ¬𝑒 ⇄ 𝑒
′ in 𝐿𝑖 , then it continues to hold in 𝐿𝑚 .

By induction assumption, we know that
∃𝜋𝑎 . lo(𝐶) |𝐿 (𝑣1 ) ⊆ 𝜋𝑎 ∧ 𝑎 = 𝜋𝑎 (𝜎0)
∃𝜋𝑏 . lo(𝐶) |𝐿 (𝑣2 ) ⊆ 𝜋𝑏 ∧ 𝑏 = 𝜋𝑏 (𝜎0)
∃𝜋⊤ . lo(𝐶) |𝐿 (𝑣⊤ ) ⊆ 𝜋⊤ ∧ 𝑙 = 𝜋⊤ (𝜎0)

To start off, let’s consider the set 𝐿𝑎1 ∪ 𝐿𝑎2 . These are all local events of 𝑣1 and 𝑣2, which are not
linearized before events of the LCA. We consider different cases depending on the size if this set.

Case 1: ( | 𝐿𝑎1 ∪ 𝐿𝑎2 |= 0)
Wenote that in this case,𝑎, 𝑏 can be defined as follows:𝑎 = 𝜋𝑎 | (𝐿𝑏⊤∪𝐿𝑏1 ∪𝐿𝑎⊤ )

(𝜎0),𝑏 = 𝜋𝑏 | (𝐿𝑏⊤∪𝐿𝑏2 ∪𝐿𝑎⊤ )
(𝜎0).

We need to show that there exists a sequence 𝜋𝑚 that extends lom such thatmerge(𝑙, 𝑎, 𝑏) = 𝜋𝑚 (𝜎0).
Here, we induct on the size of the set 𝐿𝑎⊤.

Base Case 1: ( | 𝐿𝑎⊤ |= 0)
Then 𝐿𝑏1 ∪ 𝐿𝑏2 = 𝜙 . So 𝑙 = 𝑎 = 𝑏. merge(𝑙, 𝑙, 𝑙) = 𝑙 is inferred by MergeIdempotence. We know that
𝑙 is correctly linearized, hence the required result follows.
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Inductive Case 1: ( | 𝐿𝑎⊤ |> 0)
Let 𝐿𝑎⊤ = {𝑒⊤1 , . . . , 𝑒⊤𝑚−1, 𝑒

⊤
𝑚}. Let 𝑆 = {𝑒⊤1 , . . . , 𝑒⊤𝑚−1}. By IH, for the set 𝑆 , we have the required

result. We define 𝑙 ′, 𝑎′, 𝑏′ based on the above set 𝑆 : 𝑙 ′ = 𝜋𝑙 |𝐿𝑏⊤∪𝑆
(𝜎0), 𝑎′ = 𝜋𝑎 |𝐿𝑏⊤∪⋃𝑒∈𝑆 𝐿𝑏1 (𝑒 )∪𝑆

(𝜎0),
𝑏′ = 𝜋𝑏 |𝐿𝑏⊤∪⋃𝑒∈𝑆 𝐿𝑏2 (𝑒 )∪𝑆 (𝜎0 ) . Note that in this case, all the LCA events which are linearized after local
events are already taken as part of the states 𝑙 ′, 𝑎′, 𝑏′. Now, suppose we add one more LCA event
𝑒⊤𝑚 to all states. We define 𝑎′′, 𝑏′′ such that 𝑎′′ = 𝜋𝑎 |𝐿𝑏1 (𝑒⊤𝑚 ) (𝑎′), 𝑏′′ = 𝜋𝑏 |𝐿𝑏2 (𝑒⊤𝑚 ) (𝑏′).

Then, 𝑙 = 𝑒⊤𝑚 (𝑙 ′), 𝑎 = 𝑒⊤𝑚 (𝑎′′), 𝑏 = 𝑒⊤𝑚 (𝑏′′). 𝑒⊤𝑚 is not linearized before any of the events in
𝐿𝑏⊤ ∪ 𝐿𝑏1 ∪ 𝐿𝑏2 ∪ 𝑆 based on the definition of 𝐿𝑎⊤.

Now, by BottomUp-0-OP rule,

merge(𝑒⊤𝑚 (𝑙 ′), 𝑒⊤𝑚 (𝑎′′), 𝑒⊤𝑚 (𝑏′′)) = 𝑒⊤𝑚 (merge(𝑙 ′, 𝑎′′, 𝑏′′)) (3)
Now that we have linearized 𝑒⊤𝑚 , we need to linearize the events that led to merge(𝑙 ′, 𝑎′′, 𝑏′′).

Let’s denote 𝐿𝑏1 (𝑒⊤𝑚) as𝑀𝑎
1 and 𝐿𝑏2 (𝑒⊤𝑚) as𝑀𝑎

2 . Now we induct on the size of the set𝑀𝑎
1 ∪𝑀𝑎

2 .

Base Case 1.1:( | 𝑀𝑎
1 ∪𝑀𝑎

2 |= 0)
𝑎′′ = 𝑎′, 𝑏′′ = 𝑏′. By induction assumption, ∃𝜋. lo(𝐶) | (𝐿𝑏⊤∪

⋃
𝑒∈𝑆 𝐿𝑏1 (𝑒 )∪

⋃
𝑒∈𝑆 𝐿𝑏2 (𝑒 )∪𝑆 )

⊆ 𝜋

and merge(𝑙 ′, 𝑎′, 𝑏′) = 𝜋 (𝜎0). Hence, 𝜋𝑚 = 𝜋.𝑒⊤𝑚 .

Inductive Case 1.1:( | 𝑀𝑎
1 ∪𝑀𝑎

2 |> 0)
We have 2 cases here:
(1.1.1) Either of𝑀𝑎

1 or𝑀𝑎
2 is 𝜙

(1.1.2) Both𝑀𝑎
1 and𝑀𝑎

2 are not 𝜙 .

Case 1.1.1:(𝑀𝑎
1 ≠ 𝜙 ∧𝑀𝑎

2 = 𝜙)
Consider 𝑒1 ∈ 𝑀𝑎

1 such that there does not exist 𝑒 ∈ 𝑀𝑎
1 and 𝑒1

lom−−→ 𝑒 , i.e. 𝑒1 is the maximal event
according to lom. Since lo ordering between events remains the same in all versions, and since
versions 𝑣1 and 𝑣2 (which are being merged) were already linearizable, there would exist sequences
leading to the states 𝑎 such that 𝑒1 would appear at the end. Hence, there exists 𝑎′′′ such that
𝑎′′ = 𝑒1 (𝑎′′′). Since 𝑀𝑎

2 is empty, all local events in 𝐿2 are linearized before the rest of the LCA
events. Suppose 𝐿𝑎⊤ \ 𝑒⊤𝑚 ≠ 𝜙 or 𝐿𝑏⊤ ≠ 𝜙 , the last event which leads to the state 𝑙 ′, 𝑏′′ must be an
LCA event. Let’s consider 𝑒⊤ to be the maximal event in 𝐿⊤ according to lom. Hence there exists
states 𝑙 ′′, 𝑏′′′ such that 𝑙 ′ = 𝑒⊤ (𝑙 ′′), 𝑏′′ = 𝑒⊤ (𝑏′′′). By BottomUp-1-OP rule

merge(𝑒⊤ (𝑙 ′′), 𝑒1 (𝑎′′′), 𝑒⊤ (𝑏′′′)) = 𝑒1 (merge(𝑒⊤ (𝑙 ′′), 𝑎′′′, 𝑒⊤ (𝑏′′′))) (4)
If both 𝐿𝑎⊤ \ 𝑒⊤𝑚 = 𝜙 and 𝐿𝑏⊤ = 𝜙 , then 𝑙 ′ = 𝑏′′ = 𝜎0. By BottomUp-1-OP

merge(𝜎0, 𝑒1 (𝑎′′′), 𝜎0) = 𝑒1 (merge(𝜎0, 𝑎′′′, 𝜎0))
From the induction assumption, we get that merge(𝑒⊤ (𝑙 ′′), 𝑎′′′, 𝑒⊤ (𝑏′′′)) is already obtained

by the linearization of events applied on the initial state 𝜎0. That is, there exists a sequence 𝜋 ′

over events in 𝐿𝑏⊤ ∪⋃
𝑒∈𝑆 𝐿

𝑏
1 (𝑒) ∪

⋃
𝑒∈𝑆 𝐿

𝑏
2 (𝑒) ∪ 𝑆 ∪𝑀𝑎

1 \ 𝑒1 which extends lom relation such that
merge(𝑒⊤ (𝑙 ′′), 𝑎′′′, 𝑒⊤ (𝑏′′′)) = 𝜋 ′ (𝜎0). Now, 𝜋 = 𝜋 ′ .𝑒1 is the required linearization.

Let lo1 be the linearization relation for merge(𝑒⊤ (𝑙 ′′), 𝑎′′′, 𝑒⊤ (𝑏′′′)) (i.e. from the RHS in Eq. (4),
without the event 𝑒1) and let lo2 be the linearization relation for merge(𝑙 ′, 𝑎′′, 𝑏′′) (i.e. the LHS in
Eq. (4)). Then 𝜋 ′ according to the IH extends lo1. We will show that for any pair of events 𝑒, 𝑒′

in merge(𝑒⊤ (𝑙 ′′), 𝑎′′′, 𝑒⊤ (𝑏′′′)) , 𝑒
lo2−−→ 𝑒′ =⇒ 𝑒

lo1−−→ 𝑒′. This ensures that if 𝜋 extends lo2. Now,
the vis and rc relation between 𝑒′ and 𝑒 remains the same while determining both lo1 and lo2. If
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𝑒
lo2−−→
rc

𝑒′, then 𝑒′ cannot be visible to any non-commutative event while calculating lo2, but then

the same should be true for lo1 as well. If 𝑒
lo2−−→
vis

𝑒′, then clearly 𝑒 lo1−−→
vis

𝑒′. This concludes the proof
that 𝜋 = 𝜋 ′ .𝑒1 must extend lo2.

Case 1.1.2:(𝑀𝑎
1 ≠ 𝜙 ∧𝑀𝑎

2 ≠ 𝜙)
Consider 𝑒1 ∈ 𝑀𝑎

1 , 𝑒2 ∈ 𝑀𝑎
2 such that there does not exist 𝑒 ∈ 𝑀𝑎

𝑖 and 𝑒𝑖
lom−−→ 𝑒 (for 𝑖 = 1, 2), i.e.

each of the 𝑒𝑖s are maximal events according to lom. Since lo ordering between events remains
the same in all versions, and since versions 𝑣1 and 𝑣2 (which are being merged) were already
linearizable, there would exist sequences leading to the states 𝑎′′ and 𝑏′′ such that 𝑒1 and 𝑒2 would
appear at the end resp. Hence, there exists 𝑎′′′ and 𝑏′′′ such that 𝑎′′ = 𝑒1 (𝑎′′′) and 𝑏′′ = 𝑒1 (𝑏′′′).
Since 𝑒1 | |𝐶 𝑒2, they are related to each other by rc relation or they commute with each other i.e.,
𝑒1

rc−→ 𝑒2 ∨ 𝑒2
rc−→ 𝑒1 ∨ 𝑒1 ⇄ 𝑒2. We will consider the case when 𝑒2

rc−→ 𝑒1 ∨ 𝑒1 ⇄ 𝑒2. 𝑒1
rc−→ 𝑒2 is

handled by MergeCommutativity. The equation becomes

merge(𝑙 ′, 𝑒1 (𝑎′′′), 𝑒2 (𝑏′′′)) = 𝑒1 (merge(𝑙 ′, 𝑎′′′, 𝑒2 (𝑏′′′))) (5)

which is the BottomUp-2-OP rule.

From the induction assumption, we get that merge(𝑙 ′, 𝑎′′′, 𝑒2 (𝑏′′′)) is already obtained by the
linearization of events applied on the initial state 𝜎0. If 𝜋 ′ is the linearization for this merge, then
𝜋 = 𝜋 ′ .𝑒1 is the required linearization.
For this, we prove that 𝑒1 is not linearized before any of the events in 𝑀𝑎

1 \{𝑒1} ∪𝑀𝑎
2 . Clearly,

𝑒1 is not linearized before any event in 𝑀𝑎
1 \{𝑒1} because it is the maximal event on that branch.

Since 𝑒2
rc−→ 𝑒1, 𝑒1

vis−−→ 𝑒2 is not possible. 𝑒1
rc−→ 𝑒2 is not possible as rc+ is irreflexive. So 𝑒1

lo−→ 𝑒2
is not possible. Let’s assume there is some event 𝑒 in𝑀𝑎

2 \{𝑒2} that comes lo after 𝑒1. There are 2
possibilities.

• 𝑒1
rc−→ 𝑒 : Since 𝑒2

rc−→ 𝑒1, this case is not possible due to no-rc-chain restriction.
• 𝑒1

vis−−→ 𝑒 : This is not possible as events in𝑀𝑎
2 \{𝑒2} are concurrent with 𝑒1. This is because

every version is causally closed.
Case 2: ( | 𝐿𝑎1 ∪ 𝐿𝑎2 |> 0)
The proof here will be identical to the proof of Inductive Case 1.1, substituting 𝐿𝑎1 and 𝐿𝑎2 for𝑀𝑎

1
and𝑀𝑎

2 , and using the rules BottomUp-1-OP, MergeCommutativity and BottomUp-2-OP.

A.2.4 Case (Query): Assume that a query operation is applied on a replica 𝑟 . Let𝐶 = ⟨𝑁,𝐻, 𝐿,𝐺, 𝑣𝑖𝑠⟩
be the configuration of the replica before the operation. According to the semantics, the configura-
tion of the replica remains same after the query operation. By the induction hypothesis, Def. 3.9
holds for the configuration 𝐶 . □

Theorem 4.7 If an MRDT D satisfies the VCs𝜓 ∗ (BottomUp-2-OP),𝜓 ∗ (BottomUp-1-OP),
𝜓 ∗ (BottomUp-0-OP), MergeIdempotence and MergeCommutativity, then D is linearizable.

Proof. To prove thatD is linearizable, we will prove that any execution 𝜏 ∈ JSDK is linearizable,
for which we will show that all of its configurations are linearizable. Let 𝜏 = 𝐶0

𝑡1−→ 𝐶1
𝑡2−→ 𝐶2 . . .

𝑡𝑛−→
𝐶 be an execution of SD , where {𝑡1, . . . , 𝑡𝑛} are labels of the transition system. We prove by
induction on the length of 𝜏 . Base case of 𝐶0 which consists of only one replica 𝑟0 is trivially
satisfied, as no operations are applied on the head version 𝑣0 at 𝑟0. Assuming the required result
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holds in the execution 𝐶0 →∗ 𝐶 , and suppose there is a new transition 𝐶 → 𝐶
′ , we need to prove

that 𝐶 is linearizable. There are four cases corresponding to the four transition rules given in Fig. 8.

A.2.5 Case (CreateBranch): Assume that a new replica 𝑟 ′ is forked off from the origin replica
𝑟 . Let 𝐶 = ⟨𝑁,𝐻, 𝐿,𝐺, 𝑣𝑖𝑠⟩ and 𝐶 ′

= ⟨𝑁 ′
, 𝐻

′
, 𝐿

′
,𝐺

′
, 𝑣𝑖𝑠⟩ be the configurations of the replica before

and after the branch creation. According to the semantics, we have 𝐿(𝐻 (𝑟 )) = 𝐿
′ (𝐻 ′ (𝑟 ′ )) and

𝑁 (𝐻 (𝑟 )) = 𝑁
′ (𝐻 ′ (𝑟 ′ )). We need to prove that Def. 3.9 holds for 𝐶 ′ . This is obvious since Def. 3.9

holds for C by the induction assumption.

A.2.6 Case (Apply): Assume that an event 𝑒 is applied on a replica 𝑟 . Let𝐶 = ⟨𝑁,𝐻, 𝐿,𝐺, 𝑣𝑖𝑠⟩ and
𝐶

′
= ⟨𝑁 ′

, 𝐻
′
, 𝐿

′
,𝐺

′
, 𝑣𝑖𝑠

′⟩ be the configurations of the replica before and after the apply operation.
By semantics we have 𝐿′ (𝐻 ′ (𝑟 )) = 𝐿(𝐻 (𝑟 )) ∪ {𝑒}. We need to prove that Def. 3.9 holds for 𝐶 ′ .
By induction assumption, ∃𝜋. lo(𝐶) |𝐿 (𝐻 (𝑟 ) ) ⊆ 𝜋 ∧ 𝑁 (𝐻 (𝑟 )) = 𝜋 (𝜎0). Here lo(𝐶

′ ) |𝐿′ (𝐻 ′ (𝑟 ) ) is the
linearization order lo(𝐶) |𝐿 (𝐻 (𝑟 ) ) .𝑒 and 𝜋

′
= 𝜋.𝑒 . We need to show that 𝜋 ′ extends lo(𝐶 ′ ) |𝐿′ (𝐻 ′ (𝑟 ) ) .

We have 𝑁 ′ (𝐻 ′ (𝑟 )) = 𝑒 (𝜋 (𝜎0)). Event 𝑒 is visible to all events in 𝜋 according to the semantics of
apply. Since ∀𝑒 ′ ∈ 𝜋.𝑒

′ lo−−→
vis

𝑒 , 𝑒 lo−−→
vis

𝑒
′ is not possible due to anti-symmetry of vis. 𝑒 lo−→

rc
𝑒
′ is also

not possible as it would require 𝑒 and 𝑒 ′ to be concurrent events. Hence, 𝜋 ′ is a total order which
extends lo(𝐶 ′ ) |𝐿′ (𝐻 ′ (𝑟 ) ) . This proves the required result.

A.2.7 Case (Merge): Consider there is a merge(𝑟1, 𝑟2) transition to 𝐶 ′ where 𝑟2 merges with 𝑟1.
Let 𝐶 = ⟨𝑁,𝐻, 𝐿,𝐺, 𝑣𝑖𝑠⟩, 𝐶′ = ⟨𝑁 ′, 𝐻 ′, 𝐿′,𝐺 ′, 𝑣𝑖𝑠⟩ , and let 𝐻 (𝑟1) = 𝑣1, 𝐻 (𝑟2) = 𝑣2. Let 𝑣⊤ be the
LCA of 𝑣1 and 𝑣2 in 𝐺 . Let 𝑁 (𝑣1) = 𝑎, 𝑁 (𝑣2) = 𝑏, 𝑁 (𝑣⊤) = 𝑙 . The transition will install a version
𝑣𝑚 with state 𝑚 = merge(𝑙, 𝑎, 𝑏) at the replica 𝑟1, leaving the other replicas unchanged. Also,
𝐿′ (𝑣𝑚) = 𝐿(𝑣1) ∪ 𝐿(𝑣2). We need to show that there exists a sequence 𝜋𝑚 of events in 𝐿′ (𝑣𝑚) such
that 𝜋𝑚 extends lo(𝐶′) |𝐿′ (𝑣𝑚 ) and𝑚 = 𝜋 (𝜎0). For ease of readability, we use 𝐿1 for 𝐿(𝑣1), 𝐿2 for
𝐿(𝑣2) and 𝐿⊤ for 𝐿(𝑣⊤), and lom for lo(𝐶′) |𝐿′ (𝑣𝑚 ) .

By induction assumption, we know that
∃𝜋𝑎 . lo(𝐶) |𝐿 (𝑣1 ) ⊆ 𝜋𝑎 ∧ 𝑎 = 𝜋𝑎 (𝜎0)
∃𝜋𝑏 . lo(𝐶) |𝐿 (𝑣2 ) ⊆ 𝜋𝑏 ∧ 𝑏 = 𝜋𝑏 (𝜎0)
∃𝜋⊤ . lo(𝐶) |𝐿 (𝑣⊤ ) ⊆ 𝜋⊤ ∧ 𝑙 = 𝜋⊤ (𝜎0)

To start off, let’s consider the set 𝐿𝑎1 ∪ 𝐿𝑎2 . These are all local events of 𝑣1 and 𝑣2, which are not
linearized before events of the LCA. We consider different cases depending on the size of this set.

Case 1: ( | 𝐿𝑎1 ∪ 𝐿𝑎2 |= 0)
Wenote that in this case,𝑎, 𝑏 can be defined as follows:𝑎 = 𝜋𝑎 | (𝐿𝑏⊤∪𝐿𝑏1 ∪𝐿𝑎⊤ )

(𝜎0),𝑏 = 𝜋𝑏 | (𝐿𝑏⊤∪𝐿𝑏2 ∪𝐿𝑎⊤ )
(𝜎0).

We need to show that there exists a sequence 𝜋𝑚 that extends lom such thatmerge(𝑙, 𝑎, 𝑏) = 𝜋𝑚 (𝜎0).
Here, we induct on the size of the set 𝐿𝑎⊤.

Base Case 1: (𝐿𝑎⊤ = 𝜙)
Then 𝐿𝑏1 ∪ 𝐿𝑏2 = 𝜙 . So 𝑙 = 𝑎 = 𝑏. merge(𝑙, 𝑙, 𝑙) = 𝑙 is handled by MergeIdempotence. We know that
𝑙 is correctly linearized, hence the required result follows.

Inductive Case 1: ( | 𝐿𝑎⊤ |> 0)
Let 𝐿𝑎⊤ = {𝑒⊤1 , . . . , 𝑒⊤𝑚−1, 𝑒

⊤
𝑚}. Let 𝑆 = {𝑒⊤1 , . . . , 𝑒⊤𝑚−1}. By IH, for the set 𝑆 , we have the required

result. We define 𝑙 ′, 𝑎′, 𝑏′ based on the above set 𝑆 : 𝑙 ′ = 𝜋𝑙 |𝐿𝑏⊤∪𝑆
(𝜎0), 𝑎′ = 𝜋𝑎 |𝐿𝑏⊤∪⋃𝑒∈𝑆 𝐿𝑏1 (𝑒 )∪𝑆

(𝜎0),
𝑏′ = 𝜋𝑏 |𝐿𝑏⊤∪⋃𝑒∈𝑆 𝐿𝑏2 (𝑒 )∪𝑆 (𝜎0 ) . Note that in this case, all the LCA events which are linearized after local
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events are already taken as part of the states 𝑙 ′, 𝑎′, 𝑏′. Now, suppose we add one more LCA event
𝑒⊤𝑚 to all states. We define 𝑎′′, 𝑏′′ such that 𝑎′′ = 𝜋𝑎 |𝐿𝑏1 (𝑒⊤𝑚 ) (𝑎′), 𝑏′′ = 𝜋𝑏 |𝐿𝑏2 (𝑒⊤𝑚 ) (𝑏′).

Then, 𝑙 = 𝑒⊤𝑚 (𝑙 ′), 𝑎 = 𝑒⊤𝑚 (𝑎′′), 𝑏 = 𝑒⊤𝑚 (𝑏′′). 𝑒⊤𝑚 is not linearized before any of the events in
𝐿𝑏⊤ ∪ 𝐿𝑏1 ∪ 𝐿𝑏2 ∪ 𝑆 based on the definition of 𝐿𝑎⊤.

Now, by BottomUp-0-OP rule,

merge(𝑒⊤𝑚 (𝑙 ′), 𝑒⊤𝑚 (𝑎′′), 𝑒⊤𝑚 (𝑏′′)) = 𝑒⊤𝑚 (merge(𝑙 ′, 𝑎′′, 𝑏′′)) (6)
We will now show prove BottomUp-0-OP rule, i.e. Eqn. (6):

Proof of Eq. (6):
Let 𝑙𝑏 = 𝜋𝑙 |𝐿𝑏⊤

(𝜎0).
We first induct on | 𝐿𝑏⊤ | to show that merge(𝑒⊤𝑚 (𝑙𝑏), 𝑒⊤𝑚 (𝑙𝑏), 𝑒⊤𝑚 (𝑙𝑏)) = 𝑒⊤𝑚 (merge(𝑙𝑏, 𝑙𝑏, 𝑙𝑏))
For the base case, we use𝜓𝐿𝑏⊤

base−0op. For the inductive case, we use𝜓
𝐿𝑏⊤
ind−0op, whose pre-condition

will be satisfied by the IH.
Next, we induct on | 𝐿𝑎⊤ \ {𝑒⊤𝑚} | to show Eqn. (6).
For the base case, we have | 𝐿𝑎⊤ \ {𝑒⊤𝑚} |= 0. In this case, the set 𝑆 = ∅. Also, 𝑙 ′ = 𝑎′ = 𝑏′ = 𝑙𝑏 .

Hence, we need to show the following:

merge(𝑒⊤𝑚 (𝑙𝑏), 𝑒⊤𝑚 (𝜋𝑎 |𝐿𝑏1 (𝑒⊤𝑚 ) (𝑎′)), 𝑒⊤𝑚 (𝜋𝑏 |𝐿𝑏2 (𝑒⊤𝑚 ) (𝑏′))) = 𝑒⊤𝑚 (merge(𝑙 ′, 𝜋𝑎 |𝐿𝑏1 (𝑒⊤𝑚 ) (𝑎′), 𝜋𝑏 |𝐿𝑏2 (𝑒⊤𝑚 ) (𝑏′)))
(7)

We will now induct on | 𝐿𝑏1 (𝑒⊤𝑚) ∪ 𝐿𝑏2 (𝑒⊤𝑚) | to show Eqn. (7).
For the base case where | 𝐿𝑏1 (𝑒⊤𝑚) ∪ 𝐿𝑏2 (𝑒⊤𝑚) |= 0, it directly follows from the outcome of the

induction on | 𝐿𝑏⊤ |.
For the inductive case, we use one of𝜓𝐿𝑏1

ind1−0op,𝜓
𝐿𝑏1
ind2−0op,𝜓

𝐿𝑏2
ind1−0op or𝜓

𝐿𝑏2
ind2−0op depending on the

event 𝑒𝑏 or 𝑒 to be added to 𝐿𝑏1 (𝑒⊤𝑚) or 𝐿𝑏2 (𝑒⊤𝑚), with the pre-condition of these VCs being inferred
from the IH.

This completes the proof of Eqn. (7).
Now, we consider the inductive case for | 𝐿𝑎⊤ \ {𝑒⊤𝑚} | to show Eqn. (??). By IH, we get the

following:
merge(𝑒⊤𝑚 (𝑙 ′′′), 𝑒⊤𝑚 (𝑎′′′), 𝑒⊤𝑚 (𝑏′′′)) = 𝑒⊤𝑚 (merge(𝑙 ′′′, 𝑎′′′, 𝑏′′′)) (8)

where for the set 𝑆 ′ = 𝑆\𝑒⊤𝑚−1, 𝑙 ′′′ = 𝜋𝑙 |𝐿𝑏⊤∪𝑆′
(𝜎0),𝑎′′′ = 𝜋𝑎 |𝐿𝑏⊤∪⋃𝑒∈𝑆′ 𝐿

𝑏
1 (𝑒 )∪𝑆′

(𝜎0),𝑏′′′ = 𝜋𝑏 |𝐿𝑏⊤∪⋃𝑒∈𝑆′ 𝐿
𝑏
2 (𝑒 )∪𝑆′ (𝜎0 ) .

That is, we consider the effects of all event in 𝑆 except 𝑒⊤𝑚−1.
Now, we first use 𝜓𝐿𝑎⊤

ind−0op to apply 𝑒⊤𝑚−1 to 𝑙 ′′′, 𝑎′′′ and 𝑏′′′. Note that the pre-condition for
𝜓
𝐿𝑎⊤
ind−0op is satisfied due to Eqn. (8).

Next, we use induct on | 𝐿𝑏1 (𝑒⊤𝑚−1) ∪ 𝐿𝑏2 (𝑒⊤𝑚−1) | using the VCs 𝜓𝐿𝑏1
ind1−0op, 𝜓

𝐿𝑏1
ind2−0op, 𝜓

𝐿𝑏2
ind1−0op or

𝜓
𝐿𝑏2
ind2−0op to add all events in these sets. Finally, we induct on | 𝐿𝑏1 (𝑒⊤𝑚) ∪ 𝐿𝑏2 (𝑒⊤𝑚) | to again add all

these events, thereby proving Eqn. (??).
Now that we have linearized 𝑒⊤𝑚 using Eqn. (??), we need to linearize the events that led to

merge(𝑙 ′, 𝑎′′, 𝑏′′). Let’s denote 𝐿𝑏1 (𝑒⊤𝑚) as𝑀𝑎
1 and 𝐿𝑏2 (𝑒⊤𝑚) as𝑀𝑎

2 . Now we induct on the size of the
set𝑀𝑎

1 ∪𝑀𝑎
2 .

Base Case 1.1:( | 𝑀𝑎
1 ∪𝑀𝑎

2 |= 0)
𝑎′′ = 𝑎′, 𝑏′′ = 𝑏′. By induction assumption, ∃𝜋. lo(𝐶) | (𝐿𝑏⊤∪

⋃
𝑒∈𝑆 𝐿𝑏1 (𝑒 )∪

⋃
𝑒∈𝑆 𝐿𝑏2 (𝑒 )∪𝑆 )

⊆ 𝜋
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and merge(𝑙 ′, 𝑎′, 𝑏′) = 𝜋 (𝜎0). Hence, 𝜋𝑚 = 𝜋.𝑒⊤𝑚 .

Inductive Case 1.1:( | 𝑀𝑎
1 ∪𝑀𝑎

2 |> 0)
We have 2 cases here:
(1.1.1) Either of𝑀𝑎

1 or𝑀𝑎
2 is 𝜙

(1.1.2) Both𝑀𝑎
1 and𝑀𝑎

2 are not 𝜙 .

Case 1.1.1:(𝑀𝑎
1 ≠ 𝜙 ∧𝑀𝑎

2 = 𝜙)
Consider 𝑒1 ∈ 𝑀𝑎

1 such that there does not exist 𝑒 ∈ 𝑀𝑎
1 and 𝑒1

lom−−→ 𝑒 , i.e. 𝑒1 is the maximal event
according to lom. Since lo ordering between events remains the same in all versions, and since
versions 𝑣1 and 𝑣2 (which are being merged) were already linearizable, there would exist sequences
leading to the states 𝑎 such that 𝑒1 would appear at the end. Hence, there exists 𝑎′′′ such that
𝑎′′ = 𝑒1 (𝑎′′′). Since 𝑀𝑎

2 is empty, all local events in 𝐿2 are linearized before the rest of the LCA
events. Suppose 𝐿𝑎⊤ \ {𝑒⊤𝑚} ≠ 𝜙 or 𝐿𝑏⊤ ≠ 𝜙 , the last event which leads to the state 𝑙 ′, 𝑏′′ must be an
LCA event. Let’s consider 𝑒⊤ to be the maximal event in 𝐿⊤ according to lom. Hence there exists
states 𝑙 ′′, 𝑏′′′ such that 𝑙 ′ = 𝑒⊤ (𝑙 ′′), 𝑏′′ = 𝑒⊤ (𝑏′′′). By BottomUp-1-OP rule

merge(𝑒⊤ (𝑙 ′′), 𝑒1 (𝑎′′′), 𝑒⊤ (𝑏′′′)) = 𝑒1 (merge(𝑒⊤ (𝑙 ′′), 𝑎′′′, 𝑒⊤ (𝑏′′′))) (9)
Again, we prove BottomUp-1-OP rule using the same induction scheme that we showed for

BottomUp-0-OP. Briefly, we use𝜓𝐿𝑏⊤
base−1op and𝜓

𝐿𝑏⊤
ind−1op for induction on | 𝐿

𝑏
⊤ |. Then, we use𝜓𝐿𝑎⊤

ind−1op,

𝜓
𝐿𝑏1
ind1−1op,𝜓

𝐿𝑏1
ind2−1op,𝜓

𝐿𝑏2
ind1−1op and𝜓

𝐿𝑏2
ind2−1op to build the event sets 𝐿𝑎⊤ \ {𝑒⊤𝑚} and ⊔𝑒∈𝐿𝑎⊤\{𝑒⊤𝑚 }𝐿

𝑏
1 (𝑒) ∪

⊔𝑒∈𝐿𝑎⊤\{𝑒⊤𝑚 }𝐿
𝑏
2 (𝑒).

From the induction assumption, we get that merge(𝑒⊤ (𝑙 ′′), 𝑎′′′, 𝑒⊤ (𝑏′′′)) is already obtained
by the linearization of events applied on the initial state 𝜎0. That is, there exists a sequence 𝜋 ′

over events in 𝐿𝑏⊤ ∪⋃
𝑒∈𝑆 𝐿

𝑏
1 (𝑒) ∪

⋃
𝑒∈𝑆 𝐿

𝑏
2 (𝑒) ∪ 𝑆 ∪𝑀𝑎

1 \ 𝑒1 which extends lom relation such that
merge(𝑒⊤ (𝑙 ′′), 𝑎′′′, 𝑒⊤ (𝑏′′′)) = 𝜋 ′ (𝜎0). Now, 𝜋 = 𝜋 ′𝑒1 is the required linearization.

Case 1.1.2:(𝑀𝑎
1 ≠ 𝜙 ∧𝑀𝑎

2 ≠ 𝜙)
Consider 𝑒1 ∈ 𝑀𝑎

1 , 𝑒2 ∈ 𝑀𝑎
2 such that there does not exist 𝑒 ∈ 𝑀𝑎

𝑖 and 𝑒𝑖
lom−−→ 𝑒 (for 𝑖 = 1, 2), i.e.

each of the 𝑒𝑖s are maximal events according to lom. Since lo ordering between events remains
the same in all versions, and since versions 𝑣1 and 𝑣2 (which are being merged) were already
linearizable, there would exist sequences leading to the states 𝑎′′ and 𝑏′′ such that 𝑒1 and 𝑒2 would
appear at the end resp. Hence, there exists 𝑎′′′ and 𝑏′′′ such that 𝑎′′ = 𝑒1 (𝑎′′′) and 𝑏′′ = 𝑒1 (𝑏′′′).
Since 𝑒1 | |𝐶 𝑒2, they are related to each other by rc relation or they commute with each other i.e.,
𝑒1

rc−→ 𝑒2 ∨ 𝑒2
rc−→ 𝑒1 ∨ 𝑒1 ⇄ 𝑒2. We will consider the case when 𝑒2

rc−→ 𝑒1 ∨ 𝑒1 ⇄ 𝑒2. 𝑒1
rc−→ 𝑒2 is

handled by MergeCommutativity. The equation becomes
merge(𝑙 ′, 𝑒1 (𝑎′′′), 𝑒2 (𝑏′′′)) = 𝑒1 (merge(𝑙 ′, 𝑎′′′, 𝑒2 (𝑏′′′))) (10)

which is the BottomUp-2-OP rule.

Again, we prove BottomUp-2-OP rule using the same induction scheme that we showed
for BottomUp-1-OP. Briefly, we use 𝜓𝐿𝑏⊤

base−2op and 𝜓
𝐿𝑏⊤
ind−2op for induction on | 𝐿𝑏⊤ |. Then, we

use 𝜓
𝐿𝑎⊤
ind−2op, 𝜓

𝐿𝑏1
ind1−2op, 𝜓

𝐿𝑏1
ind2−2op, 𝜓

𝐿𝑏2
ind1−2op and 𝜓

𝐿𝑏2
ind2−2op to build the event sets 𝐿𝑎⊤ \ {𝑒⊤𝑚} and

⊔𝑒∈𝐿𝑎⊤\{𝑒⊤𝑚 }𝐿
𝑏
1 (𝑒) ∪ ⊔𝑒∈𝐿𝑎⊤\{𝑒⊤𝑚 }𝐿

𝑏
2 (𝑒).
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From the induction assumption, we get that merge(𝑙 ′, 𝑎′′′, 𝑒2 (𝑏′′′)) is already obtained by the
linearization of events applied on the initial state 𝜎0. If 𝜋 ′ is the linearization for this merge, then
𝜋 = 𝜋 ′𝑒1 is the required linearization.

Case 2: ( | 𝐿𝑎1 ∪ 𝐿𝑎2 |> 0)
The proof here will be identical to the proof of Inductive Case 1.1, substituting 𝐿𝑎1 and 𝐿𝑎2 for𝑀𝑎

1
and𝑀𝑎

2 , and using the rules BottomUp-1-OP, MergeCommutativity and BottomUp-2-OP.

A.2.8 Case (Query): Assume that a query operation is applied on a replica 𝑟 . Let𝐶 = ⟨𝑁,𝐻, 𝐿,𝐺, 𝑣𝑖𝑠⟩
be the configuration of the replica before the operation. According to the semantics, the configura-
tion of the replica remains same after the query operation. By the induction hypothesis, Def. 3.9
holds for the configuration 𝐶 .

□

A.3 Buggy MRDT implementation in [23]

1: Σ = (N × bool)
2: 𝑂 = {enable, disable}
3: 𝑄 = {rd}
4: 𝜎0 = (0, false)
5: do(𝜎, _, _, enable) = (fst(𝜎) + 1, true)
6: do(𝜎, _, _, disable) = (fst(𝜎), false)

7: merge_flag((𝑙𝑐, 𝑙 𝑓 ), (𝑎𝑐, 𝑎𝑓 ), (𝑏𝑐, 𝑏 𝑓 )) =


true, if 𝑎𝑓 = true && 𝑏𝑓 = true

false, else if 𝑎𝑓 = false && 𝑏𝑓 = false

𝑎𝑐 > 𝑙𝑐, else if 𝑎𝑓 = true
𝑏𝑐 > 𝑙𝑐, otherwise

8: merge(𝜎⊤, 𝜎𝑎, 𝜎𝑏 ) = (fst(𝜎𝑎) + fst(𝜎𝑏 ) − fst(𝜎⊤),merge_flag(𝜎⊤, 𝜎𝑎, 𝜎𝑏 ))
9: query(𝜎, 𝑟𝑑) = snd(𝜎)
10: rc = {(disable, enable)}

Fig. 15. Enable-wins flag MRDT implementation from [23]
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VC Name Pre-condition Post-condition
MergeCommutativity 𝜇 (𝑙, 𝑎,𝑏 ) = 𝜇 (𝑙, 𝑏, 𝑎)
MergeIdempotence 𝜇 (𝑠, 𝑠, 𝑠 ) = 𝑠

𝜓
𝐿𝑏⊤
base−2op 𝑒2

rc−→ 𝑒1 ∨ 𝑒2 ⇄ 𝑒1 𝜇 (𝜎0, 𝑒1 (𝜎0 ), 𝑒2 (𝜎0 ) ) =
𝑒1 (𝜇 (𝜎0, 𝜎0, 𝑒2 (𝜎0 ) ) )

𝜓
𝐿𝑏⊤
ind−2op 𝑒2

rc−→ 𝑒1 ∨ 𝑒2 ⇄ 𝑒1 𝜇 (𝑙, 𝑒1 (𝑙 ), 𝑒2 (𝑙 ) ) =
𝑒1 (𝜇 (𝑙, 𝑙, 𝑒2 (𝑙 ) ) )

𝜇 (𝑒⊤ (𝑙 ), 𝑒1 ·𝑒⊤ (𝑙 ), 𝑒2 ·𝑒⊤ (𝑙 ) ) =
𝑒1 (𝜇 (𝑒⊤ (𝑙 ), 𝑒⊤ (𝑙 ), 𝑒2 ·𝑒⊤ (𝑙 ) ) )

𝜓
𝐿𝑎⊤
ind−2op (𝑒2

rc−→ 𝑒1 ∨ 𝑒2 ⇄
𝑒1 ) ∧ (∃𝑒.𝑒 rc−→ 𝑒⊤ )

𝜇 (𝑙, 𝑒1 (𝑎), 𝑒2 (𝑏 ) ) =
𝑒1 (𝜇 (𝑙, 𝑎, 𝑒2 (𝑏 ) ) )

𝜇 (𝑒⊤ (𝑙 ), 𝑒1 ·𝑒⊤ (𝑎), 𝑒2 ·𝑒⊤ (𝑏 ) ) =
𝑒1 (𝜇 (𝑒⊤ (𝑙 ), 𝑒⊤ (𝑎), 𝑒2 ·𝑒⊤ (𝑏 ) ) )

𝜓
𝐿𝑏1
ind1−2op (𝑒2

rc−→ 𝑒1 ∨ 𝑒2 ⇄
𝑒1 ) ∧ 𝑒𝑏

rc−→ 𝑒⊤

𝜇 (𝑒⊤ (𝑙 ), 𝑒1 ·𝑒⊤ (𝑎), 𝑒2 ·𝑒⊤ (𝑏 ) ) =
𝑒1 (𝜇 (𝑒⊤ (𝑙 ), 𝑒⊤ (𝑎), 𝑒2 ·𝑒⊤ (𝑏 ) ) )

𝜇 (𝑒⊤ (𝑙 ), 𝑒1 ·𝑒⊤ ·𝑒𝑏 (𝑎), 𝑒2 ·𝑒⊤ (𝑏 ) ) =
𝑒1 (𝜇 (𝑒⊤ (𝑙 ), 𝑒⊤ ·𝑒𝑏 (𝑎), 𝑒2 ·𝑒⊤ (𝑏 ) ) )

𝜓
𝐿𝑏1
ind2−2op (𝑒2

rc−→ 𝑒1∨𝑒2 ⇄ 𝑒1 ) ∧𝑒𝑏
rc−→

𝑒⊤ ∧ (¬𝑒 ⇄ 𝑒𝑏 ∨ 𝑒
rc−→ 𝑒⊤ )

𝜇 (𝑒⊤ (𝑙 ), 𝑒1·𝑒⊤·𝑒𝑏 (𝑎), 𝑒2·𝑒⊤ (𝑏 ) ) =
𝑒1 (𝜇 (𝑒⊤ (𝑙 ), 𝑒⊤·𝑒𝑏 (𝑎), 𝑒2·𝑒⊤ (𝑏 ) ) )

𝜇 (𝑒⊤ (𝑙 ), 𝑒1 ·𝑒⊤ ·𝑒𝑏 (𝑒 (𝑎) ), 𝑒2 ·𝑒⊤ (𝑏 ) ) =
𝑒1 (𝜇 (𝑒⊤ (𝑙 ), 𝑒⊤ ·𝑒𝑏 ·𝑒 (𝑎), 𝑒2 ·𝑒⊤ (𝑏 ) ) )

𝜓
𝐿𝑏2
ind1−2op (𝑒2

rc−→ 𝑒1 ∨ 𝑒2 ⇄
𝑒1 ) ∧ 𝑒𝑏

rc−→ 𝑒⊤

𝜇 (𝑒⊤ (𝑙 ), 𝑒1 ·𝑒⊤ (𝑎), 𝑒2 ·𝑒⊤ (𝑏 ) ) =
𝑒1 (𝜇 (𝑒⊤ (𝑙 ), 𝑒⊤ (𝑎), 𝑒2 ·𝑒⊤ (𝑏 ) ) )

𝜇 (𝑒⊤ (𝑙 ), 𝑒1 ·𝑒⊤ (𝑎), 𝑒2 ·𝑒⊤ ·𝑒𝑏 (𝑏 ) ) =
𝑒1 (𝜇 (𝑒⊤ (𝑙 ), 𝑒⊤ (𝑎), 𝑒2 ·𝑒⊤ ·𝑒𝑏 (𝑏 ) ) )

𝜓
𝐿𝑏2
ind2−2op (𝑒2

rc−→ 𝑒1 ∨ 𝑒2 ⇄
𝑒1 ) ∧ 𝑒𝑏

rc−→ 𝑒⊤

𝜇 (𝑒⊤ (𝑙 ), 𝑒1 ·𝑒⊤ (𝑎), 𝑒2 ·𝑒⊤ (𝑏 ) ) =
𝑒1 (𝜇 (𝑒⊤ (𝑙 ), 𝑒⊤ (𝑎), 𝑒2 ·𝑒⊤ (𝑏 ) ) )

𝜇 (𝑒⊤ (𝑙 ), 𝑒1 ·𝑒⊤ ·𝑒𝑏 (𝑎), 𝑒2 ·𝑒⊤ (𝑏 ) ) =
𝑒1 (𝜇 (𝑒⊤ (𝑙 ), 𝑒⊤ ·𝑒𝑏 (𝑎), 𝑒2 ·𝑒⊤ (𝑏 ) ) )

𝜓
𝐿𝑎1
ind−2op 𝑒2

rc−→ 𝑒1 ∨ 𝑒2 ⇄ 𝑒1 𝜇 (𝑙, 𝑒1 (𝑎), 𝑒2 (𝑏 ) ) =
𝑒1 (𝜇 (𝑙, 𝑎, 𝑒2 (𝑏 ) ) )

𝜇 (𝑙, 𝑒1 ·𝑒′1 (𝑎), 𝑒2 (𝑏 ) ) =
𝑒1 (𝜇 (𝑙, 𝑒′1 (𝑎), 𝑒2 (𝑏 ) ) )

𝜓
𝐿𝑎2
ind−2op 𝑒2

rc−→ 𝑒1 ∨ 𝑒2 ⇄ 𝑒1 𝜇 (𝑙, 𝑒1 (𝑎), 𝑒2 (𝑏 ) ) =
𝑒1 (𝜇 (𝑙, 𝑎, 𝑒2 (𝑏 ) ) )

𝜇 (𝑙, 𝑒1 (𝑎), 𝑒2 ·𝑒′2 (𝑏 ) ) =
𝑒1 (𝜇 (𝑙, 𝑎, 𝑒2 ·𝑒′2 (𝑏 ) ) )

𝜓
𝐿𝑏⊤
base−1op 𝜇 (𝜎0, 𝑒1 (𝜎0 ), 𝜎0 ) = 𝑒1 (𝜇 (𝜎0, 𝜎0, 𝜎0 ) )

𝜓
𝐿𝑏⊤
ind−1op 𝜇 (𝑙, 𝑒1 (𝑙 ), 𝑙 ) = 𝑒1 (𝜇 (𝑙, 𝑙, 𝑙 ) ) 𝜇 (𝑒⊤ (𝑙 ), 𝑒1 ·𝑒⊤ (𝑙 ), 𝑒⊤ (𝑙 ) ) =

𝑒1 (𝜇 (𝑒⊤ (𝑙 ), 𝑒⊤ (𝑙 ), 𝑒⊤ (𝑙 ) ) )
𝜓
𝐿𝑎⊤
ind−1op ∃𝑒.𝑒 rc−→ 𝑒⊤ 𝜇 (𝑒′⊤ (𝑙 ), 𝑒1 (𝑎), 𝑒′⊤ (𝑏 ) ) =

𝑒1 (𝜇 (𝑒′⊤ (𝑙 ), 𝑎, 𝑒′⊤ (𝑏 ) ) )
𝜇 (𝑒⊤ ·𝑒′⊤ (𝑙 ), 𝑒1 ·𝑒⊤ (𝑎), 𝑒⊤ ·𝑒′⊤ (𝑏 ) ) =
𝑒1 (𝜇 (𝑒⊤ ·𝑒′⊤ (𝑙 ), 𝑒⊤ (𝑎), 𝑒⊤ ·𝑒′⊤ (𝑏 ) ) )

𝜓
𝐿𝑏1
ind1−1op 𝑒𝑏

rc−→ 𝑒⊤ 𝜇 (𝑒⊤ (𝑙 ), 𝑒1 ·𝑒⊤ (𝑎), 𝑒⊤ (𝑏 ) ) ) =
𝑒1 (𝜇 (𝑒⊤ (𝑙 ), 𝑒⊤ (𝑎), 𝑒⊤ (𝑏 ) ) )

𝜇 (𝑒⊤ (𝑙 ), 𝑒1 ·𝑒⊤ ·𝑒𝑏 (𝑎), 𝑒⊤ (𝑏 ) ) =
𝑒1 (𝜇 (𝑒⊤ (𝑙 ), 𝑒⊤ ·𝑒𝑏 (𝑎), 𝑒⊤ (𝑏 ) ) )

𝜓
𝐿𝑏1
ind2−1op 𝑒𝑏

rc−→ 𝑒⊤ ∧ (¬𝑒 ⇄
𝑒𝑏 ∨ 𝑒

rc−→ 𝑒⊤ )
𝜇 (𝑒⊤ (𝑙 ), 𝑒1 ·𝑒⊤ ·𝑒𝑏 (𝑎), 𝑒⊤ (𝑏 ) ) =
𝑒1 (𝜇 (𝑒⊤ (𝑙 ), 𝑒⊤ ·𝑒𝑏 (𝑎), 𝑒⊤ (𝑏 ) ) )

𝜇 (𝑒⊤ (𝑙 ), 𝑒1 ·𝑒⊤ ·𝑒𝑏 ·𝑒 (𝑎), 𝑒⊤ (𝑏 ) ) =
𝑒1 (𝜇 (𝑒⊤ (𝑙 ), 𝑒⊤ ·𝑒𝑏 ·𝑒 (𝑎), 𝑒⊤ (𝑏 ) ) )

𝜓
𝐿𝑏2
ind1−1op 𝑒𝑏

rc−→ 𝑒⊤ 𝜇 (𝑒⊤ (𝑙 ), 𝑒1 ·𝑒⊤ (𝑎), 𝑒⊤ (𝑏 ) ) =
𝑒1 (𝜇 (𝑒⊤ (𝑙 ), 𝑒⊤ (𝑎), 𝑒⊤ (𝑏 ) ) )

𝜇 (𝑒⊤ (𝑙 ), 𝑒1 ·𝑒⊤ (𝑎), 𝑒⊤ ·𝑒𝑏 (𝑏 ) ) =
𝑒1 (𝜇 (𝑒⊤ (𝑙 ), 𝑒⊤ (𝑎), 𝑒⊤ ·𝑒𝑏 (𝑏 ) ) )

𝜓
𝐿𝑏2
ind2−1op 𝑒𝑏

rc−→ 𝑒⊤ ∧ (¬𝑒 ⇄
𝑒𝑏 ∨ 𝑒

rc−→ 𝑒⊤ )
𝜇 (𝑒⊤ (𝑙 ), 𝑒1 ·𝑒⊤ (𝑎), 𝑒⊤ ·𝑒𝑏 (𝑏 ) ) =
𝑒1 (𝜇 (𝑒⊤ (𝑙 ), 𝑒⊤ (𝑎), 𝑒⊤ ·𝑒𝑏 (𝑏 ) ) )

𝜇 (𝑒⊤ (𝑙 ), 𝑒1 ·𝑒⊤ (𝑎), 𝑒⊤ ·𝑒𝑏 ·𝑒 (𝑏 ) ) =
𝑒1 (𝜇 (𝑒⊤ (𝑙 ), 𝑒⊤ (𝑎), 𝑒⊤ ·𝑒𝑏 ·𝑒 (𝑏 ) ) )

𝜓
𝐿𝑎1
ind−1op 𝜇 (𝑒⊤ (𝑙 ), 𝑒1 (𝑎), 𝑒⊤ (𝑏 ) ) =

𝑒1 (𝜇 (𝑒⊤ (𝑙 ), 𝑎, 𝑒⊤ (𝑏 ) ) )
𝜇 (𝑒⊤ (𝑙 ), 𝑒1 ·𝑒′1 (𝑎), 𝑒⊤ (𝑏 ) ) =
𝑒1 (𝜇 (𝑒⊤ (𝑙 ), 𝑒′1 (𝑎), 𝑒⊤ (𝑏 ) ) )

𝜓
𝐿𝑏⊤
base−0op 𝜇 (𝑒1 (𝜎0 ), 𝑒1 (𝜎0 ), 𝑒1 (𝜎0 ) ) =

𝑒1 (𝜇 (𝜎0, 𝜎0, 𝜎0 ) )

𝜓
𝐿𝑏⊤
ind−0op 𝜇 (𝑒1 (𝑙 ), 𝑒1 (𝑙 ), 𝑒1 (𝑙 ) ) =

𝑒1 (𝜇 (𝑙, 𝑙, 𝑙 ) )
𝜇 (𝑒1 ·𝑒⊤ (𝑙 ), 𝑒1 ·𝑒⊤ (𝑙 ), 𝑒1 ·𝑒⊤ (𝑙 ) ) =
𝑒1 (𝜇 (𝑒⊤ (𝑙 ), 𝑒⊤ (𝑙 ), 𝑒⊤ (𝑙 ) ) )

𝜓
𝐿𝑎⊤
ind−0op ∃𝑒.𝑒 rc−→ 𝑒⊤ 𝜇 (𝑒1 (𝑙 ), 𝑒1 (𝑎), 𝑒1 (𝑏 ) ) =

𝑒1 (𝜇 (𝑙, 𝑎,𝑏 ) )
𝜇 (𝑒1 ·𝑒⊤ (𝑙 ), 𝑒1 ·𝑒⊤ (𝑎), 𝑒1 ·𝑒⊤ (𝑏 ) ) =
𝑒1 (𝜇 (𝑒⊤ (𝑙 ), 𝑒⊤ (𝑎), 𝑒⊤ (𝑏 ) ) )

𝜓
𝐿𝑏1
ind1−0op 𝜇 (𝑒1 (𝑙 ), 𝑒1 (𝑎), 𝑒1 (𝑏 ) ) =

𝑒1 (𝜇 (𝑙, 𝑎,𝑏 ) )
𝜇 (𝑒1 (𝑙 ), 𝑒1 ·𝑒𝑏 (𝑎) ), 𝑒1 (𝑏 ) ) =
𝑒1 (𝜇 (𝑙, 𝑒𝑏 (𝑎), 𝑏 ) )

𝜓
𝐿𝑏1
ind2−0op ¬𝑒 ⇄ 𝑒𝑏 ∨ 𝑒

rc−→ 𝑒1 𝜇 (𝑒1 (𝑙 ), 𝑒1 ·𝑒𝑏 (𝑎) ), 𝑒1 (𝑏 ) ) =
𝑒1 (𝜇 (𝑙, 𝑒𝑏 (𝑎), 𝑏 ) )

𝜇 (𝑒1 (𝑙 ), 𝑒1 ·𝑒𝑏 ·𝑒 (𝑎) ) ), 𝑒1 (𝑏 ) ) =
𝑒1 (𝜇 (𝑙, 𝑒𝑏 ·𝑒 (𝑎) ), 𝑏 ) )

𝜓
𝐿𝑏2
ind1−0op 𝜇 (𝑒1 (𝑙 ), 𝑒1 (𝑎), 𝑒1 (𝑏 ) ) =

𝑒1 (𝜇 (𝑙, 𝑎,𝑏 ) )
𝜇 (𝑒1 (𝑙 ), 𝑒1 (𝑎), 𝑒1 ·𝑒𝑏 (𝑏 ) ) ) =
𝑒1 (𝜇 (𝑙, 𝑎, 𝑒𝑏 (𝑏 ) ) )

𝜓
𝐿𝑏2
ind2−0op ¬𝑒 ⇄ 𝑒𝑏 ∨ 𝑒

rc−→ 𝑒1 𝜇 (𝑒1 (𝑙 ), 𝑒1 (𝑎), 𝑒1 ·𝑒𝑏 (𝑏 ) ) ) =
𝑒1 (𝜇 (𝑙, 𝑎, 𝑒𝑏 (𝑏 ) ) )

𝜇 (𝑒1 (𝑙 ), 𝑒1 (𝑎), 𝑒1 ·𝑒𝑏 ·𝑒 (𝑏 ) ) ) ) =
𝑒1 (𝜇 (𝑙, 𝑎, 𝑒𝑏 ·𝑒 (𝑏 ) ) ) )

Table 3. Complete set of Verification Conditions for MRDTs
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VC Name Pre-condition Post-condition
MergeCommutativity 𝜇 (𝑎,𝑏 ) = 𝜇 (𝑏, 𝑎)
MergeIdempotence 𝜇 (𝑠, 𝑠 ) = 𝑠

𝜓
𝐿𝑏⊤
base−2op 𝑒2

rc−→ 𝑒1 ∨ 𝑒2 ⇄ 𝑒1 𝜇 (𝑒1 (𝜎0 ), 𝑒2 (𝜎0 ) ) =
𝑒1 (𝜇 (𝜎0, 𝑒2 (𝜎0 ) ) )

𝜓
𝐿𝑏⊤
ind−2op 𝑒2

rc−→ 𝑒1 ∨ 𝑒2 ⇄ 𝑒1 𝜇 (𝑒1 (𝑙 ), 𝑒2 (𝑙 ) ) = 𝑒1 (𝜇 (𝑙, 𝑒2 (𝑙 ) ) ) 𝜇 (𝑒1 ·𝑒⊤ (𝑙 ), 𝑒2 ·𝑒⊤ (𝑙 ) ) =
𝑒1 (𝜇 (𝑒⊤ (𝑙 ), 𝑒2 ·𝑒⊤ (𝑙 ) ) )

𝜓
𝐿𝑎⊤
ind−2op (𝑒2

rc−→ 𝑒1 ∨ 𝑒2 ⇄
𝑒1 ) ∧ (∃𝑒.𝑒 rc−→ 𝑒⊤ )

𝜇 (𝑒1 (𝑎), 𝑒2 (𝑏 ) ) =
𝑒1 (𝜇 (𝑎, 𝑒2 (𝑏 ) ) )

𝜇 (𝑒1 ·𝑒⊤ (𝑎), 𝑒2 ·𝑒⊤ (𝑏 ) ) =
𝑒1 (𝜇 (𝑒⊤ (𝑎), 𝑒2 ·𝑒⊤ (𝑏 ) ) )

𝜓
𝐿𝑏1
ind1−2op (𝑒2

rc−→ 𝑒1 ∨ 𝑒2 ⇄
𝑒1 ) ∧ 𝑒𝑏

rc−→ 𝑒⊤

𝜇 (𝑒1 ·𝑒⊤ (𝑎), 𝑒2 ·𝑒⊤ (𝑏 ) ) =
𝑒1 (𝜇 (𝑒⊤ (𝑎), 𝑒2 ·𝑒⊤ (𝑏 ) ) )

𝜇 (𝑒1 ·𝑒⊤ ·𝑒𝑏 (𝑎), 𝑒2 ·𝑒⊤ (𝑏 ) ) =
𝑒1 (𝜇 (𝑒⊤ ·𝑒𝑏 (𝑎), 𝑒2 ·𝑒⊤ (𝑏 ) ) )

𝜓
𝐿𝑏1
ind2−2op (𝑒2

rc−→ 𝑒1∨𝑒2 ⇄ 𝑒1 ) ∧𝑒𝑏
rc−→

𝑒⊤ ∧ (¬𝑒 ⇄ 𝑒𝑏 ∨ 𝑒
rc−→ 𝑒⊤ )

𝜇 (𝑒1 ·𝑒⊤ ·𝑒𝑏 (𝑎), 𝑒2 ·𝑒⊤ (𝑏 ) ) =
𝑒1 (𝜇 (𝑒⊤ ·𝑒𝑏 (𝑎), 𝑒2 ·𝑒⊤ (𝑏 ) ) )

𝜇 (𝑒1 ·𝑒⊤ ·𝑒𝑏 (𝑒 (𝑎) ), 𝑒2 ·𝑒⊤ (𝑏 ) ) =
𝑒1 (𝜇 (𝑒⊤ ·𝑒𝑏 ·𝑒 (𝑎), 𝑒2 ·𝑒⊤ (𝑏 ) ) )

𝜓
𝐿𝑏2
ind1−2op (𝑒2

rc−→ 𝑒1 ∨ 𝑒2 ⇄
𝑒1 ) ∧ 𝑒𝑏

rc−→ 𝑒⊤

𝜇 (𝑒1 ·𝑒⊤ (𝑎), 𝑒2 ·𝑒⊤ (𝑏 ) ) =
𝑒1 (𝜇 (𝑒⊤ (𝑎), 𝑒2 ·𝑒⊤ (𝑏 ) ) )

𝜇 (𝑒1 ·𝑒⊤ (𝑎), 𝑒2 ·𝑒⊤ ·𝑒𝑏 (𝑏 ) ) =
𝑒1 (𝜇 (𝑒⊤ (𝑎), 𝑒2 ·𝑒⊤ ·𝑒𝑏 (𝑏 ) ) )

𝜓
𝐿𝑏2
ind2−2op (𝑒2

rc−→ 𝑒1 ∨ 𝑒2 ⇄
𝑒1 ) ∧ 𝑒𝑏

rc−→ 𝑒⊤

𝜇 (𝑒1 ·𝑒⊤ (𝑎), 𝑒2 ·𝑒⊤ (𝑏 ) ) =
𝑒1 (𝜇 (𝑒⊤ (𝑎), 𝑒2 ·𝑒⊤ (𝑏 ) ) )

𝜇 (𝑒1 ·𝑒⊤ ·𝑒𝑏 (𝑎), 𝑒2 ·𝑒⊤ (𝑏 ) ) =
𝑒1 (𝜇 (𝑒⊤ ·𝑒𝑏 (𝑎), 𝑒2 ·𝑒⊤ (𝑏 ) ) )

𝜓
𝐿𝑎1
ind−2op 𝑒2

rc−→ 𝑒1 ∨ 𝑒2 ⇄ 𝑒1 𝜇 (𝑒1 (𝑎), 𝑒2 (𝑏 ) ) =
𝑒1 (𝜇 (𝑎, 𝑒2 (𝑏 ) ) )

𝜇 (𝑒1 ·𝑒′1 (𝑎), 𝑒2 (𝑏 ) ) =
𝑒1 (𝜇 (𝑒′1 (𝑎), 𝑒2 (𝑏 ) ) )

𝜓
𝐿𝑎2
ind−2op 𝑒2

rc−→ 𝑒1 ∨ 𝑒2 ⇄ 𝑒1 𝜇 (𝑒1 (𝑎), 𝑒2 (𝑏 ) ) =
𝑒1 (𝜇 (𝑎, 𝑒2 (𝑏 ) ) )

𝜇 (𝑒1 (𝑎), 𝑒2 ·𝑒′2 (𝑏 ) ) =
𝑒1 (𝜇 (𝑎, 𝑒2 ·𝑒′2 (𝑏 ) ) )

𝜓
𝐿𝑏⊤
base−1op 𝜇 (𝑒1 (𝜎0 ), 𝜎0 ) = 𝑒1 (𝜇 (𝜎0, 𝜎0 ) )

𝜓
𝐿𝑏⊤
ind−1op 𝜇 (𝑒1 (𝑙 ), 𝑙 ) = 𝑒1 (𝜇 (𝑙, 𝑙 ) ) 𝜇 (𝑒1 ·𝑒⊤ (𝑙 ), 𝑒⊤ (𝑙 ) ) =

𝑒1 (𝜇 (𝑒⊤ (𝑙 ), 𝑒⊤ (𝑙 ) ) )
𝜓
𝐿𝑎⊤
ind−1op ∃𝑒.𝑒 rc−→ 𝑒⊤ 𝜇 (𝑒1 (𝑎), 𝑒′⊤ (𝑏 ) ) =

𝑒1 (𝜇 (𝑎, 𝑒′⊤ (𝑏 ) ) )
𝜇 (𝑒1 ·𝑒⊤ (𝑎), 𝑒⊤ ·𝑒′⊤ (𝑏 ) ) =
𝑒1 (𝜇 (𝑒⊤ (𝑎), 𝑒⊤ ·𝑒′⊤ (𝑏 ) ) )

𝜓
𝐿𝑏1
ind1−1op 𝑒𝑏

rc−→ 𝑒⊤ 𝜇 (𝑒1 ·𝑒⊤ (𝑎), 𝑒⊤ (𝑏 ) ) ) =
𝑒1 (𝜇 (𝑒⊤ (𝑎), 𝑒⊤ (𝑏 ) ) )

𝜇 (𝑒1 ·𝑒⊤ ·𝑒𝑏 (𝑎), 𝑒⊤ (𝑏 ) ) =
𝑒1 (𝜇 (𝑒⊤ ·𝑒𝑏 (𝑎), 𝑒⊤ (𝑏 ) ) )

𝜓
𝐿𝑏1
ind2−1op 𝑒𝑏

rc−→ 𝑒⊤ ∧ (¬𝑒 ⇄
𝑒𝑏 ∨ 𝑒

rc−→ 𝑒⊤ )
𝜇 (𝑒1 ·𝑒⊤ ·𝑒𝑏 (𝑎), 𝑒⊤ (𝑏 ) ) =
𝑒1 (𝜇 (𝑒⊤ ·𝑒𝑏 (𝑎), 𝑒⊤ (𝑏 ) ) )

𝜇 (𝑒1 ·𝑒⊤ ·𝑒𝑏 ·𝑒 (𝑎), 𝑒⊤ (𝑏 ) ) =
𝑒1 (𝜇 (𝑒⊤ ·𝑒𝑏 ·𝑒 (𝑎), 𝑒⊤ (𝑏 ) ) )

𝜓
𝐿𝑏2
ind1−1op 𝑒𝑏

rc−→ 𝑒⊤ 𝜇 (𝑒1 ·𝑒⊤ (𝑎), 𝑒⊤ (𝑏 ) ) =
𝑒1 (𝜇 (𝑒⊤ (𝑎), 𝑒⊤ (𝑏 ) ) )

𝜇 (𝑒1 ·𝑒⊤ (𝑎), 𝑒⊤ ·𝑒𝑏 (𝑏 ) ) =
𝑒1 (𝜇 (𝑒⊤ (𝑎), 𝑒⊤ ·𝑒𝑏 (𝑏 ) ) )

𝜓
𝐿𝑏2
ind2−1op 𝑒𝑏

rc−→ 𝑒⊤ ∧ (¬𝑒 ⇄
𝑒𝑏 ∨ 𝑒

rc−→ 𝑒⊤ )
𝜇 (𝑒1 ·𝑒⊤ (𝑎), 𝑒⊤ ·𝑒𝑏 (𝑏 ) ) =
𝑒1 (𝜇 (𝑒⊤ (𝑎), 𝑒⊤ ·𝑒𝑏 (𝑏 ) ) )

𝜇 (𝑒1 ·𝑒⊤ (𝑎), 𝑒⊤ ·𝑒𝑏 ·𝑒 (𝑏 ) ) =
𝑒1 (𝜇 (𝑒⊤ (𝑎), 𝑒⊤ ·𝑒𝑏 ·𝑒 (𝑏 ) ) )

𝜓
𝐿𝑎1
ind−1op 𝜇 (𝑒1 (𝑎), 𝑒⊤ (𝑏 ) ) =

𝑒1 (𝜇 (𝑎, 𝑒⊤ (𝑏 ) ) )
𝜇 (𝑒1 ·𝑒′1 (𝑎), 𝑒⊤ (𝑏 ) ) =
𝑒1 (𝜇 (𝑒′1 (𝑎), 𝑒⊤ (𝑏 ) ) )

𝜓
𝐿𝑏⊤
base−0op 𝜇 (𝑒1 (𝜎0 ), 𝑒1 (𝜎0 ) ) = 𝑒1 (𝜇 (𝜎0, 𝜎0 ) )

𝜓
𝐿𝑏⊤
ind−0op 𝜇 (𝑒1 (𝑙 ), 𝑒1 (𝑙 ) ) = 𝑒1 (𝜇 (𝑙, 𝑙 ) ) 𝜇 (𝑒1 ·𝑒⊤ (𝑙 ), 𝑒1 ·𝑒⊤ (𝑙 ) ) =

𝑒1 (𝜇 (𝑒⊤ (𝑙 ), 𝑒⊤ (𝑙 ) ) )
𝜓
𝐿𝑎⊤
ind−0op ∃𝑒.𝑒 rc−→ 𝑒⊤ 𝜇 (𝑒1 (𝑎), 𝑒1 (𝑏 ) ) = 𝑒1 (𝜇 (𝑎,𝑏 ) ) 𝜇 (𝑒1 ·𝑒⊤ (𝑎), 𝑒1 ·𝑒⊤ (𝑏 ) ) =

𝑒1 (𝜇 (𝑒⊤ (𝑎), 𝑒⊤ (𝑏 ) ) )

𝜓
𝐿𝑏1
ind1−0op 𝜇 (𝑒1 (𝑎), 𝑒1 (𝑏 ) ) = 𝑒1 (𝜇 (𝑎,𝑏 ) ) 𝜇 (𝑒1 ·𝑒𝑏 (𝑎) ), 𝑒1 (𝑏 ) ) =

𝑒1 (𝜇 (𝑒𝑏 (𝑎), 𝑏 ) )

𝜓
𝐿𝑏1
ind2−0op ¬𝑒 ⇄ 𝑒𝑏 ∨ 𝑒

rc−→ 𝑒1 𝜇 (𝑒1 ·𝑒𝑏 (𝑎) ), 𝑒1 (𝑏 ) ) =
𝑒1 (𝜇 (𝑒𝑏 (𝑎), 𝑏 ) )

𝜇 (𝑒1 ·𝑒𝑏 ·𝑒 (𝑎) ) ), 𝑒1 (𝑏 ) ) =
𝑒1 (𝜇 (𝑒𝑏 ·𝑒 (𝑎) ), 𝑏 ) )

𝜓
𝐿𝑏2
ind1−0op 𝜇 (𝑒1 (𝑎), 𝑒1 (𝑏 ) ) = 𝑒1 (𝜇 (𝑎,𝑏 ) ) 𝜇 (𝑒1 (𝑎), 𝑒1 ·𝑒𝑏 (𝑏 ) ) ) =

𝑒1 (𝜇 (𝑎, 𝑒𝑏 (𝑏 ) ) )

𝜓
𝐿𝑏2
ind2−0op ¬𝑒 ⇄ 𝑒𝑏 ∨ 𝑒

rc−→ 𝑒1 𝜇 (𝑒1 (𝑎), 𝑒1 ·𝑒𝑏 (𝑏 ) ) ) =
𝑒1 (𝜇 (𝑎, 𝑒𝑏 (𝑏 ) ) )

𝜇 (𝑒1 (𝑎), 𝑒1 ·𝑒𝑏 ·𝑒 (𝑏 ) ) ) ) =
𝑒1 (𝜇 (𝑎, 𝑒𝑏 ·𝑒 (𝑏 ) ) ) )

Table 4. Complete set of Verification Conditions for CRDTs
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