
Parallelising your OCaml Code with Multicore
OCaml

Sadiq Jaffer
Opsian

OCaml Labs
sadiq@toao.com

Tom Kelly
OCaml Labs

tom.kelly@cantab.net

Sudha Parimala
IIT Madras

sudharg247@gmail.com

KC Sivaramakrishnan
IIT Madras
OCaml Labs

kcsrk@iitm.ac.in

Anil Madhavapeddy
University of Cambridge Computer

Laboratory
OCaml Labs

avsm2@cl.cam.ac.uk

Abstract
With the availability of multicore variants of the recent
OCaml versions (4.10 and 4.11) that maintain backwards
compatibility with the existing OCaml C-API [Sivara-
makrishnan et al. 2020] there has been increasing interest
in the wider OCaml community for parallelising existing
OCaml code. From our experience with a range of pro-
grams, linear speedups on up to 24 cores are possible.
This presentation will take the attendees through the
following steps aimed at developing parallel programs
with Multicore OCaml:

∙ Installing the latest Multicore OCaml compiler
∙ Brief overview of the low-level API for parallel
programming

∙ A tour of domainslib – a high-level parallel pro-
gramming library for Multicore OCaml

∙ Common pitfalls when parallelising
∙ Tools for diagnosing Multicore OCaml performance

1 Multicore OCaml
Multicore OCaml1 is an extension of OCaml with sup-
port for concurrency and shared-memory parallelism.
Concurrency is expressed through effect handlers [Dolan
et al. 2018a] and parallelism through domains [Sivara-
makrishnan et al. 2020]. The current focus is to upstream
domains-only support to OCaml, followed by effect han-
dlers in a subsequent release. Recently, Multicore OCaml
has decided to adopt a stop-the-world parallel minor col-
lector as opposed to a concurrent minor collector. The
parallel minor collector generally exhibits better perfor-
mance than the concurrent minor collector, but crucially,
does not necessitate changes in the C API. This sim-
plifies the migration story to adapt the ecosystem to
Multicore OCaml. Existing single-threaded OCaml code

1https://github.com/ocaml-multicore/ocaml-multicore

2020. 2475-1421/2020/1-ART1 $15.00
https://doi.org/

can be built and run as is on the multicore runtime.
The multicore OCaml compiler is available as an opam
switch for easy installation 2.

2 Domains
Domains are the unit of parallelism in Multicore OCaml.
Each domain maps to a system thread, and can be
created and destroyed dynamically. Multicore OCaml
provides minimal support for domains in the standard li-
brary. There is support for creating and joining domains,
waiting for notifications and notifying waiting domains.
The standard library distributed with the compiler does
not provide advanced concurrent programming primi-
tives like mutexes, channels, fork-join parallelism and
transactional memory. Instead the compiler provides
atomic memory operations in its standard library to
support the development of concurrent libraries. Mul-
ticore OCaml comes equipped with a memory model
that ensures that data race free parts of the program
have sequentially consistent semantics, and importantly,
ensures type safety in the presence of data races [Dolan
et al. 2018b].
Any advanced concurrent programming libraries can

thus live outside the compiler as libraries which can
evolve independently from the compiler development
cycle. Moreover, this removes the burden of maintenance
of the libraries from the compiler developers. That said,
Multicore OCaml will be accompanied by a blessed set
of libraries for advanced concurrent programming which
will be distributed through opam.

3 Domainslib
One such library is Domainslib3 which provides high-
level parallel programming primitives built on top of
domains. Domainslib provides support for first-class,
multi-producer, multi-consumer channels, task pools

2https://github.com/ocaml-multicore/multicore-opam
3https://github.com/ocaml-multicore/domainslib

1

https://github.com/ocaml-multicore/ocaml-multicore
https://doi.org/
https://github.com/ocaml-multicore/multicore-opam
https://github.com/ocaml-multicore/domainslib

Conference’17, July 2017, Washington, DC, USA Jaffer et al.

with async/await parallelism, and parallel for loops. The
snippet below shows the code for computing the 50th Fi-
bonacci number using 4 domains with the Domainslib.Task
module:

module T = Domainslib.Task

let rec fib n =

if n < 2 then n

else fib (n-1) + fib (n-2)

let rec fib_par pool n =

if n <= 30 then fib n

else

let a = T.async pool (fun _ ->

fib_par pool (n-1)) in

let b = T.async pool (fun _ ->

fib_par pool (n-2)) in

T.await pool a + T.await pool b

let main =

let pool = T.setup_pool ~num_domains :4 in

let n = 50 in

let res = fib_par pool n in

T.teardown_pool pool;

Printf.printf "fib(%d)␣=␣%d\n" n res

The following is parallel matrix multiplication using
the parallel_for construct. The chunk_size determines
the granularity of tasks:

module T = Domainslib.Task

let n_domains = 4

let mat_mul pool m1 m2 =

let i_n = Array.length m1 in

let j_n = Array.length m2.(0) in

let k_n = Array.length m2 in

let m3 = Array.make_matrix i_n j_n 0 in

T.parallel_for pool ~chunk_size :(i_n/n_domains)

~start:0 ~finish :(i_n - 1)

~body:(fun i -> for j = 0 to pred j_n do

for k = 0 to pred k_n do

m3.(i).(j) <-

(m3.(i).(j) + (m1.(i).(k) * m2.(k).(j)));

done;

done);

m3

let _ =

let m1 = Array.make_matrix 1024 1024 128 in

let m2 = Array.make_matrix 1024 1024 256 in

let pool = T.setup_pool

~num_domains :(n_domains - 1) in

let _ = mat_mul pool m1 m2 in

T.teardown_pool pool

The following shows how to send and receive on a
domasinslib channel:

module C = Domainslib.Chan

let worker i (queue : string C.t) () =

let msg = C.recv queue in

Printf.printf "worker␣[%d]␣received␣[%s]\n"

i msg

let main =

let n_workers = 2 in

let queues =

Array.init n_workers (fun i ->

C.make_bounded 8)

in

let domains =

Array.init n_workers (fun i ->

Domain.spawn (worker i queues .(i)))

in

Array.iteri

(fun i q ->

C.send q (Printf.sprintf "Hello␣%d" i))

queues;

Array.iter (fun d -> Domain.join d) domains

Thus, domainslib makes it easy to parallelise existing
sequential code.

4 Common pitfalls when parallelising
In our experience of parallelising existing OCaml pro-
grams, we have encountered several different types of
problems that limited performance scalability. The ma-
jority fall in to two categories.

4.1 Poor granularity of parallel tasks

Whilst domains are the unit of parallelism, their creation
and termination can be relatively heavyweight and can
soon dominate execution time if the tasks run are small.
Domainslib provides a much more lightweight task pool-
ing mechanism but care still needs to be taken to ensure
tasks are of sufficient size that their distribution does
not exceed the time spent doing useful work.

4.2 Shared state write contention

Parallel writes to shared state leads to poor scalability on
modern processors due to cache lines being ping-ponged
between cores. The effect can be even more dramatic
on processors with significantly non-uniform memory
access. This write contention can often be hidden within
standard library or runtime code and can be hard to
find without specialised tooling to do so.

2

Parallelising your OCaml Code with Multicore OCaml Conference’17, July 2017, Washington, DC, USA

5 Tools for diagnosing Multicore
OCaml performance

We will cover the two main tools used to diagnose the
performance of Multicore OCaml programs. These can
cover Garbage Collection, CPU time and shared state
related issues.

5.1 OCaml Eventlog

Multicore OCaml includes an instrumented runtime by
default that can output GC events in a format compati-
ble with Chrome’s tracing viewer. An extended version
of this instrumentation will be available as an option
in OCaml 4.11.0. We will cover how to use this GC
event information to understand where the GC is under
pressure and possible solutions.

Figure 1. Example eventlog trace from a Multicore
OCaml program

5.2 Linux perf

The perf performance subsystem and tools are powerful
but complex and difficult to use for newcomers. We
will discuss performance events and profiling, and how
these can be analysed with perf to identify performance
bottlenecks.

References
Stephen Dolan, Spiros Eliopoulos, Daniel Hillerström, Anil Mad-

havapeddy, K. C. Sivaramakrishnan, and LeoWhite. 2018a. Con-
current System Programming with Effect Handlers. In Trends in
Functional Programming, Meng Wang and Scott Owens (Eds.).
Springer International Publishing, Cham, 98–117.

Stephen Dolan, KC Sivaramakrishnan, and Anil Madhavapeddy.

2018b. Bounding Data Races in Space and Time. In Proceed-

ings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI 2018). Associa-

tion for Computing Machinery, New York, NY, USA, 242–255.
https://doi.org/10.1145/3192366.3192421

KC Sivaramakrishnan, Stephen Dolan, Leo White, Sadiq Jaffer,

Tom Kelly, Anmol Sahoo, Sudha Parimala, Atul Dhiman, and
Anil Madhavapeddy. 2020. Retrofitting Parallelism onto OCaml.

In Proceedings of the 25th ACM SIGPLAN International Con-
ference on Functional Programming (ICFP 2020).

3

https://doi.org/10.1145/3192366.3192421

	Abstract
	1 Multicore OCaml
	2 Domains
	3 Domainslib
	4 Common pitfalls when parallelising
	4.1 Poor granularity of parallel tasks
	4.2 Shared state write contention

	5 Tools for diagnosing Multicore OCaml performance
	5.1 OCaml Eventlog
	5.2 Linux perf

	References

